
1/40 

COSMOPEN: Dynamic reverse engineering on a budget 
How cheap observation techniques can be used 

to reconstruct complex multi-level behaviour 

François Taïani1, Marc-Olivier Killijian2, Jean-Charles Fabre2,3 
1 Computing Department, Lancaster University, Lancaster, UK 

2 LAAS-CNRS, Université de Toulouse, Toulouse, France 
3 Université de Toulouse, INP Toulouse, France 

 
Abstract: 
In this article we present COSMOPEN, a reverse engineering tool optimised for the be-
havioural analysis of complex layered software. COSMOPEN combines cheap and non-
intrusive observation techniques with a versatile graph manipulation engine. By pro-
gramming different graph manipulation scripts, the “focal length” of our tool can be 
adapted to different abstraction levels. We illustrate how our tool can be used to extract 
high-level behavioural models from a complex multithreaded platform (GNU/Linux, 
CORBA middleware). 
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1 Introduction 
Mission-critical applications are increasingly assembled from third party components whose 
quality is only partially controllable [1, 2]. As a result developers must harden their system to 
guarantee their dependability, usually by adding fault-tolerance mechanisms. This kind of exten-
sion, however, requires that they thoroughly understand how their system’s internal components 
behave and interact. Developers must be able to analyse state entangling, capture and restore con-
sistent application states, and track causal dependencies (to allow them to control non-
determinism), just to name a few issues. This kind of analysis requires trustworthy and up-to-date 
information, and as a result, developers often have to reverse-engineer the software they use.  
Software reverse engineering has been intensively studied. A major challenge that proposed ap-
proaches have had to address is the sheer complexity of the underlying data, in particular when 
observing a program at run-time. Complex software systems comprise many layers (OS kernel, 
system libraries, middleware, GUI, etc.), each obeying its own logic. Every layer usually interacts 
with its neighbours in specific and hidden ways. At run-time, their activities tend to overlap, cre-
ating a blurred image in which different levels of abstraction co-exist in the same data, a situation 
we refer to as cross-layer entangling. While tools exist that help navigate the complex data 
spaces that emerge [3, 4, 5], the task generally remains cumbersome and error-prone. 
A second challenge faced by dynamic reverse engineering (i.e. using run-time data) is the cost of 
obtaining fined-grained run-time information about a program’s execution. Exhaustive tracing, 
while optimal in terms of coverage, is often far too costly even on medium-size systems. 
To address these two challenges, this paper proposes an approach to construct behavioural mod-
els of complex multi-layered systems while minimising observation costs. Our prototype, 
COSMOPEN1, combines a partial and hence cheap observation technique with a simple but power-
ful language for graph transformation. Because it minimises intrusion and relies on a flexible ana-
lyser, our approach can be applied to a wide range of industry-grade platforms, which we illus-
trate by reporting on the behavioural analysis of commercial multi-threaded CORBA ORBs.  
                                                
1 Available on-line under a GPL licence at http://ftaiani.ouvaton.org/7-software/ 
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Our approach highlights the possible trade-offs between observation costs and model accuracy in 
complex software platforms. More precisely we show that even with an almost minimal observa-
tion strategy, useful and relevant information can be extracted from running programs. We show 
that our approach is scalable and can be applied on complex industry-grade platforms. 
The remainder of our article is organised as follows: we first discuss the challenges raised by the 
dynamic reverse engineering of large multi-layer software (section 2). We then introduce two 
motivating examples that illustrate COSMOPEN’s core capabilities (section 3). We move on to de-
scribe COSMOPEN’s implementation and transformation language (section 4). Section 5 presents 
the application of our tool to three popular Object Request Brokers (ORBs): ORBACUS, 
OMNIORB, and TAO, with a detailed case study of ORBACUS. We review related work in sec-
tion 6, and conclude in section 7. 

2 Problem statement 
Our interest in reverse engineering tools goes back to our work on fault-tolerance provisioning in 
complex software platforms [6, 7, 8, 9]. For economic reasons, pre-existing software components 
(OS, libraries, virtual machine, middleware) are increasingly used in mission-critical applications 
(railways, avionics, automobile, space exploration, finance, telecommunication). As a result, the 
developers of such systems face the following two key challenges:  

1. Because most components are not specifically developed with fault-tolerance in mind, extra 
mechanisms are required to harden the resulting systems. To this aim, developers must under-
stand how each component can threaten the overall system, and conversely how the system’s 
overall robustness can emerge from each component’s behaviour.  

2. Due to the complexity of modern system development, teams focussing on different concerns 
needs to work independently. Developers need to address fault-tolerance without interfering 
with the development of the rest of the system.  

We have proposed to address those challenges by adapting a well-known architectural paradigm 
called computational reflection to the specificities of large and complex systems [6, 7]. We found 
that a key step to address the above points is to precisely understand how each component con-
tributes to a system’s overall properties. Unfortunately, understanding how a component can in-
fluence the dependability of a large system requires a precise analysis of this component, both in 
terms of structure and behaviour. This is an extremely complex task and led us to look for a re-
verse engineering approach that would be:  
• Dynamic: While structural information was needed, our main interest lied in the dynamic be-

haviour of the system.  
• Non-intrusive: We did not want to instrument components and libraries, to avoid costly cus-

tomisation and support the use of COTS (Commercial Off The Shelf). 
• Cheap: Because of the size of our target systems (over 100,000 LoC per components), we 

wanted to observe them with a fine granularity, while maintaining an acceptable performance.  
• Flexible: For performance reasons, the approach should be able to adapt its granularity of ob-

servation during the different phases of a program's execution. 
• Discriminative: The approach should tackle cross-layer entangling and discriminate between 

different logical planes of a system's execution. For instance, we needed to be able to focus on 
the request management inside the middleware level, while abstracting away from the fine-
grained thread activities related to communication management.  

None of the traditional reverse-engineering techniques proposed so far seemed to fit all these re-
quirements: tools for structural analysis that use graph manipulation do not scale well to behav-
ioural data, while tools for behavioural analysis that employ aggregative techniques tend to be 
unsuitable for program comprehension (figure 1).  
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Figure 1: A classification of reverse engineering approaches 

Tools in the first category (area (1) in figure 1) rely on graph operations and navigation to help a 
user encompass the structural complexity of a program. Ciao [4,10,11], GUPRO [3], and Rigi 
[12,13] are prime examples of this category. By contrast, and because behavioural data are inher-
ently more voluminous than structural ones (a single function can be invoked multiple times), 
tools in the second category (area (2) in figure 1) use aggregative metrics (adding up the times a 
processor spends in a given function for instance) to condense quantitative data about a program's 
execution. This kind of aggregation can be seen as a collapsing of the time axis onto the spatial 
structure of the program. Classical performance profilers, like gprof [14], are prime examples of 
this approach. Quantitative aggregation of execution data is very useful to identify performance 
bottlenecks (hot spots) [15], or to profile resource consumption [16], but it removes too much in-
formation to convey much insight about a program's internal logic [17].  
Graph manipulation has not traditionally been used for behavioural analysis because dynamic 
events are difficult to represent intuitively in a tractable discrete structure. Only recently pattern-
based approaches have been proposed to represent large behavioural data sets as graphs, and thus 
overcome this complexity lock. The base idea, which we will term partial collapsing, is to use 
patterns to “dose” the collapsing of the behavioural information into a more compact representa-
tion (area (3) figure 1). By selectively folding together recurring patterns, these approaches de-
crease the complexity of the data to be represented, while retaining enough information to capture 
the program's internal logic. Jerding et al. for instance proposed a pattern extraction technique 
that collapses identical subtrees in the original call-tree, and identifies duplicated subtrees gener-
ated by iteration and recursion [17]. This “pattern-induced” collapsing of subtrees has also been 
used by Pauw et al. to help locate memory leaks in Java programs. Their technique groups ob-
jects according to their class and the other objects they refer to [18]. By compacting reference 
relationships into patterns, they help the user encompass complex object graphs, while maintain-
ing enough information to discriminate objects according to their situation of referencing.  
In this paper we propose a new partial collapsing technique to analyse the behaviour of complex 
multi-layer platforms. Unlike the pattern-based approaches we have just described, we do not use 
the recurring patterns induced by local programming structures (loops, recursions, etc.). Instead, 
we take advantage of the layered structure of complex software systems. Our prototype tool 
(COSMOPEN) combines two key techniques: i) it uses an inexpensive event extraction scheme, 
which specifically targets macroscopic interactions within a complex system; ii) it provides a 
graph manipulation language, which allows users to focus on the level of abstraction they are in-
terested in. In a way, this graph manipulation language acts as a logical lens that adapts its focal 
length to produce a crisp view of a system's dynamics from a blurred set of raw data.  
The general philosophy of our tool is similar to that of modern ground telescopes [19]. Because 
they stay on the ground, these telescopes are far cheaper than space-launched systems like the 
Hubble Space Telescope. However, in order to overcome the blurring effect caused by Earth's 
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atmosphere, they must deploy complex computer-based techniques (speckle interferometry, adap-
tive optics, etc.) to reconstruct sharp pictures. In those telescopes, as in COSMOPEN, a “cheap” 
observation approach is balanced by using advanced software intelligence to produce sharp views 
of masked phenomena (be it by distance or by architectural complexity).  

3 Introducing COSMOPEN: two motivating examples 
We briefly present COSMOPEN’s architecture, and then move on to illustrate the key intuitions 
behind our work with two small examples. The first example is entirely invented and very basic. 
It illustrates how we lower the cost of dynamic observation while maximising the yield of the re-
sulting data. The second example considers a small multithreaded program in which the collected 
data contains entangled elements from both the underlying multithreading library and the pro-
gram itself. We show how COSMOPEN is able to untangle those elements using graph transforma-
tion. 

3.1 COSMOPEN’s overall architecture  

COSMOPEN’s architecture follows the general guidelines proposed by Chen et al. for large source 
code repositories [4] (figure 2):  

1. Raw observation data is extracted from the target program. COSMOPEN can handle structural 
and behavioural data, although we focus here exclusively on its behavioural capabilities.  

2. The raw data is translated into a machine-friendly XML dialect. 
3. COSMOPEN’s graph transformation engine is used to construct higher-level models from the 

observed data. The underlying scripting language allows the construction of reusable filters 
that are well adapted to the layers commonly found in industry-grade software.  

4. The obtained information is presented to the user using an appropriate external viewer. We 
use the graph layout engine dot from AT&T [20].  

 
Figure 2: COSMOPEN's general architecture 

3.2 Controlling observation costs: a basic example 

The problem 
Consider the users of an imaginary broadcasting middleware who wish to add fault-tolerance 
mechanisms to their system. To do so, they need to understand how broadcast requests are proc-
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essed. Unfortunately they know nothing about the middleware’s structure, except that it provides 
a broadcast primitive and uses the send primitive of the underlying OS (figure 3). 

 
Figure 3: A simple multi-layer reverse-engineering problem 

One way to analyse the middleware’s behaviour could be to trace all run-time invocations. Many 
tools such as open-compilers [21], binary code manipulators [22, 23], and aspect-oriented sys-
tems can be used to this aim. In COSMOPEN we simply rely on the tracing capabilities provided 
by modern debuggers such as gdb [24]. Unfortunately, exhaustive tracing can be extremely 
costly. For the CORBA products we consider in section 5, the middleware would not even exe-
cute properly when traced exhaustively due to timeout watchdogs. 
Addressing the observation bottleneck: foliage and rootage 
In COSMOPEN we address this observation bottleneck in two ways: 

1) Stack-trace captures: Most tracing frameworks, and debuggers in particular, allow the cap-
ture of stack-traces each time a function/method is intercepted. A stack trace contains the 
pending calls that led to this particular function or method, and thus captures multiple invoca-
tions at the cost of one interception. We use this insight to lower tracing overheads. 

2) Minimised observation footprint: Although the developers of our example know nothing of 
the middleware’s internal implementation, the external interfaces of the middleware are 
known and well documented (in our toy example send and broadcast). Combined with 
stack-trace captures, these interfaces can be used as entry-points to guide our observation ef-
fort. We call this subset an observation footprint. The rationale behind this approach lies in 
the organisation of layered software (figure 4). A software layer (an ORB, an OS kernel) acts 
as a broker between its surrounding upper and lower layers. It imports lower-level program-
ming primitives and implements higher-level programming entities. Using a biological meta-
phor, imported primitives form a foliage pattern inside the layer implementation, while ex-
ported interfaces are rooted into it (figure 4). By capturing stack traces on a well-chosen ob-
servation footprint we can follow this “roots-and-branches” structure and reconstruct a view 
of a layer’s internal workings. 

 
Figure 4: Leafage and Rootage in multi-layer system 
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Our approach combines the two above insights and only intercepts the methods and functions lo-
cated on the upper and lower interfaces of a particular layer. In the above example, these are 
broadcast, send, plus any other OS system calls the middleware might be using, for instance 
for synchronisation or memory management (we return to this point below). Let’s assume that 
developers first want to know how the middleware interacts with the OS’s network API: we can 
here restrict our observation to send. Whenever an invocation to send is intercepted, COSMOPEN 
will capture the stack of the active thread (i.e. the set of pending calls for this thread), and thus 
uncover internal methods and functions. In our toy example, the first interception of send yields 
the following trace (simplified gdb output): 

 
This can easily be transformed in an XML format (we use a simple awk script to do this): 

 
This small trace is represented graphically as a chain graph (figure 5). Pending calls are repre-
sented as nodes, and nested invocations are shown with directed edges. Calls are labelled with 
sequence numbers (here from 0 to 4) that reflect the order in which they were recorded. We rec-
ognise the documented API BroadcastEngine::broadcast (call 2). Call 3 is internal to the 
middleware and reveals a new method, BroadcastEngine::marshallAndSend, which was 
so far unknown to us. 
In most cases, send will be invoked several times by the middleware, thus yielding more than 
one trace. Imagine our middleware makes a very economic use of send and we only capture a 
second trace, identical to the previous one. COSMOPEN is able to merge those two traces in one 
call-tree (figure 6). 
Constructing a call-tree from stack traces raises a number of issues. Most notably, the recon-
structed tree is usually not unique. For instance, the tree of figure 6 implies that Broadcast-
Engine::marshallAndSend was called only once. There is however no way of asserting this 
from the two captured traces. We have solved this by choosing to construct the smallest call-tree 
that is compatible with the observed traces. We return to this issue in section 4, when we discuss 
COSMOPEN’s algorithms for call-tree construction. 



7/40 

 
Figure 5: Graphical representation of the 

first captured trace 

 
Figure 6: Call-tree resulting from the 

merging of two traces 

Enriching observation footprints 
The above call-tree is very basic. It only captures a small facet of the system’s behaviour. Devel-
opers can easily learn more about the middleware by enriching their observation footprint and 
thus intercepting a larger set of operations. For instance, if we assume the OS offers a single 
memory allocation primitive malloc, object creations can be monitored by intercepting invoca-
tions to malloc2. Doing so gives us four new stack traces, all ending with malloc as their top-
most frame. By combining them with the two previous traces (obtained for send) we obtain the 
call-tree shown in figure 7. 

 
Figure 7: 6 stack traces combined from two OS calls (send and malloc) 

This figure illustrates a limitation of call-trees for the representation of the behaviour of large 
programs. Our example is small and only traces two OS system calls (send and malloc). How-
ever the resulting call-tree, with 14 nodes, barely fits on the page. Because larger software pro-
duces far bigger call-trees (typically with thousands of nodes for the CORBA implementations 
we consider in section 5), COSMOPEN offers a more compact representation, termed class interac-
tion diagrams. This representation is adapted from the object interaction diagrams commonly 
found in modelling languages such as UML [25]. This is shown in figure 8, with COSMOPEN’s 

                                                
2  This of course assumes that all object creations cause the OS to allocate memory. This is usually the case for C++. 

This would not work if the middleware executed on top of a virtual machine with its own memory management.  
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graph manipulation tool running in a console, and the current graph under manipulation (corre-
sponding to the call-tree of figure 7) displayed in a viewer window3. 
In a class interaction diagram, each node represents a class or a standalone function. The se-
quence of invocations can be followed using sequence numbers. A visual code is also used to dis-
tinguish i) between classes (like Application or BroadcastMessage, represented in rectan-
gles) and plain functions (main, send, malloc, represented in rounded boxes), and ii) between 
plain invocations (thin arrows), and object constructions (thick arrows). 

 
Figure 8: COSMOPEN’s graph navigation in action: the call-tree of figure 7 represented as a 

class interaction diagram  

Because sequence numbers can be difficult to follow on large graphs, COSMOPEN offers an alter-
native labelling scheme that labels edges locally in the order in which they leave and enter a par-
ticular node. This is shown on figure 9 for node bar: incoming edges are labelled with letters (‘a’ 
and ‘b’) that reflects the order in which bar is invoked. Outgoing edges are labelled by a combi-
nation of one of the two previous letters and a number (here ‘a:1’ and ‘b:2’). The letter indicates 
the incoming invocation that triggers the outgoing call (e.g. here the call from bar to foo is a 
result of the call from main to bar); the number indicates the order in which outgoing calls were 
observed on this particular node. This numbering is only applied to nodes for which an ambiguity 

                                                
3  Our prototype uses a simple but effective interactive approach: users can ask the graphs being manipulated to be 

mirrored in an underlying PostScript file (bind2ps in the figure). Using an appropriate viewer (e.g. ghostview 
with the “watch file” option on), users can then visualise their manipulations as they happen. 
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exits (so here only bar). Finally, incoming invocations that have no nested calls are flagged with 
a filled dot rather than an arrow (such as here the invocation of tar).  

 
Figure 9: Alternative edge numbering for large graphs 

Interaction diagrams are far more compact that standard call-trees, which makes them ideal to 
represent large call-trees. They also allow developers to relate invocations made on the same 
class that would otherwise appear completely disconnected, as for instance in figure 8 the crea-
tion of the BroadcastEngine object — invocation (3) — and the invocation of the method 
broadcast on this object — invocation (8). 
Unfortunately interaction diagrams alone are not enough to clearly represent oversized trees. As 
we have just done with malloc, developers would typically add more OS calls to their observa-
tion footprint. In doing so they are likely to collect information irrelevant to their purpose (i.e. 
adding fault tolerance to the system), or capture interactions that belong to different logical 
planes. This data will in turn add unnecessary complexity to any graphical representation, and 
should ideally be removed. For instance malloc belongs to the C++ implementation of our com-
piler. We might want to remove it from our graph, and only keep information about object con-
struction. We might also want to remove the class OptionDictionary since it is not primarily 
related to the handling of broadcast requests. COSMOPEN offers a principled approach to these 
concerns by providing an interactive graph manipulation language. 

3.3 Untangling observed data: a multi-threaded example  

To illustrate COSMOPEN’s graph manipulation abilities, we now turn to the program of figure 10. 
This program creates two POSIX threads and terminates. The two threads each execute dummy 
functions (not shown) and exit. Our goal is to observe this program when it runs on Linux (kernel 
2.4), and show how COSMOPEN can be used to separate OS-level mechanisms from the applica-
tion logic. 
On Linux 2.4, this program executes in a layered environment (figure 11). It uses a user-space 
library (pthread), which in turn uses low-level kernel system calls, such as clone (creation of a 
OS-level “process”4), read (I/O), or pipe (IPC) to provide a POSIX-compliant API. 

 
Figure 10: An elementary multi-threaded program 

                                                
4  clone creates a kernel thread, or light weight process (LWP). In Linux, on most architectures, there is a 1:1 rela-

tionship between LWPs and POSIX threads. This is not always the case in other operating systems. 



10/40 

In the following, we show how the program’s behaviour can be reconstructed even when tracing 
solely the two application-level functions dummy1 and dummy2 and a set of low-level OS system 
calls (read, write, pipe, etc.). We will here assume that we know nothing of the pthread li-
brary. As most of the observation footprint is located below the library (see figure 11), our main 
challenge will be to disentangle the library’s execution from that of the program. 

 
Figure 11: Multithreading in GNU/Linux 2.4 

This example is of course oversimplified since we can tell what the program does by simply 
looking at its code. POSIX is also a well-known standard and we could trace its API directly. The 
example is however representative of large and complex software, where a manual inspection of 
the code rapidly becomes unpractical, and intermediary libraries are often little documented, if at 
all. 

3.3.1 Obtaining a first interaction diagram  
A dynamic observation of the program using the above breakpoints yields 14 stack traces, from 
which COSMOPEN constructs a 28-node call-tree, shown in figure 12 (call-tree) and in figure 13 
(interaction diagram)5. At the top of figure 13 are application functions (main, dummy1 and 
dummy2); at the bottom kernel system calls (pipe, write, read, clone); and in the middle is 
the multithreading library. 

 
Figure 12: Thread Creation in libpthread.so in GNU/Linux 2.4 (raw call-tree)  

                                                
5  In figure 13 the layout of the node with dot has been optimised to highlight the different layers involved. 
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The captured traces belong to multiple threads, some of which are dynamically instantiated. From 
gdb’s output, COSMOPEN can reconstruct how each thread was launched. (We discuss in sec-
tion 4 how this is done.) The result of this process is shown in both figures with threads indicated 
on each invocations (t1, t2, t3 and t4), and thread creation shown as dotted arrows. On both 
graphs, we have highlighted the activity of thread t2, whose role we discuss just below. 
These two diagrams raise a number of observations: 

• First, although the original code is very small, the reconstructed call-tree is not trivial, and 
contains quite a few invocations that are internal to the multithreading library (pthread).  

• Second, instead of the three threads we could have expected (main thread t1, and the two 
threads created in the main function), we observe four (t1 to t4).  

• Finally, the diagram does not reflect the structure of the reverse engineered program: the 
fact that the main thread t1 creates two threads is not apparent.  

The fundamental reason for these three points is that we have captured both the behaviour of the 
multithreading library and of the program we want to reverse engineer. This is a typical case of 
cross-layer entangling: the diagram generated by COSMOPEN contains two logical planes, yield-
ing a confused picture of the program’s actual behaviour. 

 
Figure 13: Thread Creation in libpthread.so in GNU/Linux 2.4 (interaction diagram) 

3.3.2 Multithreading under Linux: the raw call-tree explained 
Before we discuss how COSMOPEN can be applied to this example, we must first explain what is 
happening in figure 13. As in figure 8, figure 13 is best read by following invocation sequence 
numbers. For instance, the first invocation to be recorded (tagged 1) is by thread t1 from main to 
pthread_create in the upper left corner. pthread_create is called twice by t1, which is 
represented by two sequence numbers: (1,14), meaning that the second invocation has the number 
14. From pthread_create, t1 invokes __pthread_initialize_manager (tagged 2). t1 
then proceeds to invoke three system calls: pipe, clone, and write (tagged 3, 4, and 5). 
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With these last three calls t1 is initialising a special thread called the thread manager6 (t2 on the 
diagram) that is internal to the pthread library: i) with pipe t1 initialises a communication chan-
nel to communicate with t2; ii) with clone t1 spawns t2; and iii) with write t1 uses the freshly 
created pipe to send t2 a synchronisation message. The launch of t2 is represented by a dotted ar-
row from clone to __pthread_manager, and tagged as the 6th observed event. 
After executing invocation 5 to write, t1 returns from __pthread_initialize_manager 
and sends a thread creation request to t2 on the pipe (invocation 7 to write). The thread manager 
t2 reads the synchronisation message and the thread creation request (invocations 8 and 9 to 
read). t2 then creates a POSIX thread t3 that goes on to execute dummy1 (invocations 10, 11, 12, 
and 13). The creation of a second thread by t1 follows the same path from invocation 14 onward. 
Admittedly, the above insights into the innards of the multithreading library cannot be inferred 
solely from the interaction diagram. Rather the diagram constructed by COSMOPEN offers a high-
level representation of the key interactions between the library’s parts. We used this information 
to guide our exploration through the sources of the library (for instance by looking at the imple-
mentation of __pthread_initialize_manager to understand its pipe mechanism), and to 
search information on the web (in mailing list archives essentially). During these activities, 
COSMOPEN’s provided a bird-view map of the library’s behaviour, telling us what mechanism to 
analyse and which part of the code to investigate. It thus became the key driver of our analysis. 

3.3.3 Separating logical planes with COSMOPEN 
The call diagram shown on figure 13 contains two overlapping logics: the low level workings of 
the pthread library, and the higher-level logic of the main program. Although we now under-
stand how the pthread library works, we are still limited to a blurred representation of the pro-
gram's activities. COSMOPEN can sharpen this representation by filtering out the multithreading 
library. In the earth-bound telescope metaphor of section 2, the ability to discriminate between 
different abstraction planes is our way to compensate for cheap observation techniques and for a 
lack of knowledge on the internals of a system’s components. 
Abstracting the multithreading library really means abstracting thread t2. t2 acts as a proxy to 
perform POSIX threading operations. Interaction between t2 and other threads (in our example 
t1) occurs through a local RPC mechanism based on a pipe IPC primitive. For instance when t1 
creates t3 inside dummy1, it sends a request to t2 (invocation 7 to write in figure 13). The actual 
creation of t3, from the point of view of the OS, happens when t2 invokes clone (invocation 11 
in figure 13) after it has read t1’s request from the pipe (invocation 9 to read). 
To abstract away t2, we must transform the previous sequence of observed operations into some 
higher-level abstract event (t1 creating t3). We further want this transformation to be automatic, 
to apply it to potentially very large call-trees. 
Our goal, in the remainder of this section, is to show that this transformation can be achieved by a 
sequence of simple graph operations, and that these operations are generic: they can be applied to 
any program using the pthread library, independently of the program’s higher-level logic. 

3.4 Lost data dependencies 

In our example the program semantics we wish to represent—the main function creating two 
threads—is not captured in the call-tree by any “graph structure”: there is no execution path from 
the invocation of pthread_create by thread t1 to the two clone invocations that create 
threads t3 and t4. The causal link does exist: t3 and t4 are created because t1 writes on the pipe 
shared with t2. However, since we only trace invocations, we lose this data dependency. Because 

                                                
6  The need for an invisible thread manager in the library can be traced back to the design decision made by Linux 

developers, in particular Linus Torvald, not exactly to follow the POSIX semantics in Linux 2.4 . The reasons for 
this choice are beyond the scope of this paper but interested readers are referred to [26] for details. 
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interaction diagrams only represent a program’s control-flow, they cannot capture the data flows 
that occur through shared structures. We need to reconstruct this causal relationship from the 
clues left in the call-tree we have at hand.  

 
Figure 14: The fuse operation applied to our program’s call-tree 

Fortunately, we can translate our understanding of the pthread library in terms of a simple 
graph transformation. The relationship between pthread_start_thread and pthread_-
create obey a rather obvious property that we have termed pair-wise sequencing. Because 
thread t2 creates new threads in the order in which the corresponding requests are written to the 
pipe, each call to pthread_start_thread can be pair-wise associated with a call to 
pthread_create: the first pthread_create with the first pthread_start_thread, etc. 
As COSMOPEN tracks the order of invocations, we can identify for each new thread the invocation 
to pthread_create that created it. Figure 14-a illustrates this on our example. It shows exactly 
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the same call-tree as figure 13, except that nodes (e.g. invocations) have been ordered on a time-
line according to their sequence numbers (from top to bottom). Four invocations are shown in 
bold: the two invocations to pthread_create by t1 (invocation 1 and 14) and the two corre-
sponding invocations to pthread_start_thread (12 by t3, and 19 by t4). 
Using pair-wise sequencing, we immediately see that invocation 1 must be associated with invo-
cation 12, and invocation 14 with invocation 19. The call-tree can be manipulated to reflect this 
new understanding by changing the parent node of both invocations 12 and 19, as shown on fig-
ure 14-b: two new edges now connect invocation 1 with 12, and 14 with 19. This transformation 
is supported by COSMOPEN through a generic operation called fuse. fuse takes two sequences of 
nodes (a1, ..,an) and (b1, ..,bn) — here (1, 14) and (12, 19) — and removes each bi and its subtrees 
from its current position in the graph and makes it a child of the corresponding ai. (See the ap-
pendix for a formal definition of fuse.) fuse can be used whenever a particular interaction is hid-
den in a temporal sequence of events. This applies for instance to signal handlers, provided the 
raising of a signal and the execution of a handler are being traced through breakpoints. 

 
Figure 15: The timeline of figure 14-b represented as a traditional call-tree 

 
Figure 16: The timeline of figure 14-b represented as an interaction diagram 

There is, however, a difficulty that we have so far silently swept under the rug: in pathological 
runs, some thread creations might fail. When this happens, COSMOPEN will register an invocation 
to pthread_create, but no corresponding thread will start, and our pair-wise matching could 
create erroneous associations. COSMOPEN prevents this by aborting the fuse operation when it 
detects there is not the same number of “parent” and “child” nodes. Similarly fuse gets aborted if 
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the two sequences of nodes fail to alternate on the time line (i.e. a1, b1, a2, b2, etc.). By guarding 
certain graph transformations, we are ensuring that the produced results are always consistent. 
This conservative approach is linked to low-cost observation: cases may arise in which the lim-
ited clues we have gathered are insufficient to accurately analyse a program. This seems a rea-
sonable price to pay, and it actually never happened in the case study we present in section 5. 
The call-graph resulting from this transformation (figure 14-b) is shown as a traditional call-tree 
in figure 15 and as an interaction diagram in figure 16. 

3.5 Eliminating the threading library 

We have progressed in our attempt to reconstruct the original program’s logic but we still need to 
eliminate from the call-tree all invocations that are internal to the threading library (represented 
with a thicker frame on figure 15). We could do this by manually removing individual nodes. Un-
fortunately this transformation would not be generic. Instead, we need a general way to describe 
what must be removed even if thread t1 created 10 threads, or if t3 and t4 spawned their own sub-
threads. 
COSMOPEN allows this with operations that combine pattern matching on node names, and navi-
gation of child-parent relationships. In the above example we want to select all children of calls 
made to pthread_create, and then exclude from these children any invocation to 
pthread_start. The resulting set of calls is shown in black bold letters in figure 15 (invocation 
2, 7 and 15). The rest of the sub-graph can then simply be selected by computing the forward clo-
sure of these 3 calls. (The closure is shown with bold frames in figure 15.) 
Once selected, the closure can be removed from the whole graph, resulting in figure 17. 

 
Figure 17: The call-tree of figure 16 once internal pthread calls have been removed 

The last steps consists in “abstracting” away the remaining calls belonging to the threading li-
brary, i.e. removing calls to pthread_create and pthread_start_thread but keeping their 
children (dummy1 and dummy2) attached to the call-tree. The resulting diagram (figure 18) cap-
ture the high-level semantic of the small program we started with and was obtained through a se-
ries of simple graph operations on the original call-tree. 

  
Figure 18: Final interaction graph, after abstracting the remaining POSIX functions 

3.6 Conclusion  

The actual COSMOPEN commands required to perform the sequence of operations we have just 
described is shown in figure 19 below. We discuss the meaning of these commands in more detail 
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in section 4. For the moment, suffice to say that G is the variable that contains the main graph on 
which we work; CREATE is an intermediate variable that we use to select the internal calls in-
side the pthread library; and ‘*’ is a wildcard used in pattern-matching expressions. 

 
Figure 19: The sequence of commands of COSMOPEN to abstract the pthread library 

An essential characteristic of this small manipulation script lies in its generality: because it uses 
wildcard expressions and generic graph operations, it is not specifically linked to the small pro-
gram we started with, but instead can be re-used as a ‘lens’ for the observation of any POSIX 
program running on Linux 2.4. This generality is a key feature of COSMOPEN: once created filters 
can be easily reused across programs.  

4 COSMOPEN: reconstructing call-graphs from stack traces   
COSMOPEN allows developers to reverse-engineer complex software at an affordable cost thanks 
to two main components: (i) its dynamic event extractor, and (ii) its graph manipulation engine. 
The event extractor relies on a cheap observation approach to reconstruct a call-tree from stack 
traces, while the graph manipulation engine provides a simple yet powerful scripting language to 
analyse the resulting data. 

4.1 Observation on a budget: from stack traces to call-trees  

COSMOPEN obtains behavioural information of a program by gathering stack traces on key inter-
face points (the “observation footprint”). This approach works on any platform where calls can be 
intercepted dynamically and the content of the current thread’s stack captured as output7. These 
are standard features available in almost all debuggers, and increasingly found in dedicated inter-
faces, such as the native JVM Tool Interface (JVMTI) [27] or the Java java.lang.-
instrument package of Java 1.5 (both for Java). For C/C++, COSMOPEN currently comes with 
a standard extractor (dyngdb) that relies on gdb for interception and trace capture (figure 20). 
By default, dyngdb uses small configuration files (called gdblets) that specify which calls to 
trace, i.e. which observation footprint to use. Additionally, developers can develop their own cus-
tomised extractors, as shown in the callout of figure 20. This can be used to vary the scope of the 
observation footprint while the target program is executing, something we have done in our own 
case studies (see section 5). 

                                                
7  COSMOPEN remains blind to any invocation that escapes the debugger. This applies to in-lined functions when 

these are not supported by the debugging process. (In gdb, support for in-lining varies across platforms.) 
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Figure 20: COSMOPEN’s Event Extractor for C/C++ (dyngdb) 

Call-Tree Reconstruction 
COSMOPEN’s graph engine uses the information contained in the captured stack traces to recon-
struct a call-tree that represents the program’s behaviour. Unfortunately, as alluded to in sec-
tion 3.2, several call-trees can be reconstructed from the same stack traces. For instance: in our 
hypothetical broadcast middleware (section 3.2), the two traces we collected can be converted in 
up to five call-trees (figure 218): in this particular case the two traces are identical, and the key 
question is to decide how often each of the involved methods has really been invoked. 
The first tree (1) can readily be dismissed: since gdb registered two traces, we know that send 
must have been invoked twice. We cannot however tell which of the remaining call-trees is the 
correct one: send might have been called twice, and all other methods called only once (tree 2); 
or main might have called the launch method twice, thus triggering twice the same chain of in-
vocation (tree 5), with any tree in-between a valid possibility.  

 
Figure 21: Even the two simple traces of section 3.2 can produce five different call-trees 

                                                
8  We have removed all class information, and only kept function or method names for readability’s sake. 
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This ambiguity arises because we rely on indirect information—in the form of the invocations of 
the call-stack—to infer the behaviour of the rest of the program. This approach reduces observa-
tion costs, but makes it harder to determine when and how frequently functions were invoked. 
For instance, in the above example, was broadcast invoked once (call-trees 1, 2 and 3) or twice 
(call-trees 4 and 5)? Because launch was not instrumented with an explicit breakpoint, there is 
no way to tell.  
To resolve this ambiguity, COSMOPEN always opts for the call-tree with the smallest number of 
nodes that is compatible with the observed traces. In the above example, this would be call-tree 2 
(as call-tree 1 contradicts the meaning of breakpoints). This choice reflects two main concerns: i) 
to capture in the tree as much information as can be inferred from the traces; ii) to only present 
correct information, in particular regarding the ordering of invocations. Choosing the smallest 
tree means that nodes only appear to the call-tree when an invocation is guaranteed to have oc-
curred (as for the two send nodes above), and that ambiguous cases are resolved using the sim-
plest compatible pattern of invocations (call-tree 2 rather than 3, 4 or 5). 
This approach to call-tree reconstruction is embedded in algorithm 1 below. This algorithm re-
constructs a call-tree from a set of stack traces collected on a mono-threaded program. The algo-
rithm works on lists and sets. The traces captured in an observation run are represented as a list of 
stack traces (traceSequence at line 2); and stack traces are represented as lists of symbols. Sym-
bols are the names of the functions and methods appearing in the program (‘main’, ‘launch’, 
‘broadcast’ in our previous example). The call-tree that is progressively constructed is repre-
sented a directed graph (V, E), where V contains the nodes of the call-tree, and E ⊆ V × V its 
edges. Each node is associated with a symbol. new Node(s) returns a new node associated with 
the symbol s, and symbol(n) returns the symbol associated with node n. For example: in call-
tree 2 in figure 21, the symbol of node (0) is ‘main’, while nodes (4) and (5) are associated with 
the same symbol ‘send’. New nodes are time-stamped with a running counter that reflects the 
order in which they are inserted into the tree. 

 

Algorithm 1: Transforming a stack trace sequence into a call-tree 
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In algorithm 1, lists are noted (x1, x2, …, xn); () is the empty list; | t | is the length of list t; and t[ j ] 
is the jth element of list t. When t is a stack trace, we refer to the pair 〈 t, j 〉 as a the jth stack frame 
of the stack t and to t[ j ] as the content of the frame 〈 t, j 〉, in reference to the term used in com-
pilers and debuggers. The helper function last(t) returns the last element of a list, or the special 
value NIL if the list is empty. truncate(t, k) removes from the list t the elements with an index 
equal to or greater than k (i.e. truncate(t, k) = (t[1], t[2], .., t[k -1]) ). If k > | t |, truncate(t, k) has 
no effect. Sequence numbers are allocated by the constructor new Node(..) (line 13) in the order 
in which nodes are created. The same sequence number is never allocated more than once. 
The algorithm works incrementally by processing stack traces in the order in which they were 
observed (lines 3-5, and procedure AddTraceToGraph). When processing a new trace (line 6), 
the algorithm computes the overlap between the new trace and the ActiveTreePath variable (lines 
7-9) to determine which part of the trace corresponds to new invocations. The variable 
ActiveTreePath contains a list of call-tree nodes that have not returned yet, i.e. that represent 
pending invocations. The second part of AddTraceToGraph (lines 11-18) updates the call-tree by 
inserting the tail of the trace that did not overlap with ActiveTreePath into the graph (V, E), and 
updates ActiveTreePath along the way. 
By preventing symbols already present in ActiveTreePath to be added as nodes to the tree, the 
algorithm ensures the constructed tree is minimal (we return to this point below). At the same 
time, because this overlap does not consider the last symbol of a trace (| trace-1 | at line 7), the 
algorithm guarantees each individual breakpoint will be added as an individual node. 

 
Figure 22: Applying algorithm 1 to the traces of figure 21. The bold nodes represent the 

content of ActiveTreePath. 

Figure 22 illustrates a run of algorithm 1 on the two traces of figure 21. When first processing 
trace 1 = (‘main’, ‘launch’, ‘broadcast’, ‘marshallAndSend’, ‘send’), ActiveTreePath is 
empty. The for loop at lines 7-9 does not execute (the overlap is empty), and trace 1 is entirely 
inserted into the call-tree (lines 11-18, figure 22-a). Because trace 2 is identical to trace 1, the al-
gorithm finds trace 2 to completely overlap with ActiveTreePath (lines 7-9), and only truncates 
the last node of ActiveTreePath (node (4) at line 10, figure 22-b). The last symbol of trace 2, 
‘send’, is then inserted as a new node (5) as a child of node (3) (lines 11-18, figure 22-c). 
Formal characterisation of the constructed tree 
Formally we say that a call-tree (V, E) is trace compatible (or compatible for short) with a se-
quence of observed stack traces (trace1, trace2, ... tracen) if and only if there exists a surjective 
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mapping Φ from the frames 〈 tracei , j 〉 of the observed traces onto the nodes of V that fulfils the 
following properties P0, P1, P2 and P39. 

Property P0: Symbol Consistency 
Stack frames are mapped to nodes with the same symbol: 

  

Property P1: Trace Inclusion 
Each observed trace is mapped to a path in the tree that starts from the tree’s root: 

  

Property P2: Breakpoint Discrimination 
The last frame of every stack trace (e.g. ‘send’ in the previous example) is mapped to a node 
distinct from those of the stack traces that precede it: 

  

Property P3: Order Conservation 
The sequence numbers of the nodes of the tree reflect the order in which traces are observed. 
More precisely: if a trace tracej is observed after another trace tracei, then the tail of tracej that 
does not overlap with tracei gets mapped to nodes with higher sequence numbers than the 
nodes of tracei.  

  

Intuitively, P0 insures the mapping Φ makes sense, i.e. that tree nodes are labelled with the same 
symbol that the stack frames that get mapped onto them; P1 translates the sequence of nested 
calls within a stack trace into a path of the call-tree; P2 insures that we discard tree 1 in figure 21 
in favour of tree 2 (since in tree 1 the last frame of trace 2, send, gets mapped to the same node 
as the last frame of trace 1, thus violating the property); and P3 maps the ordering between stack 
traces onto the nodes of the call-tree. If we return to figure 22, trace 1 gets mapped to the path (0) 
→ (1) → (2) → (3) → (4), and trace 2 to the path (0) → (1) → (2) → (3) → (5), thus fulfilling 
P1. The last frame of trace 1 gets mapped to node 4, and the last frame of trace 2 to node 5 (P2). 
Finally, node 5 has a higher sequence number that node 4 thus reflecting the fact that trace 2 was 
captured after trace 1 (P3). 
Although property P3, Order Conservation, might seem superfluous, it is crucial to insure that 
the correct call-tree is built. For instance in figure 23, an additional stack trace containing an in-
vocation to the function logInfo has been observed between the two traces of figure 21. With-
out property P3, tree (a) would be the smallest tree respecting properties P0, P1, and P2: all traces 
are contained in the tree, and breakpoint activations are mapped to distinct nodes. Unfortunately, 
tree (a) implies that all launch invocations (be it one or more) happen before logInfo. It also 
does not show that launch is invoked twice, although this is clear from the traces. Tree (a) is 
therefore both incorrect and incomplete. This happens because property P3 is here violated: the 
second launch stack frame of stack trace 3 is mapped to node (1), and is thus ordered before 

                                                
9  For ease of exposition, we have not included any well-formedness property on the call-tree, e.g. that that the call-

tree is indeed a tree or that child nodes should be given sequence numbers higher than their parents. 
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node (6) logInf of trace 2, in contradiction to the fact that stack trace 3 was recorded after stack 
trace 2. 
By contrast, tree (b)—the smallest tree respecting properties P0, P1, P2, and P3—does conserve 
the ordering of frames. The two launch frames (from traces 1 and 3) get mapped to different 
nodes: one before logInfo, and one after it. Property P3 is thus respected. The tree correctly re-
flects the ordering of invocations, and shows that launch was invoked twice. 

 
Figure 23: Without Order Conservation property P3, tree (a) would be a valid recon-

structed call-tree for the three traces shown above 

Using this definition of compatibility, algorithm 1 can be shown to fulfil the following theorem: 
Theorem 1: 

The set of call-trees that are compatible with a sequence of observed stack traces (according to 
the above definition) is non-empty. The call-tree of this set with the smallest number of nodes 
is unique and is the tree constructed by algorithm 1. 

A detailed outline of the proof of Theorem 1 is available as a technical report [45]. For place rea-
sons, we do not repeat this proof here, and we refer interested readers to this report for a more 
thorough discussion. The proof contains three parts: (i) first, the call-tree G0 constructed by algo-
rithm 1 can easily be shown to fulfil P0-3 (using line 13 to construct the mapping Φ); (ii) second, 
any call-tree G’ respecting P0-3 can be shown to have at least as many nodes as G0 (proving the 
minimality); (iii) and third, any call-tree G’ respecting P0-3 that contains the same number of 
nodes as G0 can be shown to be equal to it (proving uniqueness). The key to the second and third 
parts is to construct a surjective homomorphism10 from G’ onto G0 using the two mappings Φ’ 
and Φ0 that are implied by P0-3. The surjection shows G’ has at least as many nodes as G0 (i.e. 
|G’| ≥ |G0|). It also shows that if G’ has the same number of nodes as G0 (|G’| = |G0|) then the two 
graphs are isomorphic (since a surjection between two finite sets with the same number of ele-
ments must be a bijection). This thus shows the minimality of the constructed call-tree G0: any 
call-tree that verifies P0-3 and has more nodes than G0 can be ‘collapsed’ onto G0 (by way of the 
surjective homomorphism). It also shows its uniqueness: if we assume there exists another tree 

                                                
10  We use graph homomorphisms between labelled graphs, with an additional order conservation property on se-

quence-numbers. See [45] for more details.  
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that verifies P0-P3 with exactly the same number of nodes, then this graph is equal to G0 (modulo 
an isomorphism). 
Multithreading 
Multithreaded programs are tackled using an extended version of algorithm 1, shown in algo-
rithm 2. This extended version uses information related to the thread-creation API (clone on 
Linux), which must be included in the observation footprint for the algorithm to work. 
The algorithm processes a sequence of observations (obs1, obs2, … obsn) which contains both 
stack traces (as in algorithm 1) and thread creation notifications (as reported by gdb). Each ob-
servation (be it a trace or a creation notification) is associated with a thread ID. Figure 24 pro-
vides an example of such a sequence (in the XML format used by COSMOPEN) for a simple multi-
threaded program. The algorithm loops through the observations and follows a two-mode ap-
proach: 
1) If the observation is a trace, the trace is added to the call-tree using the same procedure Add-

TraceToGraph() as algorithm 1 (line 8, the procedure is not repeated here). The algorithm 
manages a distinct active path for each individual thread (in the array ActiveTreePathsBy-
Thread), and thus maintains an individual subtree for each thread of the program. 

2) If the observation is a thread creation (such as ‘<new thread="2"/>’ in figure 24-b), the 
algorithm associates the thread just created with the latest ‘clone’11 breakpoint that it en-
countered (line 20). 

                                                
11 The particular thread creation API (here ‘clone’ on Linux) is platform dependent, and is a parameter given to 

COSMOPEN. 
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Algorithm 2: Multithreaded version of the call-tree construction algorithm 

New threads are merged on the fly with the main graph when the first trace of a new thread is en-
countered (line 9). This uses information about invocations to clone (line 17). The merging is 
similar to the fuse operator described in section 3.4. As with fuse, the tree construction algorithm 
adopts a conservative merging protocol and raises an exception as soon as multiple thread crea-
tions overlap (line 16). The algorithm also checks that any new thread can be associated with a 
‘clone’ invocation (line 10). 
These safeguards are needed to insure that ambiguous traces are always referred to the develop-
ers. Interestingly, we never encountered such a situation in the examples we have looked at. This 
seems to indicate that except for pathologically high workloads, thread creation latencies are 
short enough for ambiguities to disappear, at least on mono-processor machines. 
Figure 25 illustrates the construction of a multithreaded tree when algorithm 2 is applied to the 
traces of figure 24-b. The figure shows the call-tree after each of the three traces gets processed. 
It also shows how the algorithm maintains two active paths for each thread (in bold black for 
thread t1 and bold grey for thread t2). 
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Figure 24: A toy multithreaded program and its trace sequence to illustrate algorithm 2 

 
Figure 25: Step by step illustration of the multithreaded tree construction (algorithm 2) on 

the toy program of figure 24 

4.2 A simple yet powerful graph calculus  

One of the key features of COSMOPEN’s graph manipulation language are graph variables. These 
can be used to combine elementary operators into complex filters. For instance: in the following 
excerpt a graph is loaded from the file jtc.xml into variable A, and another from orbacus.xml 
into variable B. The contents of A is assigned to the variable C, and the content of B added to C—
i.e. C ← A ; C ← C ∪ B. The resulting graph is then saved in file orbacus-jtc.xml. 

 
More generally, the commands of COSMOPEN’s language fall into four categories: 
1. Generic Management Commands allow users to interact with the interpreter, for instance 

to set/unset options, run external shell commands, or execute a script from a file. 



25/40 

2. Input/Output Commands provide support to save and load graphs, and convert graphs both 
into postscript and dot format. As explained in section 3.2, some special ‘binding’ commands 
provide users with a simple WYSIWYG mechanism when manipulating graphs. 

3. Transformation Commands constitute the biggest group, and provide operators for variable 
management (assignment, deletion, etc.), set algebra (union, complement), and temporal op-
erators, such as the fuse operation discussed in section 3.4. 

4. Extension Commands provide recursive closure operators to follow invocation chains in 
graphs. For instance forward computes all the calls directly and indirectly made by the 
nodes contained in a graph. In section 3, we used forward (line 6 in figure 19) to select the 
function calls that were internal to the pthread library. 

The main operators for transformation and extension are listed in Table 1 with a short descrip-
tion. A detailed specification of each operator is provided in the appendix. Most of them take a 
combination of either variables or patterns (explained below) as parameters. 
The temporal operators remAfter, remBefore, and slice are slightly different in that they 
select nodes based on their sequence numbers, thus allowing access to the temporal information 
captured by COSMOPEN. ‘slice 828-1626 A B’ will add to B all invocations from A whose se-
quence numbers are found between 828 and 1626.  
Pattern expressions 
Patterns are wildcards expressions similar to those found in Unix shells. They allow users to se-
lect interesting sets of nodes based on node names. Node names use the following syntax:  

[<namespace>::][<class>]::<method>'<thread_ID>-<sequence_nb> 
where [..] denotes an optional element, and <method> denotes a method or a function. Because 
node names embed information about classes, methods, thread and sequence numbers, patterns 
allow developers to filter calls according to a wide range of criteria. For instance the pattern 
*'t1-* selects all invocations performed by the thread t1, while ::pthread_* selects all in-
vocations to functions whose name starts with pthread. We used this in section 3 when we re-
moved the calls that were internal to the pthread library. Many operations exist both in a vari-
able-only and a pattern-based form. For instance ‘add A B’ adds the graph content of A to B, 
while ‘put ::pthread_* A B’, adds all the nodes that start with pthread_ in A to B.  
Abstraction 
Besides the recursive operators, which use the traditional notion of recursive closure found in 
graph theory, the construction of high-level models relies on two other key operators: abstract 
and absPattern. Their effect is to remove nodes, but keep the connectivity they provided. Both 
operators reconnect all the children of the removed nodes with the parents thereof. (See the ap-
pendix for a precise specification of this operation.) For instance, if a graph contains three nodes 
connected as x → y → z, abstracting node ‘y’ away from the graph will result in x → z: node ‘y’ 
is gone, but its former child (‘z’) is now connected to its former parent (‘x’). In the example of 
section 3.5, abstraction is the operation we used to remove the last calls to the threading library. 
Methodology  
COSMOPEN’s operators support a reverse-engineering method made of three fundamental steps: 
(i) temporal scoping, (ii) seed-based selection, and (iii) abstraction.  
The first step (temporal scoping) typically uses temporal operators to recover hidden dependen-
cies (such as using a pipe for control flow), and to scope down the analysis to a particular phase 
of the program’s execution (e.g. after a socket connection has been accepted).  
The next step (seed-based selection) selects a so-called seed, a small set of operations one is in-
terested in, and uses extension commands to compute either the calls made by this subset, or the 
calls leading to this subset. Depending on the complexity of the resulting call-tree, this seed-
extension might be repeated, and the results combined through union and complement.  
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The last step (abstraction) uses abstraction operators (abstract, absPatern) to remove inter-
mediary classes and functions, and to retain the key program elements involved in the interaction. 
This fundamental pattern is followed by the script we presented at the end of section 3 (repeated 
in figure 26 below), which abstracts away the internal behaviour of the pthread library from a 
simple multithreaded program. In line 1, we use the fuse temporal operator to recover the 
thread-creation semantics of pthread_create (temporal scoping). We then select all 
pthread_create operations as a seed (line 2, seed-based selection), and use the depth-bounded 
forward closure forwN (line 3), which selects the immediate children of this seed. Lines 4 and 5 
further manipulate the closure to keep only those children of pthread_create other than 
pthread_start_thread (abstraction). The result is used again as a seed in line 6 (seed-based 
selection) to select the calls internal to the pthread library, which are then removed from the 
final graph G (line 7, abstraction). The last two lines compact the resulting graph by abstracting 
away pthread operations (abstraction). 

 
Figure 26: The script we used to abstract the pthread library in section 3 

5 Case study: non-determinism in a CORBA ORB  
We have applied COSMOPEN to three well-known industrial CORBA platforms (ORBACUS [28], 
TAO [29], and OMNIORB [30]) to analyse how multithreading could interfere with replication 
mechanisms. We have presented elsewhere [6, 7] our findings for ORBACUS. In this section, we 
report on how we conducted this analysis, with a particular focus on ORBACUS. Although this 
does not constitute a controlled experiment, our aim here is to illustrate the practicality of our tool 
on a real example.  

5.1 CORBA and Fault-Tolerance  

CORBA is a standard for communication-oriented middleware developed by the OMG [31]. It 
defines a norm for Object Request Brokers (ORB), based on the notion of distributed objects, and 
remote method invocation. It compares to other ORB standards, such as Java RMI or DCOM. 
CORBA's main strength lies in its independence from any language and any platform. With 
CORBA, programs developed in different languages (Java, C++), running on different OS (Win-
dows, Linux, Solaris etc.), can be easily “glued” together (figure 27).  
Over the years, CORBA integrated many additional technologies, such as distributed events, 
transactions, real-time, and components. An important effort was made to include fault-tolerance 
and resulted in the specification of Fault-Tolerant CORBA (FT-CORBA) [32]. FT-CORBA does 
not cover all needs of distributed fault-tolerant applications, and in particular does not provide 
means to control non-determinism in multi-threaded middleware. To address this issue, we de-
cided to use COSMOPEN to identify where different middleware implementations could cause an 
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application to behave in a non-deterministic manner. Among others, we needed to know when 
kernel-level lock operations could influence the internal request handling of the middleware. 

 
Figure 27: Remote Method Invocation in CORBA 

This required that we understood precisely how requests progress from the OS network interface 
(system calls such as socket, recv, send, etc.) to the application (application level interface), 
while tracking synchronisation activities (essentially mutexes). We also wanted to trace object 
creations (in C++) and deletions in the form of memory allocations (malloc, free, etc.). 

5.2 In vivo observation of multithreaded industrial middleware  

To observe request processing in the three ORBs in vivo, we implemented a basic CORBA appli-
cation, and traced the activity of the server while one request was processed and the server termi-
nated. Following the approach that we presented in section 3.2, we identified a set of 59 break-
points that we needed to track to perform the above analysis. 18 breakpoints were related to low 
level IPC (pipe, accept, select, read, write etc.), memory management (malloc, free, 
calloc, etc.), and process management (clone, wait4). 23 breakpoints monitored the activity 
of the multithreading library (libpthread.so). 18 breakpoints were set to observe the lock ac-
tivity that did not use the pthread API (mlock, flock, etc.). We also set 3 additional break-
points at the application level to observe upcall CORBA invocations.  
Tracking memory allocation, mutex activity, and input/output operations considerably slows 
down a program's execution. This is most noticeable during a program’s initialisation phase, as 
shared libraries are loaded, initial objects are created, and configuration data is retrieved. With all 
breakpoints set, observing a single ping-pong request on ORBACUS on a 1GHz Pentium III server 
running Linux kernel 2.4 took more than one hour (1h 2min 11s precisely). 99.2% (1h 1min 45s) 
of this time was spent initialising the ORB, which is not the phase we were interested in. For 
comparison, a non-monitored run would take less than 1 second. To avoid this intractable obser-
vation cost, we applied an adaptive observation approach (section 4.1), and waited until the mid-
dleware had been initialised before we automatically activated the most costly breakpoints. This 
reduced the duration of a monitored run with ORBACUS to 4min 53s (283s), a more than tenfold 
increase in performance.  
The number of threads, traces, items and invocations obtained for ORBACUS, TAO and OMNIORB 
are shown on Table 2. For instance on ORBACUS, we collected 658 stack traces spanning the be-
haviour of 8 different threads and totalling 9178 stack frames. Based on these, COSMOPEN recon-
structed a call-tree containing 2066 invocation nodes (section 4.1). 
One rationale behind the use of breakpoints to generate a call-tree is that a single breakpoint acti-
vation yields information about all the frames of the active thread's stack, not only about the 
breakpoint definition point. As a measurement of the efficiency of the event collection we com-
puted the ratio between the size of the final call-tree (which represents the meaningful informa-
tion we obtained) and the number of stack traces (which each correspond to a breakpoint activa-
tion, and hence to an observation cost) for each ORB. As the table shows, there is an important 
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disparity between the ratios (3.13 for ORBACUS, 1.68 for OMNIORB), but all represent substantial 
gains over an approach that would not use stacks (from 68% to 213%).  
The breakdown of the breakpoint activations leading to these traces is represented on figure 28. 
We notice that most of the collected traces (82%) are related to mutex synchronisation. In 
ORBACUS for instance, 538 mutex operations were observed. Only a subset of these operations is 
however directly related to request processing: still in ORBACUS, only 203 of these 538 mutex 
operations occur between request reception (return from the system call recv) and the corre-
sponding reply being sent (return from the system call send). This second number is more repre-
sentative, as it ignores binding overheads, and corresponds to the critical path of a request within 
the ORB. Table 3 compares the number of mutex operations on the critical path of the three 
ORBs (first invocation, not averaged). We see that the synchronisation activity of ORBACUS is 
significantly higher than in others ORBs, but, and this may come as a surprise, that OMNIORB 
and TAO also generate an important number of mutex operation themselves. 

 
Figure 28: Breakdown of activated breakpoints in ORBACUS, TAO, and OMNIORB 

5.3 Extracting high level behavioural patterns with COSMOPEN  

To understand the role played by the mutex operations of table 3, we first needed to understand 
how requests are processed in each ORB. Directly analysing any of the obtained call-trees is in 
practice intractable, due to their respective size. Figure 29 shows for instance the complete inter-
action diagram obtained for ORBACUS. This graph totalises more than 2000 individual invoca-
tions, over 50 C-functions and 140 C++ classes. Its size makes it extremely hard to read, to say 
nothing of any manual analysis. 
To analyse this graph, we used the same approach as for the smaller examples we presented in 
section 3. We repeatedly applied the three steps of temporal scoping, seed-based selection, and 
abstraction that we introduced in the previous section. Each incremental step gave us new in-
sights in the structure and behaviour of ORBACUS and helped decide which actions should follow. 
In terms of scoping, we first abstracted away the multithreading library (see section 3.3). This 
only removed 30 invocations, but most importantly, it created the proper thread creation links. 
We then searched for networking activity (using COSMOPEN's print command), and discovered 
that recv, and send were the only network primitives used by ORBACUS. We used these network 
invocations, along with the application activation point (a dummy Hello_impl::say_hello 
method in our case), as our seed, and used recursive commands to get a fuller picture of all invo-
cations in the ORB that would result either in request reception (recv), reply (send), or applica-
tion invocation (say_hello). The corresponding COSMOPEN script is shown below 
(GlobalGraph is the complete graph of figure 29, R is the result graph). 
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Figure 29: The complete call-tree or ORBACUS reconstructed by COSMOPEN 

(presented here as a class interaction diagram) 

This produced a graph containing 52 invocations which made apparent some of the internal li-
braries used by ORBACUS for communication and multithreading. Using the same approach as for 
the pthread system library, we removed these libraries from the call-tree (abstraction), ending 
with 27 remaining invocations. We used this graph as a backbone to inspect ORBACUS' code, and 
we constructed complementary graphs to analyse the activity of various other threads. This led us 
to identify additional key entities or activities (such as the class Upcall, and the add and get 
operations on the ThreadPool class), that we used as seeds and then recursively expanded be-
fore adding them to our current graph. (In the code below, U and TP are the seeds that are ex-
panded; R is the result graph to which U and TP are added.)  
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Figure 30: High level representation of the request processing in ORBACUS 

The resulting graph contained 36 invocations. We finally removed delegate classes, producing 
the final graph (figure 30). This diagram totals 27 invocations, to be compared to the 2066 ones 
of the original graph. It clearly shows the actions taken by four different threads (t1, the main 
thread, t3 the thread that accepts connections, t8 the receiver thread, and t4 the working thread) 
at initialisation (Steps (1) to (8)) and during the processing of a first request (Steps (9) to (26)). 
The graph covers thread creations (t3 is spawned by t1 in Step (5), t8 by t3 in Step (10) for in-
stance) and object allocations (a new ThreadPool object is allocated by Thread t1 in Step (4)). 
For clarity reasons, mutex activity is not shown in this figure, but if it were, it would show that 
(8) t4:get and (17) t8:add use a mutex to coordinate their access to the ThreadPool object. 
This is typically the kind of operation we were interested in our analysis, to finely control the de-
terminism of the middleware execution.  
This example shows on an industry-grade software how the capabilities of COSMOPEN can be 
used to extract from a large set of behavioural data (figure 29) a higher-level representation of a 
program’s execution. This new representation highlights some key aspects of the platform (here 
request processing) and this for a very reasonable cost of observation. 

5.4 Discussion and limitations 

As illustrated by this case study, COSMOPEN provides a reverse engineering environment that is 
both flexible and cost-effective. This, however, comes with at least three main limitations. First, 
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COSMOPEN strongly depends on an underlying stack capture mechanism. It cannot detect interac-
tions such as in-lined functions that do not appear in the stack. The only exception are activities 
that can be reconstructed from the ordering of events (such as a pipe IPCs), but as we discussed 
in section 3.4 this again only works in simple cases showing limited concurrency.  
Another limitation regards the ordering of events. The sequence numbers assigned by COSMOPEN 
reflect the order in which invocations are observed, but not always the order in which they occur. 
There are, however, some guarantees. Sequence numbers faithfully reflect the order of execution 
between two calls in three cases: (i) when both calls were made by the same thread; (ii) when 
they both correspond to breakpoint activations; or (iii) when they can be linked together by re-
peatedly applying the two previous rules. Developers must be aware of this semantics when using 
temporal operators such as fuse. 
Finally, the repeated application of graph operators does not guarantee that the resulting model is 
consistent. For instance, if calls to a given library (e.g. pthread) are removed by abstraction 
from a given graph, but left in another, then merging the two graphs can create spurious results 
(in particular if the two original graphs overlap). 
The first two limitations are inherent to the use of partial stack-trace information. The last one 
arises from the use of a flexible (and hence expressive) manipulation language. We are currently 
investigating how best to mitigate these three limitations. In particular we are considering the use 
of better feedback mechanisms to prevent users from drawing wrong conclusions or applying in-
adequate operators. 

6 Related work 
As mentioned in our problem statement, early reverse-engineering work has essentially focussed 
on static structures and source code analysis. The past decade has however seen numerous efforts 
to use dynamic data to reverse engineer software [16, 17, 18, 33, 34, 35, 36, 37, 38]. Stack trace 
analysis, as used in COSMOPEN, has also found some useful applications in particular in the field 
of high-performance computing, for performance analysis and anomaly detection [39, 40, 41, 42]. 
Some of these techniques use pure aggregative techniques to reduce the size and complexity of 
the data such as the spiral timeline presented in [16]. In the following we ignore these purely ag-
gregative techniques, and focus instead on techniques that conserve some form of call-graph in-
formation to analyse dynamic program data. 
We have already discussed the work of Jerding et al [17] and Pauw et al [18] in section 2. In an 
early approach related to our work, Richer et al. [34] proposes a domain-specific query language 
to extract higher-level models from both static and dynamic information. This language, based on 
Prolog, focuses on the structural notion of “components” obtained through clustering of program 
entities, something we do not consider here. Instead, we primarily looked at the tension between 
observation costs and information completeness, and at issues of cross-layer entangling in layered 
platforms. 
In a related approach, AVID (Architectural VIzualisation of Dynamics) presented by Murphy et al 
[33, 37] reduces the complexity of dynamic behavioural data by constructing an architectural 
view of a running object-oriented program. The tool records method invocations, object alloca-
tions and de-allocations. To visualise an execution, the user must first provide a mapping of low-
level entities (objects) to higher-level groupings (collections) that make sense for the task at hand. 
This grouping occurs off-line and is static. For each collection, the tool counts particular events 
(such as the number of object allocated) and represents them as histograms attached to the collec-
tion. The tool also draws an edge whenever an object in a particular collection invoked an object 
in another one, and labels this edge by the number of invocations between the two collections. 
These counters and histograms obey a ‘replay’ metaphor by which a user can visualise how they 
evolve over time. The current state of the call stack at the point of visualisation is represented as a 
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path running through the collections that are traversed by the program's thread (which the authors 
call an hyperarc). Compared to COSMOPEN, the grouping of objects used by Walker et al is not 
dissimilar to our own abstraction operators where a call A → B → C is replaced into A → C, and 
A gets to represent both A and B.  
To reduce the size of the resulting traces, the second version of AVID [37] considers various 
sampling strategies. Interestingly, some of these strategies involve capturing stack snapshots 
every x-events and comparing subsequent snapshots to compute method entries and exits. How-
ever, the authors do not consider the reconstruction of a call-tree from these stack traces, and con-
trary to COSMOPEN, do not use well-identified breakpoints to generate their traces. Also AVID 
does not support advanced graph manipulations. 
Shimba [35] is a reverse engineering environment for Java that supports the parallel exploration 
of both static and dynamic views of a program. Behavioural information is represented as ex-
tended UML sequence diagrams, and structural information as a use/dependency graph. Shimba 
allows users to correlate structural and behavioural data by filtering one type of data using the 
other (a technique termed model slicing). Shimba also offers advanced analysis techniques to re-
duce the size of dynamic data: (i) it can synthesise statecharts from sequence diagrams; (ii) it can 
also detect behavioural patterns in sequence diagrams and replace them by a repetition construct. 
Trace events are collected in Shimba using debugging breakpoints and can be scoped to a subpart 
of the program. Although Shimba does not reconstruct call-trees from stack traces as we do, it 
uses some of the information contained in the stacks to identify callers of intercepted invocations. 
The structural analysis part of Shimba, Rigi, also provides a library of Tcl/Tk scripts to manipu-
late structural graphs. The supported operations are similar to those of COSMOPEN (transitive clo-
sure, union) but are limited to static data. 
Not dissimilar to Shimba, BLOOM [36] is an integrated system for software visualisation, cover-
ing data collection, analysis, and visualisation of both static and dynamic information. One of its 
key features is a visual language that allows users to specify what should be represented and how. 
BLOOM works on event traces that contain method invocations, exits, and memory management 
events (allocation, de-allocation). Among the analysis provided, BLOOM can construct direct 
acyclic graphs from the trace data in which identical call-paths are collapsed together. BLOOM 
also offers a 'package encoding' analysis that allows users to specify how particular library calls 
should be merged together. Of interest for COSMOPEN is the trace sampling analysis that samples 
the event trace at regular intervals while retaining all calls needed for the sampled routines. 
BLOOM also provides a powerful querying language, similar to relational algebra (joins, selects 
and projections). The final visualisation is obtained by mapping a query to the parameters of one 
of the visualisation mechanisms (time-line spiral, 3D or 2D scatter maps, graphs, etc.). Compared 
to COSMOPEN, BLOOM does not consider the construction of call-trees from partial stack traces. 
Because of its high expressiveness, BLOOM’s visual query language probably supports graph 
manipulation similar to those of COSMOPEN. This comes however at the cost of a higher com-
plexity, as BLOOM does not provide a dedicated graph manipulation language. 
In [38], Zaidman et al use a web-mining algorithm on execution traces to discover key classes in 
an object-oriented program. Their approach uses exhaustive tracing on the core part of a program 
(excluding library), and constructs a compacted call graph, that shows interactions between 
classes rather than objects (as in our interaction diagram). Multiple invocations between two 
classes are represented as weighted edges (similarly to AVID [33]). The authors apply a data-
mining algorithm developed for web pages to compute a ‘hubiness’ value for each class that 
measures the extent to which a class acts as a hub in the compacted call graph. The authors show 
that classes with a high hubiness value tend to be key classes in terms of program comprehension.  
In a slightly different field, tools for performance analysis and anomaly detection have also 
looked at execution traces to diagnose performance problems and debug applications [39, 40, 41, 
42]. Contrary to COSMOPEN they do not address reverse engineering, and usually target high-
performance parallel computers. In these systems, the same code is typically executed on a large 
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number of nodes, and scalability challenges do not arise so much from code complexity, but 
rather from the large number of nodes generating performance data. As in COSMOPEN, these tools 
must therefore find ways to extract relevant information from large bodies of observation data. 
Of particular interest among performance analysis tools, is a technique known as call-path profil-
ing. This technique distinguishes between invocations based on how functions have been 
reached, and aggregates performance metrics according to the call-path used to invoke a particu-
lar function. A whole range of tools using call-path profiling have been proposed, among which 
STAT [41] and iPath [42] from the Paradyn project, as well as Expert from Wolf et al [39, 40]. 
STAT was developed to assist with the debugging of parallel applications running on extreme-
scale supercomputing infrastructures, comprising more than 103 processors. STAT attacks the 
scalability challenge of such environments from two angles: i) it reduces the amount of collected 
data by sampling stack traces rather than using an exhaustive tracing facility; and ii) it uses a tree-
based overlay to efficiently aggregate profiling data across 1000s of processors without engorg-
ing the debugging front-end. By sampling stack traces, STAT is able to form ‘process equivalence 
classes’, i.e. group process into classes that exhibit similar behaviours. This allows STAT to con-
siderably reduce the amount of data presented to developers, and works because the processes 
involved in large parallel applications, although their number might be very large, usually show 
very strong similarities in their behaviour. Differences between process classes are shown 
through node colouring. For comparison, the call-tree constructed by STAT is a simplified version 
of the one used by COSMOPEN, and does not contain any sequence numbers. Formally, it corre-
sponds to the one COSMOPEN would construct without properties P2 (breakpoint discrimination) 
and P3 (order conservation). This is understandable as STAT is neither interested in individual 
invocations (P2) nor in the relative ordering of call paths and stack traces (P3). 
In another Paradyn paper [42] Bernat and Miller introduce iPath, a tool that uses dynamic code 
instrumentation to insert and remove performance probes while the program is running. iPath’s 
probes use a stack-walk mechanism to capture stack traces, as we do with gdb, and use the call-
path information as a context to the various performance metrics being gathered. As with STAT 
no information is gathered on the ordering of individual stack traces and instead all invocation 
resulting from the same call-path are merged together. 
Interestingly in [41] the authors of STAT discuss the visual complexity of the call-graphs STAT 
generates, and propose pruning as a possible approach to further reduce the size of the trees pre-
sented to users. One of the pruning strategies they suggest (but do not appear to have imple-
mented), is based on library APIs (e.g. the MPI APIs), and consists in cutting all subtrees that 
start with a library call. Pruning is, in essence, the philosophy we followed in COSMOPEN, with 
the key difference that the graph operators we propose offer much richer possibilities than a sim-
ple graph pruning. 
Expert, developed by Wolf et al [39, 40], also uses call-path profiling, but rather than focussing 
on the handling and visualisation of traces and their associated graphs, consider automatic diag-
nosis. Expert automatically searches event traces for patterns that denote typical problematic 
situations (for instance a receiver waiting for a message). Expert uses a repository of known effi-
ciency problems to generate high-level performance diagnostics that are then represented with the 
CUBE visualisation software [43]. To improve scalability, Expert uses a successive refinement 
technique [39]. This technique relies on a hierarchy of patterns to quickly home in onto potential 
problems, before refining the diagnostic with a finer-grained—but more expensive—analysis.  
CUBE [43] is the visualisation component used by Expert. CUBE uses three types of data, or di-
mensions: a metric dimension (what is being measured), a call-tree dimension (where in the code 
it is being measured, i.e. call-paths), and a system dimension (on which node this is happening). 
These dimensions are represented graphically as trees, and navigability is provided by allowing 
users to collapse or expand a particular tree node. CUBE also offers an alternative 2D or 3D Car-
tesian representation to represent the system’s topology. 
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Compared to COSMOPEN, STAT/Paradyn, Expert and CUBE do not focus on graph manipulation, 
but rather on how to aggregate metrics and detect performance problems.  The use of multi-level 
patterns to detect anomalies in Expert shares the same philosophy as filtering through graph op-
erators in COSMOPEN, but on a different kind of data, and for a different aim (diagnosis rather 
than program comprehension). Furthermore, although these tools extract a dynamic call-graph, 
this call graph does not distinguish between individual invocations, and thus contains less infor-
mation that the call-tree reconstructed by COSMOPEN. In particular, none of these tools consider 
the problem of reconstructing a time-stamped call-tree from a sequence of stack traces. 

7 Conclusion and perspectives  
This paper has introduced COSMOPEN, a practice-driven tool for the behavioural analysis of com-
plex multi-layer software. Building on the lessons learnt from former reverse engineering tools, 
COSMOPEN combines a cheap and non-intrusive approach for dynamic observation of programs 
with a simple yet powerful interactive graph calculus. Thanks to its inexpensive event extraction 
scheme COSMOPEN can be applied to large industrial software without instrumentation. Its graph 
calculus engine implements a novel approach to the navigation and visualisation of large behav-
ioural data that is based on partial collapsing. With COSMOPEN, crisp and meaningful behavioural 
patterns can be extracted from the execution traces generated by a program run, and can be used 
to drive the understanding of a component's internal behaviour. Most notably, COSMOPEN spe-
cifically targets multi-level software by allowing its user to adjust the “focal length” of the re-
verse-engineering process to specific abstraction planes. 
The motivating example of section 3 (pthread) and the larger case study of section 5 
(ORBACUS) both illustrate how COSMOPEN can help extract rich insights from complex software 
with no or very little a priori knowledge. COSMOPEN only requires that developers be aware of a 
component’s upper and lower interfaces and of their broad semantics. Armed with this only 
knowledge we were able to reverse engineer the role of the thread manager in the multi-threading 
library pthread, and to discover the key internal classes and the threading strategy employed by 
ORBACUS for request processing. 
COSMOPEN still suffer from numerous limitations that partly arise from the deliberate choice of a 
simple, cheap and non-intrusive observation approach. Potential further developments include 
code browsing facilities, and the explicit management of abstraction planes to prevent inconsis-
tent graph manipulations. 
In terms of evaluation, much remains to be done to quantify the help provided by COSMOPEN. 
Our personal experience is that COSMOPEN considerably eases the process of analysing an un-
known piece of code, compared to source browsing or to manual step-by-step execution. Using 
controlled experiments to compare COSMOPEN with other dynamic reverse-engineering tools 
should however provide more accurate insights in this area. 
As open-source software gains industrial relevance, we think the COSMOPEN suite represents a 
useful practical step to help analyse inter-component interactions in complex multi-layer software 
platforms. We expect that sort of approach to be of great use to organisations that need an in-
depth understanding of the third party components they employ and help them harness the power 
of available open-source components.  
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9 Tables 

Table 1: The main graph operators of CosmOpen (Overview) 

COSMOPEN provides a default graph variable, base, that contains all known nodes and edges. 
Certain commands use base as a default value for optional parameters. These optional parame-
ters are indicated with square brackets [.]. Please refer to the appendix for a detailed specifica-
tion of each operator. 

 

Table 2: Size of observation data for one ping-pong request 

ORB  threads  traces  frames  invocations  invocations/traces 
ORBACUS 4.1  8  658  9178  2066 3.13 
OMNIORB 4  7  1828  16807  3088 1.68 
TAO 1.2.1  6  512  11260  1352 2.64 
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Table 3: Lock operations during request handling in popular ORBs (first invocation) 

ORB  Lock operations  
ORBACUS 4.1  203 
OMNIORB 4   64  
TAO 1.2.1   52  

 

10 Appendix: specification of the operators of CosmOpen 
10.1 Abstract graph operations 

In the following, graphs are directed and defined as a pair (V, E) of a vertex set V and an edge set 
E ⊆ V×V. Sets are noted with sans-serif uppercase letters: X, A; individual nodes with lowercase 
letters: x, y; and graphs either as a pair of sets: (V, E), or with bold uppercase letters: H, G.  
The union of two graphs (V, E) and (W, F) is defined as: 

 
The restriction of a graph (V, E) to a set of nodes A (also termed the graph induced by A): 

 
where   denotes the restriction of the relation E to the domain X, i.e.  

 
The removal of a set of nodes A from a graph (V, E) is defined as: 

 
The envelop of a graph (V, E) within another (W, F) is defined as: 

 
The one-step forward extension of a set of nodes A within a graph (V, E) is defined as: 

 
The one-step forward extension of a graph (A,F) within another graph (V,E) is defined as: 

 
The n-step forward extension of a graph G within another graph H is defined as: 

 
Finally the forward closure of a graph G within another graph H is defined as: 

 
Similarly we define the one-step backward extension of a set of nodes A within a graph (V, E) as: 

 
The one-step backward extension of a graph (A,F) within another graph (V, E) is defined as: 

 
The n-step backward extension of a graph G within another graph H is defined as: 
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And the backward closure of a graph G within another graph H is defined as: 

 
The abstraction of a set of nodes A from a graph (V, E) is defined as: 

 
Some operators use the ordering of nodes according to their sequence numbers. If P(t) is a predi-
cate on sequence numbers, and V a set of nodes, we define the scoping of V to P(t) as: 

 
If V is a set of nodes and p a pattern (as defined in section 4.2), we note  the set of nodes in V 
that fulfil pattern p. We note  the vector of nodes in  ordered according to their sequence 
numbers (lowest sequence number first). We note  the ith element of this vector. 
The fusion of a pair of node sequences ((a1,..,an), (b1,..,bn)) within a graph (V, E) is defined as: 

 
If (V,E) is a graph and p and q are patterns, we define the function fuse() as: 

 
which is defined on the following domain: 
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10.2 Specification of CosmOpen’s main operators 

Parameters in square brackets [ ] are optional and replaced by the default graph variable base 
when absent. base contains all the nodes and edges known to COSMOPEN (its universe). 
 

 


