Adaptive Fault Tolerant Systems: Reflective Design and Validation

Marc-Olivier Killijian and Jean-Charles Fabre

LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
{marco.killijian, jean-charles.fabre} @laas.fr

Abstract

Reflection has been used with some success, since
quite a few years now, for dealing with separation of
concerns and transparency of fault-tolerance mechanisms
for the application. Nevertheless, it has also shown some
concerning the control of fine-grain information such as
thread control or other deep aspects of the platform. We
propose here the use of a new concept, called multi-level
reflection, for firstly solving these issues, but also for
introducing more adaptation into fault-tolerant reflective
architectures. We also discuss some essential validation
issues of reflective systems, which are still a challenge for
future research.

1. Problem statement

Flexibility, reuse, and adaptation are becoming key
aspects of today's large embedded systems (satellite
systems, transport, automotive), and explain the
increasing use of off-the-shelf components in the
concerned industries. This trend raises challenges when
considering the dependability of the resulting systems:
How can we build dependable systems from components
that don't specifically target dependability concerns? For
these reasons, integrators are looking for sound and
principled approaches that help them separate functional
development from fault-tolerance concerns, within large
projects, over long life-time.

Computational Reflection, an architectural paradigm
that appeared in the late eighties, and related technologies
such as aspect oriented programming, appear as very
promising and powerful approaches to tackle this issue.
Reflective architectures are centered on a key element,
their meta-model, that insures the separation of concerns
between the "base" system (here the system resulting
from component integration) and the mechanisms (in our
case, fault-tolerance) that are added to the base system.
To be effective, this meta-model must take into account
both the multi-component nature of the systems and the
requirements of fault-tolerance that it should help
implement. Within this work, we address this dual issue
and propose a methodology to help design meta-models

that specifically target the implementation of fault-
tolerance into systems made of third party components.
To some extent, we also address validation issues.

2. Anintroduction to multi-level reflection

A reflective system is basically structured around a
representation of itself (its self-representation or meta-
model) that is causally connected to the real system [1].
This meta-model divides the system into two distinct
parts: a base-level where normal computation takes place,
and a meta-level where the system computes about itself
(meta-computation or meta-level software).

The design of a reflective system mainly consists in
providing reflective mechanisms to establish meta-
models. The reflective mechanisms provide observation
and control features that can be divided into four classes:

o reification mechanisms by which the base-level exhibits
information about its own computation;

e introspection mechanisms by which the meta-level can
obtain (on-demand) structural information about the
base-level;

e behavioral intercession leading the meta-level to control
base-level computation;

e structural intercession enabling the meta-level to update
base-level entities.

This kind of mechanisms is the corner stone of any
reflective system or component. In object-oriented
system, this is often provided by a so-called meta-object
protocol (MOP), for which base-level entities are objects
and meta-level entities are metaobjects.

In areflective object-oriented application meta-objects
populate the meta-level and use the meta-model to control
the behavior of normal application objects (i.e. based-
level object). The meta-model is structured around
notions that are "constitutive" of the base level; i.e. these
notions are common to al applications that share the
same programming model.

The systems we are interested in are made of third-
party components that are most often organized in a
layered architecture: OS kernel, system libraries,
compilers, virtual machines, middleware, etc. These



layers introduce different abstraction levels that each
provide different sets of "constitutive" elements from
which applications can be built to run on top of these
levels. For instance, at the language level, the meta-model
of an object-oriented application considered would
typically contain entities and events such as "Class",
"Method", "Instanciation", "Invocation", or "Attributes".
On the other hand, at the OS-level, it would other contain
entities, e.g. concerning memory paging, or task
scheduling. In our case, an ideal meta-model should
provide all the reflective features that are required to
implement correctly and efficiently fault-tolerant
mechanisms. In the meta-model, al the different entities
from the various levels are represented and linked
together (cf. Figure 1).

For the design of this first part of the meta-model, we
had to study various fault-tolerance mechanisms, to
extract key features that must be observed and controlled
[2]. The second important aspect of the meta-model
concerns the multi-level nature of the considered
architectures, i.e the relationship between the various
entities and information found within each level.

System’s
Functional
Interface

M Y e L

Application Layer L M

Executive Layer L ., O/Q\

Executive Layer L

Figure 1: A Multilevel Reflective Architecture

Interface I, ,

Interface I,

In [3], we introduce the notion of mapping and
projection to support the analysis of interlevel coupling
from a reflective perspective. A mapping describes the
various possible representations of a given entity at a
given abstraction level i by entities available at a (lower)
abstraction level i-1 (cf. Figure 2).

D L) O,

Interfacel,
v O OO0 O e
Hidden . ) S
Entity Trandlation Aggregation Multiplexing

Figure 2: Simple Mapping Taxonomy

A projection is the transitive closure of mapping
relations that maps a top-level entity to lower level
entities (useful for state handling). Reverse projections
map low-level entities to higher level ones (useful for
defining error confinement regions). Projections alow the

tracing of high level requirements regarding fault-
tolerance (in term of data-consistency, expected QoS,
performance) to lower-level concerns (platform state,
communication management). Reverse-projection permits
the mapping of low-level fault-assumptions to their
impact on the high-level functional entities of the system
(cf. Figure 3).

System’s
i i Functional
P22 % ev Interface
\ / Interface I, ,
% Layer Ln+1
\ / Interface I,
Layer L,

Fault

Figure 3: Error Detection across system layers

3. Adaptation using multi-level reflection

A multi-level relective architecture is an ideal platform
for studying adaptation of fault-tolerant strategies. Firstly,
all the necessary information is available for
implementing a lot of different strategies. Secondly, this
information can be retrieved at various levels: at low level
for performance and at high level for richer semantics.

Nevertheless, beyond the implementation of various
and possibly adaptive fault-tolerance mechanisms,
probably the most interesting aspect of ML reflective
architectures concerning adaptation is the capacity of
changing the multi-level metamodel accordingly to the
needs of the mechanisms. On one hand this possibility can
be seen as a workaround for performance degradation due
to too many indirections in the platform implementation
(imagine the performance of an OS reifying to the FT
mechanism every single event!). But on the other hand,
this is also a great opportunity for FT programmers to
tailor the architecture to their very needs. The degree of
reflection of the platform can be fine-grain controlled. A
FT programmer can develop, for instance, a mechanism
that adapts itself to the load of the system, using heavy
pessimistic protocols when the necessary resources are
available, and switching to lightweight protocols when the
system is overloaded.

The mechanisms used to tailor the metamodel in a
multi-level reflective architecture are called the meta-
filters. They filter the meta-information available at the
meta-level. It is worth noting that, these meta-filters are
conceptual filters but they don’t have to be implemented
as filters. We are currently working on the



implementation of several meta-filters: either based on
simple code parsers or, for performance optimization,
based on the use of code injection

4. Validation of Reflective Systems

While the design of reflective systems mainly focuses
on how to provide separation of concerns, the validation
of their implementation with respect to the specification
must be addressed. A global strategy for the verification
of reflective architectures corresponds to the incremental
verification of:

1. Thefunctional mechanisms of the base-level;

2. The reflective mechanisms used to compose the
functional mechanisms and the non-functional
mechanisms supplied by the meta-level;

3. The non-functional mechanisms of the meta-level;

4. The composition of functional and non-functional
mechanisms using the reflective mechanisms.

Phases 1, 3 and 4, which are highly dependent on the
particular functional and non-functional mechanisms
implemented in the target reflective architecture, and can
be addresses using conventional testing and fault injection
techniques. Regarding phase 2, the challenge is to propose
a test strategy generic enough to be used for different
architectures based on similar reflective mechanisms, and
thus independently of any particular implementation. This
objective raises some fundamental problems:

1. In what order should the reflective mechanisms be
tested? The goal is to define successive testing levels
that fit with an incremental verification of the
reflective mechanisms (that can be decomposed into
the four classes identified in section 2), facilitating the
reuse of the mechanisms that have already been tested
for verifying the remaining ones.

2. Which test objectives should be associated with the
successive testing levels? The objectives must focus
on the verification of the properties expected from the
reflective mechanism under test at each testing level.

3. Which conformance checks should be used in order to
decide whether or not given reflective mechanism
passes the tests, i.e., whether it produces correct
results in response to the test case input values?

4. Given the test objectives and the conformance checks
to be performed, how to design the test environments
required for conducting the test experiments? In
particular, these environments must offer solutions to
the observability and controllability problems
generated by the information hiding principle.

Most of these issues are still open, as, to the best of our
knowledge, very few work has been done in the field of
validating reflective platforms. In our work reported in
[2], we defined a testing strategy for reflective
mechanisms implemented with a MOP (cf. Section 5)

5. Overview of a Test Strategy for aMOP

This strategy identifies four different testing levels and
for each level it characterizes the test objectives and the
required test environment. The test objectives are focused
on the verification of the properties expected from each
reflective mechanism in order to be confident in its use.
Obviously, the strategy instantiation for the testing of a
target MOP will have to comply with the MOP
implementation.

The activation of the reflective mechanisms is based
on an interaction channel between base and meta-level
entities. Hence, exercising (and thus testing) these
mechanisms requires a high level of confidence in this
interaction channel. This confidence may be obtained by
testing the process followed to establish the
interconnection. This issue relates to this very first testing
level (called Testing level 0) that is highly dependent on
the implementation and thus, can vary a lot from one
implementation to another. As a result, our strategy
cannot provide general guidelines for this level although
we assume that it is successfully achieved in the first
place. Further details regarding this implementation
related concerns can be found in [4].

Once this link is correctly established, the reflective
mechanisms (of the MOP) are exercised following a test
order defined according to the dependencies existing
among these mechanisms. These dependencies are
exploited in order to define an incremental test strategy
that reduces the testing effort to be spent. In accordance
with this goal, we proposed the following order to
conduct testing of the four reflective mechanisms:

e Testing level 1. Reification (behavioral observation);
e Testing level 2. Behavioral intercession;

e Testing level 3. Introspection (structural observation);
e Testing level 4. Structural intercession.

The relevance of this order was validated on a fault
tolerant reflective platform [2]. For each level, we give
the test objectives, that is, the requirements to be met by
(and thus tested on) the implementation of the target
reflective mechanisms. Then, the necessary test
environment is defined in terms of the entities
participating in the test experiments (the server object and
its metaobject, the test driver and the oracle objects), the
interactions among these entities, and the conformance
checks to be performed in order to decide whether or not
the MOP passes the tests. The role of the oracle object is
to verify that the test executions meet the requirements
imposed by the MOP specification. The test driver object
manages the test experiments: (i) it acts as a client object
to exercise the MOP by supplying it with test case input
values and, (ii) it provides the oracle object with (part of
the) data that the oracle procedure uses to determine
correctness during test execution.



6. Conclusion

Reflection is today a well-known paradigm that has
been successfully used to address non-functional concepts
in system architectures. In particular, security and fault
tolerance have benefited from this concept as
demonstrated by several projects and prototypes
worldwide (e.g. [5, 6, 7]). Our previous research in the
field was a contribution to the development of fault- and
intrusion- tolerant systems using reflective languages. The
main problem we identified was the limited meta-
information available at a given level regarding the above
or underlying layers of the system. This was the main
motivation for the introduction of multi-level reflection.

The basic concepts identified at this stage enable meta-
level software to be based on a clear understanding of the
entities-relations at al levelsin a computer system and of
their links through several software layers. We also
advocate in this approach specialized meta-models that
can be defined for targeting a given non-functional
requirement. Several notions such as mapping and
projections provide means to draw error confinement
areas, and identify state information through all system
layersfor error recovery.

The use of reflective system in real applications
remains questionable as the validation aspects of this kind
of architecture were not addressed by many works,
presently. Design and validation efforts must be combined
for dependable adaptive systems based on reflective
architectures and components.

We briefly reported in this paper on some experience
we have for the validation of reflective platform,
essentially based on simple metaobject protocols. Clearly,
thisis still on open research topic. Reflection concepts are
today applied to various components at all system layers
of a complex architecture. In addition, we believe that the
multi-level reflection model is a good approach for
building adaptive systems, but more work is needed,
including from a validation viewpoaint.

Adaptive fault tolerance per se poses new design,
implementation and validation problems, that must be
solved as large system today have long life time, and must
evolve in both the functional and the non-functional
domain.

7. References

[1] P. Maes, “Concepts and Experiments in Computational
Reflection,” presented at Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), Orlando, Florida, 1987.

[2] J.-C. Ruiz-Garcia, M.-O. Killijian, J.-C. Fabre, and P.
Thévenod-Fosse, “Reflective Fault-Tolerant Systems: From
Experience to Challenges’, |IEEE Transactions on Computers,
Special Issue on Reliable Distributed Systems, Vol. 52, n°2, Féb
2003.

[3] F. Taiani, J.-C. Fabre, and M.-O. Killijian, “Principles of
Multi-Level Reflection for Fault-Tolerant Architectures,”
presented at the |EEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2002), Tsukuba (Japan), 2002.

[4] J.C.Ruiz-Garcia, J.C.Fabre, P.Thevenod-Fosse," Testing
Metaobject Protocols Generated by Open Compilers for Safety-
Critical Systems’, 3rd International ACM/AITO Conference
REFLECTION 2001, (Lecture Notes in Computer Science 2192,
Eds. A.Yonezawa, S.Matsuoka, Springer, ISBN 3-540-42618-3,
2001) Kyoto (Japan), pp.134-152, Sep. 2001.

[5] Pérennou, T. and J.-C. Fabre, “A Metaobject Architecture
for Fault-Tolerant Distributed Systems : the FRIENDS
Approach”. |IEEE Trans. on Computer, Special Issue on
Dependability of Computing Systems, 1998. Vol.47, p. 78-95.

[6] Garbinato, B., R. Guerraoui, and K.R. Mazouni,
“Implementation of the GARF Replicated Objects Platform”.
Distributed Systems Engineering Journal, 1995. 2(1): p. 14-27.

[7] Agha, G., et al. “A Linguistic Framework for Dynamic
Composition of Dependability Protocols”. in the IFIP
Conference on Dependable Computing for Critical Applications
(DCCA-3). 1992. Padermo (Sicily), Italy: Elsevier. p. 197-207.



