Reflective Fault-Tolerant Systems:
From Experience to Challenges

Juan Carlos Ruiz, Marc-Olivier Killi jian, Jean-Charles Fabre and Pascale Thévenod-Foss
LAAS-CNRS
7, Avenue du Colone Roche
31077Tououse calex— France
Contact: ruiz@laas.fr —Tel. +33 5 6. 3369 09-Fax. +33 561 3364 11

Abstract

This paper presents research work performed on the devdopment and the veification d dependalde
refledive systems based on MetaObjed Protocols (MOPSs). We describe our experience, we draw the lesons
learnt from both a design and avalidation viewpoint, andwe discuss ®me possble future trends onthistopic.

The main originality of this work relies on the cmbination d both design andvalidation isaues for the
devdopment of refledive systems, which has lead to the definition d a refledive framework for the nex
generation d fault-tolerant systems. This framework includes: (i) the spedfication d a MetaObjed Protocol
suited for the implementation o fault-tolerant systems, and (i) the definition d a general test strategy to gude
its verification. The propcsed appoach is generic and solves many issues related to the use and ewolution o
system platforms with dependalility requirements. Two dfferent instances of the spedfied MOP have been
implemented in arder to study the impact of different MOP implementations in the devdopment of a refledive
fault-tolerant system. Our test strategy is then ill ustrated on ore of them. The results obtained from this work
justify the interest of the propaosed framework.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 1

1. Introduction and problem statement

The development of fault-tolerant systems has to face nowadays to an increasing cemand o
reliability and availability, in many dfferent types of system architectures and for various application
domains. Most large fault-tolerant systems have a long lifetime and thus they are subject to a great
number of evolutions of their requirements. The provision d means to hande this evolution is of great
importance in the development of today’s dependable systems. At the same time, the need for
considering df-the-shelf executive supports (COTS operating systems, middeware and virtual
machines), becoming crucial for econamic reasons, invdves defining solutions that are independent
from the underlying layers of the system. Despite this initial econamic interest, the use of COTS
comporents may decrease the dficiency of a fault tolerance strategy, which dten relies on a deg
understandng and cortrol of the structure and behavior of the executive support. In aher words, more
efficient fault tolerance solutions require more opennessof the system underlying layers.

Our experience also shows the negative incidence that the participation d application programmers
in the development of fault tolerance strategies may have on the global dependability of the system. In
fact, the implementation d fault tolerance is often a complex and error prone task that requires very
specific skills. Hence, fault tolerance transparency to application programmers is a desired property,
rarely obtained in a dependable system. Adequate frameworks are thus necessary in arder to enable the
independent development of fault tolerance libraries and applications. Then, special care must be
taken with the integration d these libraries and the application code. This is also a delicate isaue that
should be, in most cases, asgsted by tods that avoid the participation d application programmers. The
major problem is that existing tods (e.g., providing support for checkpointing [1]) are not well-suited
for extension and customization, so their appli cabili ty remains limited in practice.

This paper handes the above isaues taking into account nat only the viewpoint of a system designer
but aso the considerations regarding the validation of the resulting solutions. More precisdy, the
discusgon is focused onreflection, a promising emergent techndogy for the development of complex
systems with a clear separation d concerns. From a conceptual viewpoint, Reflection [2] can be
defined as the property by which a component enables observation and cortrol of its own structure and
behavior from outside itsef. This means that a reflective component provides a meta-model of itsdf,
including structural and behavioral aspects, which can be handed by an external component. This
information is used as an input to perform appropriate actions for implementing nonfunctional
properties (concerning, for instance, fault-tolerance or security strategies). The reflective systems that
we consider are thus gructured in two dfferent levels of computation: the base-level, in charge of the
execution d the application (functional) software and the meta-level, responsible for the
implementation d observation and control (non-functional) software. The meta-leve software has a
runtime view (the meta-modd) of the behavior and structure of its base-level. According to that view,

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 2

the meta-level can take decisions and apply corresponding actions on base-leve components. The
mechanisms providing such a meta-modd are the refl ective mechanisms of the system.

In systems mixing the object-oriented approach and the above reflective concepts, a so-called
MetaObject Protocol (MOP) [3] handles the interactions between the base- and the meta-level
software. This protocol governs the use of the reflective mechanisms to establish the meta-model. The
efficiency of the software developed at the meta-leve is highly dependent on the base-leve details
supplied, through the MOP, to the meta-level. Hence, the definition of this MOP is a key issue in the
design and implementation of a reflective object-oriented system. For instance, the implementation at
the meta-level of checkpointing and cloning strategies requires the MOP to provide degp observation
and control over the internal state of a reflective component and its evolution.

Although the expected benefits of reflective technology have already been discussed in many
works [4] [5] [6], as far as dependable computing is concerned, many open questions still remain from
both a design and a validation viewpoint. The basic principle of reflective computing must be part of
the design of software components and systems in order to provide appropriate and flexible
frameworks for the development of dependable systems. Then, the resulting frameworks need the
definition of systematic validation techniques in order to increase the confidence that we can place on
their use. It is worth noting that a good design should not only simplify the implementation of the
system but also its validation. Design for validation is a great challenge for current and future research.

From a design viewpoint, the separation of concerns promoted by the reflective approach has
already shown significant effects on transparency for the application programmer, independence from
the application software, reuse of core mechanisms and specialization for various contexts of use.
These aspects are driving forces for reflection in many fields, not only regarding fault tolerance, but
also regarding quality of service and adaptation. Today, reflection is used in a variety of software
components: operating systems (e.g., Apertos [7] the basis for a Sony commercial OS called Aperios),
middleware systems (e.g., open ORBs [8]) and virtual machines (e.g., the Reflective API of the VM
[9]). This notion also appears in standards for large-scale systems (e.g., emergent reflective features in
CORBA [10]). These examples show that the notion has been recognized as a powerful paradigm not
only in research projects but also in industrial products. It is worth noting however that reflective
mechanisms are highly limited in the above examples. Extended reflective mechanisms are needed to
handle fault tolerance at the meta-leve of the system.

From a validation viewpoint, the use of reflection in dependable systems remains questionable. To
the best of our knowledge, little work has been carried out on the verification of reflective systems, in
general. This is also true in reflective object-oriented systems, in particular in MOP-based reflective
architectures. We will discuss the problem here considering MOP-based dependable reflective
architecture but most of these issues also apply to reflective system architectures in general. Solutions
to this problem are essential for applying the reflective approach to systems with strong safety-critical
constraints. Previous research work reports on the definition of formal modes for verifying high-leve

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 3

properties in reflective architectures [11] [12]. These modes enable the reflective mechanisms
provided by the MOP to be analyzed in terms of consistency, completeness deadlocks and refinement
checks. However, the level of description used in these moddls is too abstract to be helpful in findng
problems aswociated with a particular MOP implementation.

Testing, which is a dynamic verification technique that consists in exercising implementations by
supdying them with test case input values, is thus an essntial complementary verification technique.
Testing a MOP-based dependable reflective architecture is not an easy isuue. The definition d a
complete test strategy for such type of systems must hande the incremental verification d (1) the
base-levd, (2) the MOP, (3) the meta-level and finally (4) the composition d both the base- and meta-
level through the MOP. As far as the MOP is concerned, the issues to be solved are numerous since,
from the tester’s viewpoint, a MOP gathers the well known problems related to both protocol testing
(see eg., [13]) and dyject-oriented testing (see eg., [14] [15]). Four major questions must be taken
into acoount in oder to define a test strategy for a MOP: (i) what order should the reflective
mechanisms of the MOP be tested in?, (ii) once a test order is defined, which test objectives $ould be
asciated with the succesgve testing levels defined by this order?, (iii) which conformance checks
should be used in arder to decide whether or nat a MOP passss the test?, and (iv) given the test
objectives and the conformance checks to be performed, how to design the test environments required
for conducting the test experiments?

Acoording to the above issuies, we hande, all through the rest of this paper, two dfferent
perspectives for the study of a MOP-based fault-tolerant system. On ore hand, we report on aur
experience on the design d architectures flexible enough for handing both the esolution d the system
requirements and the transparency of fault tolerance for application programmers. On the other hand,
we focus on the verification d reflective systems and more precisdy on the definition d an
incremental test strategy for the MOP of the considered reflective fault-tolerant systems.

This discusson is organized as follows. Section 2 provides the background onreflection required
for understanding the rest of the paper. Section 3 describes the development of a fault-tolerant system
using the reflective techndogy. First, we introduce the reflective framework that we have defined for
the development of fault-tolerant systems. Then, we specify the requirements of a MOP suited for the
implementation d such type of systems. Finally, a general modd of the specified MOP is defined.
Two dfferent instantiations of this MOP modd are considered in Section 4: the former provides an
off-the-sdf MOP and the latter suppies a more daborated CORBA-compliant MOP. Through these
examples, we will study the pros and cons of each type of MOP and we will ill ustrate the benefits of
providing dfferent degrees of openness at the system application layer for the implementation d a
fault-tolerant system. Section 5 presents our contribution to the verification d MOP-based fault-
tolerant systems: the definition d a general strategy for testing the reflective mechanisms of a MOP.
The usefulness of this grategy is then exemplified in Section 6 on ore of the MOPs defined in Section
4 and some preliminary results are also suppgied. Section 7 draws the main lesons we learnt from both

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 4

a design and a validation viewpoint. In Section 8, we then dscussthe main gpen issues and challenges
that must be addressed in future research work to make reflection a solid concept for the development
of adaptable dependable software systems. Section 9 presents conclusiors.

2. Basic concepts

2.1, Background on Reflection

“Computational reflection is the activity performed by a system when dang computation about
(and by that possbly affecting) its own computation” [2]. Reflection enables a system to be structured
in two layers: a lower layer, called base-level, executing the application components, and an upper
layer, caled meta-level, running the comporents devoted to the implementation d nonfunctional
requirements (e.g., fault-tolerance or security).

The input for the meta-leve is an image of the structural and behavioral features of the base-leve.
This image (called the meta-model) is causally connected to the base-level, which means that any
change in ore of them leads to the correspondng effect upon the other. As far as runtime reflection is
concerned, the meta-modd deals with two important base-leve features:

e The behavior of the baselevel components, which corresponds to a finite state machine
indcating the posshle states and transitions gowerning the base-level execution (nation o
execution modd!);

e The structure and composition d the base-level components that depend on the base-leve
comporents considered, eg., an dject, a kernd, a compiler or a middeware (nation o
structural modd!).

The above isaes are addresed dfferently depending onthe reflective component considered and
the final objective of the reflective architecture. Let us take the example of the structural view defined
for an application doject. In Java [9], for instance, this view is a stream of information items generated
and interpreted by the Java virtual machine. A more daborated structural view of an doject can be
defined, as in [16], in terms of the object attributes and their types, the object methods and their
respective signatures, the inheritance links, etc.

The meta-levdl may be considered as an interpreter of the meta-modd, which can be customized
according to the neals. The interest of this approach from a dependability viewpoint is that any
standard action dfined at the metalevd can be customized according to some nonfunctional
objectives.

2.2. Reflective Ar chitectures and M etaObject Protocols

From a design viewpoint (see Figure 1), one can dstinguish four different processes in a reflective
system to doserve and cortrol at the meta-level the features of the system’s base-level. The reification
process corresponds to the process of exhibiting to the meta-level the occurrence of base-leve events.
The introspection process provides means to the meta-level for retrieving base-leve structural

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 5

information. Finally, the intercession process enables the meta-level to act on the base-level behavior
(behavioral intercession) or structure (structural intercession). The term behavioral reflection will
refer from here to both reification and behavioral intercession. Symmetrically, structural reflection
will be used to designate both introspection and structural intercession mechanisms. The reflective
mechanisms of the system are thus those mechanisms providing ether behavioral or structural
reflection.

Meta-Level ot metaobjects

(non-functional mechanisms)
observation, interpretation and control
MetaObject Protocol (MOP) \
(reflective mechanisms)
Reification Behavioral intercession

(behavioral observation) (behavioral control)
Introspection Structural intercession
(structural observation) (structural control)
Application

behavior and structure
(functional mechanisms)

Application
objects | pose-Level

Figure 1. High-level view of a reflective architecture

In most systems mixing the object-oriented approach and the notion of reflection, a so-called
MetaObject Protocol (MOP) handles the interaction between the base- and the meta-level entities,
respectively called objects and metaobjects. In a sense, MOPs correspond to the rules that govern the
use of the reflective mechanisms of the system. Hence, their definition is based on the leve of
observability and controllability required at the meta-level for interpreting and acting on the behavior
and the structure of the base-levd objects. Obviously, this identification of concerns is strongly

dependent on the considered base-level component and must be handled on a case per case basis.

2.3. M OP-based Fault-Tolerant Architectures: Related Work

In early works, various MOPs have been defined and used for the implementation of fault-tolerant
mechanisms at the meta-levd. The MAUD [4] and GARF [5] architectures propose reflective
mechanisms for intercepting base-levd events at the meta-level (redirecting messages by renaming
destinations in the first case, and making a tricky use of the Smalltalk exception handling mechanism
in the second case). The reflective capabilities defined in these MOPs are, however, limited to
behavioral reflection. This limitation avoids those systems to handle structural aspects of base-leve
entities that are essential, for instance, during checkpointing and cloning. A more sophisticated MOP
enabling both behavioral and structural reflection was used in FRIENDS [6]. This MOP [17] supfiesa
meta-modd expressed in terms of object method invocations and data containers defined for objects
states.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 6

Despite their differences, the above MOP-based architectures have shown that meta-level strategies
can be developed independently from the base-level mechanisms and sdlected according to the current
set of system requirements. When these requirements change, the reflective mechanisms of the MOP
enable non-functional mechanisms to be changed accordingly. From a non-functional viewpoint, this
customization entails the specialization or the replacement of the metaobjects. The features of the
MOP enable objects and metaobjects to be linked together ether statically or dynamically. Despite
these changes, the observation and control features provided by the MOP remain always the same.
This is why the MOP is considered as the corner stone of such type of reflective architectures. In
practice, the reflective mechanisms of the system must be implemented for each considered base-leve
software component.

As dtated in the introduction, verification should complement design (and viceversa) in the
development of any dependable architecture. Verification is useful for fixing problems in the design of
a system. Symmetrically, designers must also keep verification in mind in order to ease the subsequent
test of the resulting implementations. In our context, we think that this synergy is crucial for
dependability: the reflective capabilities provided by the system must be checked in order to determine
the degree of confidence that we can place in their use. Most research work focused on the verification
of reflective architectures reports on the definition of high-level models for such architectures, using
formal languages. In [11], the authors propose a model based on an architectural description language,
called WRIGHT [18]. This language uses CSP [19] to describe a system as a set of architectural
components linked by connectors (MOPs). The notion of MOP used in that work differs from the one
defined in Figure 1 since it encapsulates both the reflective capabilities of the system and the system
meta-level. As regards the MOP shown in Figure 1, a model based on m-calculus [20] is proposed in
[12]. It describes a reflective system as composed of agents (objects and metaobjects), which
communicate by exchanging messages. Both previous modds can be analyzed in terms of consistency,
completeness, deadlocks and refinement checks using tools specifically developed for the associated
formal languages. The results obtained from these analyses are useful to increase the understanding of
the MOP and ensure a certain number of high-level properties, for instance the absence of deadlocks.
However, the level of description used in these models is too abstract to be helpful in finding problems
associated with a particular MOP implementation. That is why testing is an essential complementary
verification technique.

3. A reflective architecture for fault tolerance

This section eaborates on how a reflective architecture encompasses object-oriented techniques
and reflection for the development of fault (physical faults) and intrusion (malicious interaction faults)
tolerant distributed systems. This architecture is a MOP-based architecture providing metaobjects for
fault tolerance, secure communications and group-based distributed applications. In practice, these
metaohjects are developed using an object-oriented design method and implemented on top of basic

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 7

system services. Then, they are used recursively in order to add new properties to applications, as in
MAUD [4] or in FRIENDS [6]. Flexibility is obtained through the provision d object-oriented
libraries of metaobjects that can be esily reused and ported (subject to compiler availability) to
various platforms. This reflective approach to fault tolerant system design provides new means to
develop - as meta-levd software - mechanisms that are traditionally implemented within the executive
system layer™.

It is worth nding that our objective here is na to describe in detail the founding principles of the
architecture that has already been presented in [6]. Our aim is to study the impact of different MOP
implementations in the practical provision d those principles. As a first step towards that goal, we
introduce in this sction the type of MOP that we consider. Section 3.1 reports on the specification d
the global neals of observability and cortrollability required from a MOP wel suited for the
construction d fault-tolerant systems. A general modd of the specified MOP will be then depicted in
Section 3.2. Section 3.3 justifies, through a high-level view of the considered architecture, the central
role played by the MOP in the provision d properties like flexibili ty, transparency and adaptation.

3.1. General requirements of aMOP for fault tolerance

Building a reflective fault-tolerant system requires means to control and adjust, at runtime, the
behavior of the system in the presence of faults but also in namal operation. Clearly, the fault
tolerance mechanisms have to be synchronized with the functional behavior of the system in arder to
react properly when an eror is detected. The synchronization d these functional (baseleve)
operations with the fault tolerance (meta-level) mechanisms can take advantage of the reflective
mechanisms depicted in Figure 1.

Let us consider a simple primary-backup strategy (seeFigure 2) applied to a server object in arder
to increase its availability. In this example, the server object (the primary) has a passve replica (its
backup). Only the primary computes and responds to client requests. The backup remains inactive
(pasdve) and its gate is updated periodcally according to the primary’s one. When the primary fails,
the backup becomes primary and a new backup replica is created. Thisis how the strategy tolerates the
faults of the primary object. Using a conventional object-oriented approach (Figure 2.a), server objects
have to implement both the function d the servive they provide and the (nonfuntionrel) replication
strategy considered in our example. This results in a tightly coupled implementation mixing these
functional and nonfunctional aspects of the problem. When the client sends a request to the server
(step 1), the requested method is executed by the primary (step 2) that is responsible for retrieving and
sending its date later to the backup object (step 3). This gate is then used to restore the backup's date
(step 4). This type of solution suffers from a lack of separation d concerns that leads to designs and
implementations which are difficult to maintain and update. For instance, when the replication strategy

! The notion of executive system layer includes the middleware and the operating system.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 8

changes, the implementation (and most of time also the design) must be revisited and changed. Using
a MOP-based approach, each doject uses the MOP reflective mechanisms to interact with its
metaobject, which is a separate ettity. This metaobject is responsible for the implementation d the
asxciated replication strategy that can be modfied without any consequence on the object
implementation. Figure 2.b, provides a high level view of a MOP-based solution for our example.
When a client object sends an invocation to the primary server (step 1), this invocation is intercepted
(using the refication mechanisms of the MOP) at the meta-level (step 2). Then, the primary’s meta-
object triggers the eecution d the requested method (step 3). After the method execution, the
metaohject inspects the state of its primary object (step 4), which is then sent to the backup's meta-
object (step 5). Finally, this dateis used to restore the state of the backup (step 6).

..

primary

TR Object state 2.Reification
\,\ \\§ transmissio \\\\\\ (behavioral observation)

5. Object state
transmission

metacbject metaobject

IIIAIDS

12lqoejam

3.Behavioral

1. Request 2. Method 4. Object state intercession 6.Structural
execution and restoration (behavioral control) intercession
state saving 4.Introspection (structural

(structural observation) control)
- object object
o
7 2 primary backup
@ = object handling both functional and non-functional mechanisms 2
1. Request
Q functional mechanisms non-functional mechanisms

() Non-Reflective version (b) Reflective version

Figure 2. Primary-Backup example

Despite its simplicity, the above example illustrates the need of behavioral observation and control
for intercepting object invocations and trigger the execution of the adequate server methods. On the
other hand, structural observation and control, mainly based on object serialization (asin Java[9]), are
also needed on object states for both checkpointing (during normal operation) and cloning replicas
(during error recovery). Consequently, both object behavioral and structural reflection is essential for
implementing fault-tolerant systems.

Thus, the starting point towards the definition of a MOP well suited for fault tolerance regards the
analysis of different types of fault tolerance strategies in order to provide a precise specification of the
required refication, introspection and intercession features. This type of analysis has been performed
in [21] on four different types of replication-based fault tolerance strategies called active, semi-active
and passive replication and stable-storage. The conclusions of this analysis are summarized in Table 1
and can be synthetized in two major requirements:

1. Control of client invocations is needed for sending invocations to a group of replicas instead of

asingle server (active and semi-active replication).

MOP-based Fault-Tolerant Systems: From Experience to Challenges

Page 9

2. At the server-side, controlling reception d the invocation enables a given strategy to be

implemented between dbject replicas. This implies control over the execution d application

methods and ower the state of the application dojects. These facilities are required to implement

all aspects of the fault tolerance strategy (synchronization, checkpointing and cloning).

These are the minimal features needed from a reflective implementation d fault tolerance. The first
bullet refers to the definition d the reification mechanisms; the last refers to the definition d the

introspection and (structural and behavioral) intercesson mechanisms of the MOP.

Reflective Mechanism Replication Strategy
Active / Semi-Active Passive Stable-Storage
I ntrospection Required for retrieving Required for maintaining | Required for saving the
the state of an existing passvereplica's date state of the ohjed in stable
replicawhen creatinga | consistent with the state of | storage periodically
new one the primary replica
Reification Enable;forwardm g client Enables interception and control of the dient
Invocations to existing invocations (mainly for synchronization with
Behavioral repli cas and voting -
. (active repli cation) over chedpointing and stable storage)
Inter cession the receved requests
Structural Nealed for the aeation of | Nealed for the aeation of | Needed for restoring the
Inter cess anew replica, which is anew passvereplicaby | state saved on stable
ntercession made by cloning one of cloning the primary objed | storage on a new objed
the eigting replicas

Table 1. Reflective Behavioral and Structural features required for replication

3.2. A MOP modd

Acoording to the high-levd view of a reflective architecture supgied in Figure 1, the base- and the
meta-leve layers of the architecture interact using a MOP. Figure 3 provides a general description d
the type of interactions handed by the family of MOPs that we consider. Baselevel objects
communicate by method invocations, which are service requests snt by client objects to server
objects. Each server object provides a pulic interface, called the Service interface. Every request
received by the server object (step 1) is intercepted (using the refication mechanisms of the MOP) by
its metaobject. This interception enables the metaohject to control the pre- and post-computation d the
invoked method The metaobject can, for instance, check specific access rights of the client and
authorize or deny in consequence the eecution d the concerned method Using behavioral
intercesgon (step 2), the metaobject acts on its object to trigger the execution d the intercepted
method invocation. The considered MOP distinguishes between methods belongng to the Service
interface of the object (pubdic methods) and internal methods encapsulated in the object

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 10

implementation (nonpuklic methods). The activity of these nonpuldic methods (step 3) is transparent
and thus nat reified to the object’s metaobject. Steps 4 and 5 show the path followed by the generated
output values.

metaobject
|
& " Pre-computation \
& _—
c)
= | Post-computation //
<3 ‘\\\.\ e

client object server object

Figure 3. MOP interactions

The structural view of the base-level object handed by its metaobject includes the object identifier,
its attributes and their types, and its methods and their respective signatures. Addtionally, structural
information regarding inheritance links and associations between classes is also included in this
structural view in arder to ease object state checkpointing. Metaobjects can inspect this information
when necessary using the introspection mechanisms of the MOP. This enables meta-level computation
to be performed in ader to reason about the current corfiguration and state of a base-level object,
which can be customized (according to the needs) using structural intercessor.

The above interactions are defined in terms of method invocations exchanged between djects and
metaobjects using two well-known interfaces, called reflective interfaces. The first ore is the
Metaobject interface through which metaobjects are natified about events governing the behavior of
their objects. The second reflective interface is the Object interface, which is used by metaobjects to
act on their objects. Through the Object interface, a metaobject can inspect the state of its object,
modify that state and trigger the execution d the object’s methods. It must be noted that both the
introspection and the structural intercesson mechanisms of the MOP are nat cortroll able through the
Metaobject interface. Metaobjects activate these mechanisms when necessary acoording to the needs
asciated with the nonfunctional requirements of the system, or upon request of other metaobjects.

It is worth nding that this modd does nat consider multi-threaded dbjects and aher sources of
nondeterminism. This limitation concerns the reduced degree of observahility and controll abili ty over
the eecutive support (the middeware and the operating system) available at the application layer.
Handing threads at the metalevel implies the eistence of reflective features providing access to the
internal aspects of this support. This is also a mandatory requirement for the provision d more

2 The general approach considered to seriali ze objects can be foundin [22][23][24].

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 11

complete descriptions of the internal structure of an object. Currently, the set of object variables

handled by the operating system or the middleware, like the ones concerning the opened files or the

threads running inside the object, are not considered in our modd. These features constitute future

challenges that require further openness of the underlying layers of the system.

3.3. Therole of the MOP in the system architecture

The corner stone of the considered architecture is an instance of the general MOP presented in the

previous section. The central place of such a MOP instance in the system architecture is shown in

Figure 4.

Meta-Level
{Non-functional mechanisms) Meta-Level Services
MetaObject
MOP

Base-Level
(Functional mechanisms)

)
a
=
e
e
I
£
W
)
o]
=
e
m
“

Middleware

Operating System

Figure 4. The MOP: corner stone of the architecture

The implementation of both the base- (functional) and the meta-level (non-functional) mechanisms

is supported through the provision of two major types of basic services:

The meta-level services provide the necessary support for implementing fault tolerance, secure
communication, and group-based distributed mechanisms. For fault tolerance, the meta-leve
services must include a failure detector (based on a low-level group communication package)
and a stable storage support. For secure communication, the meta-level requires an
authentication server and cryptographic facilities. Finally, a group communication is also
required to provide atomic multicast protocols and group membership. Other services, like a
MetaObject Factory, are necessary for the provision and management of meta-level entities.

The general services of the architecture are those shared by both the base- and the meta-leve.
For instance, let us quote the Object Factories, which are runtime services devoted to the
creation and destruction of objects. It must be underlined that meatobjects are also objects and
thus MetaObject Factories rely on Object Factories for the creation and destruction of
metaohjects. The run-time language support and the libraries providing access to the executive
layer (which includes the middleware and the operating system) are also considered as general

services.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 12

In this architecture we do nd assume any goenness of the executive layer of the system, which is
considered as a COTS (“black box”) component. This decision comes from the current reduced
number of available “open-" executive layers siited for dependability. Ideally, the implementation d a
fault tolerance strategy should have cortrol over the concurrency modd of the eecutive layer, eg.,
scheduling policies and context switches. Similarly, the performance of state capture/restoration can
be greatly improved by the knowledge of object mapping onmemory unit at the meta-level. These are
challenges for the next generation d dependable systems.

The role of the MOP in the architecture is thus crucial for the adequate composition d the
functional and nonfunctional mechanisms of the system. Through the MOP, every base-level object
included in an application can be linked to either a singe metaobject or a stack of metaobjects. The
principle is smple: each metaobject is an doject and thus it can be linked through the MOP to anather
metaobject. This leads to the nation d stack of metaobjects, which enables the composition d several
nonfunctional mechanisms. Figure 5 exemplifies how objects and metaobjects can be actualy
interconrected in arder to provide fault-tolerance, security and dstribution. When just distribution is
required, only communication metaobjects are used at the meta-level. When fault tolerance is also
required, then the base-level object is linked to a fault tolerance metaobject, the latter using goup
communication metaobject for the interaction between replicas. Finally, when authentification is
addtionally needed, interactions between fault tolerance metaobjects can be handed by security
metaobjects. Such a recursive use of metaobjects leads to several meta-levels in the final application
al of them linked through the same MOP, an instance of the MOP defined in Section 3.2.

43 Effective Group
< . » I
&Ww o Ll Communication|
wie! Communication Services

|

—1) MOP

Secure
Communication
Services

SOIIAIIS [2AI[-RIATA]

Fault
Tolerance

Services

Communication

e (O §5 1)

object/metaobject client server invocation base-level call
Proxy object/metaobject irap access return

Figure 5. Composition of non-functional properties

4. Prototyping the architecture

Two prototypes of the presented architecture, respectively called FRIENDS v1 [6] and FRIENDS v2
[25], have already been developed. Through these prototypes, we will study the impact of different

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 13

MOP implementations in the practical provision of basic requirements for fault tolerance like
flexibility, transparency and adaptation. Although based on the same modd (the one defined in
Section 3.2), the MOP considered in FRIEMDS v1 is different from the one implemented in FRIENDS
v2 ; an off-the-shdf MOP in the former case and a CORBA-compliant MOP in the latter. These
differences have a direct incidence on the degree of details supplied by the base-levd to the meta-
level, and thus a direct impact on the pertinence of the non-functional strategies that may be provided
by the meta-levd.

4.1, FRIENDS v1 - An off-the-shelf MOP

This first prototype was based on the use of an existing MOP written in C++, called OpenC++ v1
[17]. This runtime MOP enables C++ objets to be interconnected with metaobjects also written in
C++. Both objects and metaobjects lie in the same runtime unit. During the development of the base-
level classes, the application programmer statically defines this interconnection. Hence, the binding
between an object and its metaobject is done on a class-by-class basis and cannot be changed at
runtime.

Every metaobject inherits from (and thus specializes the implementation of) the pre-defined class
MetaObject, whose interface is provided in Figure 6. This interface is the one known and thus used by

application objects in order to reify (and thus activate) the computation of their metaobjects.

class MetaObject{

public:
void Meta_StartUp ();
void Meta_CleanUp ();
void Meta_MethodCall (int m_id, ArgPac args, ArgPac reply);
void Meta_Read (int var_id, ArgPac value);
void Meta_Assign (int var_id, ArgPac value);

private:
void Meta_HandleMethodCall (int m_id, ArgPac args, ArgPac reply);
void Meta_HandleRead (int var_id, ArgPac value);
void Meta_HandleAssign (int var_id, ArgPac value);

Figure 6. The MOP used in FRIENDS v1

Methods Meta SartUp and Meta CleanUp are called respectively after creation and before
deletion of the base-levd abject. Meta SartUp is, in our case, redefined to handle the creation of
multiple replicas and their registration into a communication group. Meta MethodCall intercepts a
base-level method invocation: m id identifies the method, args® packs its input arguments and reply
packs the results when Meta_MethodCall returns. So, these three methods reify base-levd invocations
to the (fault tolerance) meta-level. This is how non-functional strategies are able to control the

execution of base-level methods.

3 ArgPac (Argument Packet) is a stack-like class that may contain any type of object (including ArgPac objects).

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 14

Meta Read and Meta Assign are the MOP mechanisms supplied for handling accesses to the
object state. The former is called when a public attribute, identified by var_id, is read and value is
supposed to contain the result of the read access. The latter is called when a public attribute, also
identified by var_id, is modified and value is the new value with which that attribute should be
updated. These facilities are used in our implementation to prevent external access to public attributes,
i.e. to ensure a strong encapsulation.

Private methods implement the default behavior of the language Meta HandleMethodCall,
Meta HandleRead, Meta HandleAssign. Meta HandleMethodCall is used to activate base leve
methods, Meta HandleRead and Meta HandleAssign are respectively used to save (as shown in
Figure 2.b, step 4) and restore (as shown in Figure 2.b, step 6) the state of the base level (primary and
backup) objects.

This MOP enables simultaneously the following properties:

1. Ease of use and transparency of the non-functional mechanisms for the application
programmer,

2. Seamless reuse and extensions of both application objects and metaobjects,

3. Composition of mechanisms.

The above properties have shown the interest of the reflective approach from both an architectural
and an economic viewpoint. Regarding the performance of the solution, experiments performed and
reported in [6] have shown that a certain overhead is introduced in the system due to the indirection
between the base- and meta-leved (200 percent for the creation and deletion of an object and between
40 percent for methods without arguments to 100 percent for methods with an average of 4
arguments). However, this overhead (associated to the MOP) is not significant with respect to the
overhead introduced by distribution and fault tolerance.

The major drawbacks of the FRIENMDS v1 MOP lay in implementation weaknesses. Those
identified so far essentially rdate to (i) the static binding of application classes to metaobject classes,
(i) the programmer participation in the definition of this binding, (iii) the limited amount of meta-
information supplied to the meta-level, and (iv) the impossibility to handle base-level inheritance.

However, these limits can be rdaxed with a more eaborated MOP that provides better control over
the object structure of the base-levd object (inheritance links, associations and fine grain access to
object state information) and enables a dynamic and transparent binding of objects and metaobjects
(eg., changing at runtime the fault tolerance mechanism being used). This is the main motivation

leading to the MOP developed in the FRIENDS v2.

4.2, FRIENMDS v2- A CORBA compliant MOP

The MOP of FRIENDS v2 uses a CORBA platform [10], it solves the problems identified in the
first prototype of the system and it conforms to the Fault Tolerance CORBA (FT-CORBA)

specification [26]. This second prototype illustrates that reflective computing frameworks can be

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 15

compliant with the use of an off-the-shelf middleware. The use of CORBA was preferred with respect
to other proprigtary candidates due to the genericity, portability and interoperability properties
supplied by this middleware platform.

The system modd defined by FRIENDS v2 considers both objects and metaobjects as being
CORBA entities mapped to independent system processes for fault containment. These entities
interact through well-known interfaces specified using the IDL language [26]. The interfaces of the
MOP and the public (Service) interface exported by server objects are all defined using this language.

As shown in Figure 7, the execution modd supplied by the MOP distinguishes three types of
invocations: (i) constructor (Start Up) invocations, (ii) method invocations (related to the operations of
the Service interface), and (iii) destructor (Clean Up) invocations. Consequently, the MetaObject
interface contains three methods for the refication of base-level events, i.e., server object invocations.
Symmetrically, the Object interface also provides three intercesson methods that are used by
metaobjects for triggering the execution of thereified invocations.

Methodldentifier long;
typedef Arguments any;
typedef State any;

interface MetaObject{
/I Reification mechanisms
void Meta_StartUp (Methodldentifier constructorID, in Arguments args);
void Meta_MethodCall (Methodldentifier methodID, inout Arguments args);
void Meta_CleanUp ();
/I Link management mechanisms
Object Meta_GetObject();
Void Meta_SetObject(Metaobject newMetaobject);

5

interface Object{
/I Introspection mechanism
State GetFullState();
/I Structural intercession mechanism
void SetFullState(State new State);
/I Behavioral intercession mechanisms
void Base_StartUp (Methodldentifier constructorID, in Arguments args);
void Base_MethodCall (Methodldentifier methodID, inout Arguments args);
void Base_CleanUp ();
/I Link management mechanisms
MetaObject Base_SetMetaobject(Metaobject newMetaobject);
void Base_GetMetaobject(Metaobject newMetaobject);

Figure 7. The FRIENDS v2 MOP

From a structural viewpoint, the MOP considers the state of an object as a list of attributes that can
be saved and restored from the meta-level using respectively the GetFullSate and SetFullSate
operations of the Object interface. This list contains for each attribute not only its value and its

identifier, but also its type, the name of the class in which it is defined and the associations or

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 16

inheritance links that this class may have with other classes. Thus, this structural view is richer than
the one supplied by the ¢R [ENDS v MOP.

The basic technology for the implementation of the above MOPs is open compilers. Open
Compilers, like [27] [28], are macro systems providing means to perform source-to-source
transformations. Figure 8 shows a high-levdl view of the open compilation process. The supplied
facilities provide means to reason about and act on aobject-oriented programs, which are handled as a
compound of classes with methods and attributes. However, these facilities do not apply by
themsdlves any transformation to the input source code. This is the role of the meta-program, which
uses the open compiler facilities for defining rules that (1) analyze the structure of the input source
code, and (2) transform this structure according to the needs. Along this paper, these rules will be
referred as analysis and transformation rules. It is worth noting that meta-programs may also generate
error messages. When no error message is generated by the meta-program, the customized code finally
produced can be compiled using a regular compiler.

meta-program

Customizable code analysis error
and transformation rules messages

customized

source code

executable
program

Figure 8. Open compilation process

input
source code

Open Compiler

source-to-source transformations

compilation
errors

Regular Compiler

In our prototype, the above analysis and transformation rules are specialized for the generation of
reflective code from non-reflective one. The source code supplied to the open compiler is customized
in order to provide an output code that (1) encapsulates the original source code, and (2) adds a
specialization of the MOP reflective mechanisms for each class definition contained in the input
program. The generation of an eror message signals the violation of one of the programming
conventions imposed by the meta-program. These programming conventions are filters applied to the
input programs for checking whether or not these programs can be correctly managed by the
generation rules. The benefits of such kind of approach are two-fold. On one hand, it minimizes the
effort required for providing customized MOP implementations; the rules defining the MOP are
defined only once and they can be later used on any program. On the other hand, the approach also
provides transparency of the MOP implementation to the application programmer; this avoids the

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 17

participation of unskilled programmers in the development of such critical and error-prone reflective
mechanisms.

The TRIENDS v2 MOP has been implemented using both Java (Open Java [28]) and C++
(OpenC++ v2 [27]). In order to provide a taste of the solution, let us consider the example of a C++
class whose service consists in counting the number of requests received through its Service interface.
The IDL definition of that service interface is shown in Figure 9.a and its C++ implementation in
Figure 9.b. From that code, the meta-program implemented on top of OpenC++ v2 generates the
reflective class shown in Figure 10. This class encapsulates the same capabilities provided by the
original class and also supplies the reflective mechanisms of the MOP. These mechanisms are
automatically generated according to the code transformation rules associated with the MOP
definition. It is worth noting that although the code added to the original class might appear quite
large, its size does not depend very much on the class size: for larger classes the size overhead is thus
limited.

interface Countinglnvocations{ class Countinglnvocations_Impl{

long count(); private: int count;
} public:
Countinglnvocations_Impl(int i){ count = i; }
int count(){ ++count; }
~Countinglnvocations_Impl{ }

(@) IDL Serviceinterface (b) C++ implementation

Figure 9. Non-Reflective code

Class Countinglnvocations_Impl{
/I ORIGINAL CODE
private: int count;

public:
WrappedCountingInvocations_Impl (int i){count=i;}
int Wrappedcount(){ ++count; }
WrappedDestructor(){ }

/I REIFICATION
Countinglnvocations_Impl (int i){

ConstructorArgs args;

Base_SetMetaObject(MOFactory.CreateMO(object_ CORBA_ref));

args.i =i;
Base_GetMetaObject()->Meta_StartUp(constructorID.args);

int count(){
CountArgs args;
Base_GetMetaObject()>Meta_MethodCall(countID,args);
return(args.return) ;

~Countinglnvocations_Impl (}{
Base_GetMetaObject()>Meta_CleanUp();

}

/I INTROSPECTION

State Base_SaveState()}{
CountinglnvocationsState st;
st.count = count;
return st;

}

/Il STRUCTURAL INTERCESSION
void Base_RestoreState(CountinglnvocationsState st){
count = st.count;

}
/I BEHAVIORAL INTERCESSION
void Base_StartUp(int methodID, any args){
if (methodID == constructorID)
WrappedCountingInvocations_lmpl(args.i) ;

void Base_HandleCall(int methodID, any args){
if (methodID == countID)
args.return = Wrappedcount();

void Base_CleanUp(){
WrappedDestructor() ;

}

/I LINK MANAGEMENT MECHANISMS

MetaObject Base_GetMetaObject(){
Return mo;

}

void Base_SetMetaObject(MetaObject mobj){
mobj = duplicate_reference(mobj);

}

private:
MetaObject mo;

Figure 10. Reflective code

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 18

Beyond the properties already supplied by FRIENMDS v1, FRIENDS v2 provides the additional
following features:

1. Fault tolerance mechanisms developed as independent CORBA objects (reuse and
adaptation);

2. Automated customization of MOP implementations thanks to the use of Open Compiler
facilities (transparency for application programmers);

3. An improved meta-mode that enables a richer monitoring of base-levd CORBA object
interactions and states (improved observability and controllability of the base-level 1ayer);

4. CORBA applications can dynamically sdect (and re-sdect when the system requirements
change) the preferred non-functional strategy for fault tolerance (evolution of the system);

5. Objects and metaobjets can be developed in different languages (currently, C++ and Java)
and combined using any ORB (interoperability, diversification and compliance with off-
the-self components).

Performance experiments have been also performed and reported in [25]. The collected results
agree with the ones obtained with the FRIENMDS v1 prototype, i.e., the runtime overhead introduced by
system MORP is not significant with respect to the one introduced by distribution and fault tolerance.
However, the open compiler approach used for the implementation of the MOP, imposes some
compile-time overhead to the compilation of base-levd code. Concretly, compilation time is (at least)
increased by one order of magnitude, although the final overhead depends on the complexity of the
analyses and transformation rules defining the MOP. It is worth noting that this additional overhead
must be paid only at compile-time and not at runtime.

5. A Strategy for Testing M etaObject Protocols

While the design of a MOP mainly focuses on how to provide separation of concerns, the test of a
MORP regards checking the conformance of the resulting MOP implementation to its specification. The
test strategy presented in this section is part of a global strategy for the verification of MOP-based
dependable reflective architectures that was introduced in [29]. The main concern of this global
strategy is the incremental verification of:

1. Thefunctional mechanisms defined by the system base-levd;

2. The reflective mechanisms of the MOP used to compose the functional mechanisms and
the non-functional mechanisms supplied by the system meta-levd;
The non-functional mechanisms provided by the system meta-levd;
The composition of functional and non-functional mechanisms using the reflective
mechanisms of the MOP.

Phases 1, 3 and 4, which are highly dependent on the particular functional and non-functional
mechanisms implemented in the target reflective architecture, are out of the scope of the work reported

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 19

here. As regards phase 2, emphasis was put on analyzing the MOP reflective mechanisms sown in
Figure 3, in ader to propose a test strategy generic enough to be used for different MOP-based
architectures, and thus independently of a particular MOP implementation.

As afirst step towards our goals, we concentrate on the foll owing fundamental problems:

1. What order should the reflective mechanisms of the MOP be tested in? The gaal is to
define successve testing levels that fit with an incremental verification d the protocol
mechanisms facili tating the reuse of the mechanisms that have already been tested for
verifying the remaining ores.

2. Which test objectives dould be associated with the successve testing levels? The
objectives must focus on the verification d the properties expected from the reflective
mechanism under test at each testing level.

3. Which conformance checks sould be used in ader to decide whether or nat a MOP
passsthetests, i.e., if it produces correct results in response to the test case input values?

4. Given the test objectives and the conformance checks to be performed, how to design the
test environments required for conducting the test experiments? In particular, these
environments must offer solutions to the observability and cortrollability problems
generated by object encapsulation.

Other testing isues — eg., the definition d test criteria to guide the selection d test case input
values acoording to the test objectives — are nat tackled in this section and will be commented in
Section 8.

The testing strategy that we have defined identifies four different testing levels. Obviously, the
strategy instantiation for the testing d a target MOP will have to comply with the MOP
implementation. This concern will be exemplified onthe FRIENDS v2 MOP in Section 6.

5.1. Overview of the Strategy

Acoording to the MOP modd defined in Section 3.2, the activation d the MOP reflective
mechanisms is based on the interaction channd used by objects and metaobjects. Hence, exercising
(and thus testing) these mechanisms requires a high level of confidence in this interaction chanrd.
This confidence may be obtained by testing the process foll owed to establish the interconrection. But
the isaues reated to this very first testing level (called Testing level 0) are highly dependent on the
MOP implementation and thus, they vary from one MOP to anather. As a result, the strategy canna
provide general guiddines for this level although we asume that it is succesdully achieved in the first
place. Section 6 provides further detail s regarding these implementation related concerns.

Once objects and metaobjects are correctly linked, the reflective mechanisms of the MOP are
exercised following a test order defined according to the dependencies existing among these
mechanisms (see[6]). These dependencies are eploited in order to define an incremental test strategy

MOP-based Fault-Tolerant Systems: From Experienceto Challenges Page 20

that reduces the testing effort to be spent. In accordance with this goal, we propose the following ader
to conduct the testing processof the four reflective mechanisms identified in Figure 1:

Testingleve 1. Reification (behavioral observation) mechanisms;

Testingleve 2. Behavioral intercesson mechanisms,

Testingleve 3. Introspection (structural observation) mechanisms,

Testingleve 4. Structural intercesson mechanisms.

The rdlevance of this order will appear all through the next sections that describe the testing levels.
For each levd, we give the test objectives, that is, the requirements to be met by (and thus tested on
the implementation d the target reflective mechanisms. Then, the necessary test environment is
defined in terms of the entities participating in the test experiments (the server object and its
metaobject, the test driver and the oracle aobjects), the interactions among these entities, and the
corformance checks to be performed in ader to decide whether or not the MOP passes the tests. The
role of the oracle objed is to verify that the test executions med the requirements imposed by the
MOP specification: it analyzes the test results according to an oracle procedure that implements
conformance checks. The test driver objed manages the test experiments: (i) it acts as a client object
to exercise the MOP by suppying it with test case input values and, (ii) it provides the oracle object
with (part of the) data that the oracle procedure uses to determine correctnessduring test execution.

5.2. Testing Levd 1: Reification M echanisms

As dated in Section 2.1, the base-levd of the system (the server object in aur case) must be
causally conreded to its meta-modd, which means that any change in ore of them leads to the
correspondng effect upon the other. This means that the behavioral image supgied to the object’s
metaobject by the refication mechanisms must be complete and consistent with the real object
activity. Hence, completenessand consistency are requirements to be verified.

1. Completeness requirement — Every message received by a server object through its Service
interface must be refied (natified) to the server' s metaobjectAny invocation nd observed at
the meta-level invalidates the interpretation o the object’s execution modd performed by the
metaobject.

2. Consistency requirement — Reification messages must provide the metaobject with a correct
view of the events triggered at the base-levd. In our case, these events are method
invocations. Consequently, reification messages must identify the invoked method and gve
the parameter values used in the invocation. Then, (possble) output values produced in
response to the activation d the invoked method have to be returned to the client object.

Figure 11 shows the test environment required for conducting test experiments. The object Service
interface must be defined using @erations with various types of method signatures in arder to test the
capacity of the MOP for handing a signficant sample of signatures, eg.: different directional
parameter qualifiers (input, output, and input/output parameters), different parameter data types

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 21

(language built-in types, structures, arrays...), different return data types. It is also recessary to
consider interfaces that inherit operations from other interfaces.

The test environment works as follows. Each time the test driver object sends a request (i.e,, a test
case input value) to the Service interface of the server object, the MOP should ndify the method
invocation to the server's metaobject through its Metaobject interface (step 1). The metaobject
invalved in this environment is smple: when receiving the reified message, it does nat deliver it to its
object; instead, a randam value is generated for each cutput parameter of the invoked method (step 2).
By this way, the metaobject simulates the execution d the reified method in arder to avoid the use of
the activation mechanisms that have nat been tested yet. The MOP shauld return the output values to
the test driver object (step 3). In addtion, the metaobject sends the following data to the oracle object
(step 4): (a) the reified method identifier, (b) the reified invocation parameters, and (c) the generated
randam values. Symmetrically, the test driver object communicates to the oracle object (step 5): (a)
the name of the invoked method (b) the values used in the invacation, and (c) the obtained cutput
values. Finally, the oracle object executes the oracle procedure (step 6), which has to check the
compli ance between the data supgdied by the metaobject and by the test driver object.

£

Oracle
object i |

Q ; I 2
{ Comparison : 6 Observation Q

* Method execution is simulated
* Invoked method by generating a random value
* Parameter values

for each output parameter
\ * OQutput values y y,
metaobject
5 1]]3
e vl Jﬁ'\\\

[10afqoerp N

" ™\ wn \
(=)
)
\) e < 5.
\\—J/ g — o~ /
Test driver object server object

Figure 11. Testing of the reification mechanisms of the MOP

5.3. Testing Leve 2: Behavioral I ntercession M echanisms

The behavioral intercesson mechanisms allow a metaobject to animate the execution model of its
base-level object, i.e, to act on its object in ader to trigger the eecution d an invoked method
Hence, the test objectives are to verify their capacity for (1) activating the right code of the base-level
object with the correct input parameter values, and (2) returning to the metaobject the output values
produced by the object’s code. To decide whether or nat a MOP pass the tests, the oracle procedure
needs to get a report on the actual object activity in arder to compare it with the image of the object
activity obtained through the MOP. This report canna be ddivered through the MOP for two reasons:
first, due to encapsulation, the metaobject may na know anything about the internal activity of its
object, and second even if we decide to break this encapsulation, the information would be suppied to

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 22

the metaobject through the behavioral intercesson mechanisms which are under test, and thus, nat yet
reliable. As aresult, the report must be supdied drectly by the base-leve object.

Figure 12 represents the test environment. The object Service interface must be defined using
operations with various method signatures. As explained above, here the server object must report on
its internal activity (nation d verbose object). As a result, in addtion to the code related to the event
treatment, every method — pulic, protected o private — has to generate an execution trace cortaining
at least its name, the values of its parameters, and the output values gat after completion d its
execution.

Test experiments proceal as follows. The test driver object sends requests to the server object,
which are reified to the metaobject (step 1). Both the format and the contents of every reified message
may be considered as correct since they are built by the reification mechanisms that have already been
tested according to the strategy. The metaobject invdved in this environment ddivers the reified
information to its object (step 2). Then, the behavioral intercesson mechanisms dhould trigger the
execution d the server object code in charge of the initial request treatment (step 3), and return the
output values to the metaobject (step 4). In addtion, the server object produces the execution trace for
the oracle object (step 5). The values returned to the metaobject are transmitted to the test driver object
by way of the — presumably correct — reification mechanisms (step 6). Then, the driver object sends
the following chta to the oracle object (step 7): (a) the name of the invoked method (b) the parameter
values used in the invocation, and (c) the output values ddlivered by the metaobject. Finally, the oracle
procedure checks the compliance between the data supgied by the server object and by the test driver
object (step 9).

Oracle 5

object metaobject

4

N

* Reified information is
[* Server object traces are

systematically delivered to
the server object.

* The output values are returned
to the driver object.

checked according to the
data supplied by the test
driver object. C 8.

%/
1l] 6 4 T l 2

7 ‘Behavioral intercession‘

- < / N

/ &£ \

(—1 G —
‘\ /4_ (<3N J '

S R

Test driver object server object

Pafqoep

Figure 12. Testing of the behavioral intercession mechanisms of the MOP

54. Testing Levd 3: Introspection Mechanisms

The introspection mechanisms provide means to a metaobject for retrieving structural data from its
base-level object. These data ae related to the object state defined by the current values of the object
attributes. Dependng on the nonfunctional mechanisms implemented at the meta-levd, the

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 23

introspection mechanisms may have to supply all the attribute values, or only some of them. Testing
these mechanisms without making assumption about their future use in a specific system, may be
performed by considering the most general case, i.e., when all the attribute values are retrieved. The
test objectives are then to verify that the full image of the object state got from the introspection
mechanisms is conformed to the actual object state (same attribute values).

As mentioned in Section 3.2, the introspection mechanisms are not controllable through the
Metaobject interface. They are triggered at the meta-level through a specific interface, called
MetaControl (see Figure 13). The metaobject involved in the test environment must implement this
second interface. In order to check the capacity of the MOP for handling a representative sample of
attributes, the server object must possess attributes with various types and different levels of visibility
(e.g., public, protected, private). Inheritance is another feature to be considered at this testing level.

First, the test driver object sends reguests to the Service interface in order to initiaize all the
attributes of the server object to values supplied in the requests. The requests are transmitted to the
server object by way of the refication and behavioral mechanisms that have already been tested (step
1), and the server object notifies the driver object of the end of the initialization process (step 2). Then,
the driver object sends a reguest to the MetaControl interface for activating the introspection
mechanisms (step 3). The metaobject should trigger the mechanisms (step 4) and return the observed
attribute values (step 5) to the driver object. Finally (step 6), the driver object sends these values to the
oracle object together with the values it supplied in the initialization requests. The oracle procedure
compares both sets of values (step 7).

~

' metaobjectr\

. 5 /test driver‘

> object /

5
-
g
S
=
®
e
e

JRTNINE

6
Behavioral |Introspection —L
Intercession | mechani

7 = 1Is the introspected
state consistent with
object > the initialization state?|

state (7)
G B J

~——

server object oracle object

~
\

A
N I i
1
ERTHW BTN
N
N

Figure 13. Testing of the introspection mechanisms of the MOP

The requests to be sent by the driver object to initialize the state of the server object (step 1) are
strongly dependent on the level of encapsulation defined by the server object on its attributes. Public
attributes may be directly initialized, while attributes with a more restricted visibility may cause a
controllability problem. A simple solution consists in using the server object constructor, which in that

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 24

case must provide means for initializing the entire object state from the parameter values used in its
activation®.

5.5. Testing Levd 4: Structural Intercession M echanisms

Like the introspection mechanisms, the structural intercession mechanisms are controllable through
the MetaControl interface. Their role is to allow a metaobject to update the state of its base-leve
object according the current needs of the non-functional requirements implemented at the meta-leve:
the attribute values have to be forced to the input parameter values used in the activation request sent
to the MetaControl interface. The test objectives are then to verify that the object state is updated
according to the input parameter values used in that activation.

Figure 14 shows the test environment, which makes use of al the MOP mechanisms already tested.
The metaobject and the oracle object are identical to the ones shown in Figure 13, which may be
reused. Here, the server object must offer appropriate method(s) for modifying the values of its
attributes. Steps 1 and 2 correspond to the initialization process defined in Section 5.2. Then, the test
driver object sends requests to execute method(s) of the server object that change the values of all its
attributes (step 3). After notification of the end of the modification process (step 4), it sends a request
to the MetaControl interface for activating the structural intercession mechanisms (step 5). The input
parameter values supplied in the request are identical to the ones used in step 1 (initialization), and
thus are different from the current state of the server object. The metaobject should trigger the
mechanisms under test (step 6). Then, the test driver activates the introspection mechanisms (step 7) to
get the object state after intercession (step 8). Finally (step 9), it sends these values to the oracle object
together with the values it supplied in step 1. The oracle object compares both sets of values (step 10).

———— |
I metaobject) P

7

\
/test driver)

(=]

St

-

=

(= 8)
-\ S8 object |

) : 7
< S S

24 T h3le l7Ts
Behavioral | Structural | Intrespection
Inter Intercession| mec hani

A 3 4

19

Is the introspected

~

1,3)
4 % v \ | state consistent with
< | object > the initialization state?|
2.4 & state A
8 o Cio)
S S % J
server object oracle object

Figure 14. Testing of the structural intercession mechanisms of the MOP

* Another possibility consists in using specific implementation language features like the friend functions of C++ or the
default attributes of Java to break the object encapsulation. Using these features, the test driver is able to control (and thus,
initialize) the server object state directly, i.e., without using the MOP mechanisms in step 1. But this solution is language
dependent while Figure 13 works for any MOP implementation.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 25

6. Case Study: Testing the FRIENDS v2 M OP

The feasibility of the strategy presented above is now showed using the FRIENDS v2 MOP
(defined in Section 4.2). Accordindy, Section 6.1 reports on the addtional (and implementation
dependent) testing that must precede the activation d the MOP reflective mechanisms. Then, Section
6.2 focuses on the test results obtained from the application d the test environments asociated to the
testing levels gecified in the strategy.

6.1. Testinglevel O: Testing preceding the activation of the MOP

As said in Section 5.1, the activation (and thus the test) of the reflective mechanisms is based on
the interaction channd used by objects and metaobjects. Hence, the implementation d the reflective
mechanisms defining the MOP can orly be exercised (and thus tested) once a high confidence can be
placed onthe channd interconrecting dojects to metaobjects.

This isqle was reported in [30], where a strategy was defined for handing the implementation
dependent testing concerns of MOPs generated by open compilers (like the FRIENDS v2 ong). The
system modd considered in that paper agrees the one defined in Section 3.2, which specifies that each
server object must be handed by only ore metaobject (unity requirement). Ancther requirement
regards the capacity of an doject to interact with its metaobject and vice versa (interaction
requirement). From an abstract viewpoint, objects and metaobjects are able to interact if they have
correctly exchanged their references. A reference can be defined as a compound d information
unambiguoudly identifying a system process For instance, a reference in FRIEMDS v2 corresponds to
a set of four dements: an doject identifier, the PID of the system process running the object, the IP
address of the hast executing that object and the hast port number on which the object listens for

incoming messages.

In the MOP of FRIENDS v2, an doject is interconrected with its metaobject (and \vice versa) during
its instantiation. Conceptually, one may consider that objects are instantiated by runtime services
called Object factories. Symmetrically, Metaobject factories are used to create metaobjects. Figure 15
depicts the test environment we have defined for this testing level. When the Object factory is asked
by the test driver for the creation d a new base-levd object (step 1), it creates an instance of the
requested dbject class This instantiation provokes the activation d the object constructor (step 2),
whaose execution leads to the creation d the object’s metaobject (step 3). The object includes in that
request of creation its own reference, which is ddivered by the Metaobject Factory to the new
instantiated metaobject (step 4). Once created, the metaobject stores that reference in arder to ¢et
conrection with its object (step 5). The Metaobject Factory sends to the oracle object, the reference of
the metaobject and the reference of its associated dbject (step 6). The reference of the metaobject is
also returned to the object (step 7), which stores it. This exchange of references leads both the object

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 26

and its metaobject to become interconnected. The activation of the class constructor can then be reified
to the meta-level (step 8). Once the object has been instantiated, its reference is returned to the test
driver object (step 9), which notifies the end of the instantiation process to the oracle object (step 10).

The oracle procedure checks the identity of the references supplied by the Metaobject factory (step
6) and the references finally stored by the object and its metaobject. It is worth noting that the
procedure followed to obtain the second set of references may vary from one MOP to ancther. In
general, MOPs designed for being easily tested should provide facilities for consulting that type of
information. In FRIENDS v2, these references can be obtained, as shown in Figure 15, through the
reflective interfaces of the MOP (steps 11 and 12). This is design feature of great interest for the test of
this interconnection process.

The oracle procedure considers that an object and its metaobject are able to interact if they have
correctly exchanged (and stored) their respective references. On the other hand, the unity requirement
is respected when the notification performed in the step 6 of the described environment is only
performed once during the instantiation the object. More than one natification implies the instantiation
of more than one metaobject for the object, which violates the unity requirement.

Metaobject
Factory

Aropey
1lqo

Figure 15: Testing the interconnection channel in FRIENDS v2

6.2. Testing experiments and results

In FRIENDS v2, the reflective mechanisms under test are generated by OpenC++v2 and are
compiled using a regular C++ compiler (gcc version 2.95.2). The system platform (an Ultra-SPARC 5)
runs on top of Solaris 7 and the associated rdease of Orbacus ORB, a commercial and free-source
ORB providing the middieware infrastructure required for exercising the FRIENDS v2 MOP.

Each one of the test environments included in our strategy has been implemented ontop of the
above platform. We have used a probabilistic method, called statistical testing (see e.g., [31]) for
generating the test case input values. However, the issue of how to sdect these test input values is out

of the scope of our discussion. The following paragraphs report on the test experiments performed and

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 27

the type of feedback that they have provided to the system design. This discussion is conducted
according to the levels identified in the test strategy.

Testing level 0: Testing preceding the activation of the MOP (Figure 15). The implementation
of the test environment associated to this testing level requires a non-intrusive technique for
intercepting object requests sent to the Metaobject Factory (step 3 in Figure 15). The retained solution
was based on interposing probe objects between server objects and the Metaobject Factory. From a
functional viewpoint, the probe object does not alter the exchanges between server objects and the
Metaobject Factory. It ddivers each trapped object request to the Metaobject Factory and then it
returns the associated output. From a testing viewpoint, this probe object is responsible for transfering
(step 6 in Figure 15) to the Oracle procedure the reference of each new created metaobject together
with the reference of its associated object. This approach minimizes the level of intrusion introduced
by the test environment.

During the test experiments, a violation of the unity requirement was detected when using
inheritance for the definition of server objects. The oracle has observed that the instantiation of such
servers led to the instantiation of more than one metaobject. Concretely, a different metaobject was
created for each class of the inheritance hierarchy of the server. For instance, the instantiation of an
inheritance hierarchy made of two classes leads to the creation of two metaobjects linked to the same
object. This violates the unity requirement imposed by the MOP specification. The problem was fixed
by systematically providing the type of the server object under instantiation as a parameter of each
class constructor. Code must be also inserted in class constructors in order to compare that type to the
one associated to each class. Thus, only the class representing the type of the object under instantiation
asks the metaobject factory for the creation of the necessary metaobject. Then, a new analysis and
transformation rule implementing that solution was included in the meta-program providing
implementation to the considered MOP. Once this problem fixed, we have peformed testing leved 1.

Testing level 1. Reification mechanisms (Figure 11). Different IDL data types were used to
define the object Service interface: IDL built-in types, strings and CORBA object references. For
instance, Figure 16 shows the interface defined for checking the capacity of the MOP for handling
long data types in method signatures. Three different implementations were associated with each IDL
interface. In the first one, a single class implements all the operations of the interface. In the other two
implementations, simple and multiple inheritance are respectively used in order to reveal potential
problems associated with the reification of inherited operations. Furthermore, different levels of
visibility (public, protected and private) were affected to the methods included in the class
implementation.

To implement the oracle procedure, one table was generated for each operation included in the
Service interface of the server object. This table, generated using open compiler facilities, describes
the signature of the operation, and gives the method identifier used by the reification mechanisms for

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 28

that operation. This information is required for checking the compliance between the data reified to the
metaohject and the one handled by the test driver object.

interface ServiceForTestingHandlingOfType_LongParameters{
long returnLong();
void InLong(in long p1);
void OutLong(out long p1);
void InOutLong(inout long p1);
long AllLong(in long p1, out long p2, inout long p3)

Figure 16. IDL Service interface for reification and behavioral intercession

The test experiments performed revealed that different method invocations could be reified to the
meta-level using the same method identifier. Hence, the metaobject cannot distinguish which method
has actually been invoked. This problem has been observed using both simple and multiple
inheritance. In the first case, it was easily fixed by modifying the code transformation rules that
generate the MOP implementation. In practice, the algorithm used by these rules to assign method
identifiers to IDL operations was dlightly changed in order to avoid the reuse of method identifiers
aready assigned. However, in case of multiple inheritance, the problem is much more difficult to fix
(and it has not been fixed yet).

The next testing levels were performed after having fixed the problem related to simple inheritance.
Since multiple inheritance remains a restriction on the use of the new MOP reease, it was not used in
the test experiments carried out at the following testing levels.

Testing level 2: Behavioral intercession mechanisms (Figure 12). According to the observability
constraints associated with the oracle procedure, the server object reports on its execution by
generating execution traces. These traces are produced by every public, protected or private method
included in the server object implementation. Let us remember that the activation of the code
associated with a Service interface operation may lead to the execution of other object internal
methods. As stated in Section 3.2, the object must encapsulate these internal invocations, which
consequently must not be reified to its metaobject.

Two problems were revealed by the test experiments. The first one concerns the encapsulation of
the internal object activity: public methods that do not belong to the Service interface of the server
object were reified to the meta-levdl. This means that the behavioral intercession mechanisms may
trigger reification mechanisms while they should not have to do so. The second problem was observed
when the activated code performs an internal invocation to a method of a parent class, which is
redefined in its child class. In that case it is the method of the child class that is executed. This
problem reveals an omission fault in the analysis and transformation rules defining the MOP.
Although the MOP was supposed to handle this kind of invocation, no rules were defined for dealing
with the associated transformations.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 29

Both problems were fixed before going on with testing level 3. The first problem was fixed by
restricting the application of the code transformation rules to the methods associated with the Service
interface of the server object. Extending the existing rules in order to take account of internal
invocations to methods redefined in child classes solved the second problem.

Testing level 3: Introspection mechanisms (Figure 13). The server object classes used in this
levdl provides attributes with different data types: C++ built-in types, strings and C++ data types
representing CORBA references. Figure 17 depicts the interface defined for checking the capacity of
the MOP for handling long data type attributes. Each one of these IDL attributes maps to a public C++
accessor method that handles an associated (C++) attribute. While C++ accessors remain always
public, the C++ definition of their associated attribute can be public, protected or private. Hence, these
three levels of visibility have been used in order to check the ability of the MOP to handle the
resulting attributes. In addition, inheritance has also been considered in the implementation of the
Service interface. First, all attributes defined in the interface have been implemented in the same class.
Then, simple class inheritance has been used for the implementation of these attributes. It is worth
noting that due to dependability issues, the MOP under test restricts the set of data types that can be
used for defining attributes. For instance, C++ multiple level pointers are not allowed.

The experiments performed on the considered server implementations have revealed a problem
associated with the management of un-initialized string attributes. The MOP introspection
mechanisms were not prepared for handling un-initialized strings so the resulting behavior was
undefined: sometimes the object was freezed, sometimes a core-dump signal arised. The problem was
fixed by extending the meta-program defining the MOP with a new analysis and transformation rule
that forces the initialization of those string attributes that are not initialized during the execution of the
object constructor. The default initialization value choosen was NULL.

interface ServiceForTestingHandlingOfType_LongAttributes{
attribute long ReadWriteLong();
readonly attribute long ReadLong();

%

Figure 17. IDL Service interface for introspection and structural intercession

Testing level 4: Structural intercession mechanisms (Figure 14). The server object classes used
in this phase have been defined using the same features as in the previous testing level. The existence
of accessor methods for each object attribute has been very useful in order to handle the initialization
of the object state (see step 3 in Figure 14). No faults were revedled at this testing level during the
experiments.

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 30

7. Lessons L earnt

Reflection is a concept that promotes separation of concerns in computer systems. A MetaObject
Protocol is a design artifact that materializes separation of concerns in such a way that the system
computation can be structured in different levels, each one devoted to the implementation of a
different set of mechanisms. Various works in the field of fault tolerant computing [4] [5] [6] have
shown the benefits of using MOPs at runtime for handling the behavior of base-level objects from the
system meta-levdl. However, none of them has investigated the impact of different MOP
implementations on system features like flexibility, adaptation and evolution.

As deduced from the analysis performed in Section 3.1, we can say that behavioral reflection is not
sufficient for the implementation of fault tolerance strategies, structural reflection must be also
supplied. The major impairment for the provision of structural reflection is the limited structural
information provided by most language runtime supports. The off-the-shelf MOP presented in Section
4.1 falls into this category. Due to a limited visibility of object structural features, the FRIENDS v1
MOP was not able to handle inheritance and imposed on programmers the static binding of objects and
metaobjects. The conclusion is that in most cases, available runtime MOPs do not provide enough
features to build flexible and adaptable fault-tolerant systems. This is mainly due to limitations
regarding the observation and control of the structure of base-leve components. So the question s,
how can the above problem be handled? The solution we have considered consists in using compile-
time reflective approaches based on open compilers. As explained in Section 4.2, open compilers
enable the use of reflection at compile-time in order to provide customized runtime MOPs, i.e,
reflection at runtime. The combined use of compile-time and runtime reflection is of high interest for
the provision of Metaobject Protocols (like the FRIENDS v2 one) with a large set of behavioral and
structural reflective features. This is an important result since the degree of detail supplied by the base-
levd to the meta-level has a direct impact on the pertinence of the non-functional strategies that may
be provided by the meta-leve software.

The limits of the approach that we have identified concern the management of object features, like
multi-threading, that cannot be handled because of the current lack of open executive supports. As a
result, some programming conventions and restrictions have to be obeyed by base-level objects. In that
context, open compilers are also attractive tools to automate the filtering and control of base-leve
object implementations. It is worth noting, however, that some restrictions cannot be statically verified
at compile-time. In this case, the open compiler inserts assertions in order to check the restrictions at
runtime. Although this approach may seem restrictive, our goal is to provide an adequate framework
for the devdopment of dependable systems, and thus components not observing the imposed
restrictions cannot safely be integrated in the proposed framework. Advanced reflective features will
enable these restictions to be relaxed (see Section 8).

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 31

From a testing iewpoint, the generic strategy presented in Section 5 deals with the iswe of
verifying the reflective mechanisms of the system. The main interest of the approach is the systematic
and incremental order proposed for testing each o the reflective mechanisms suppied by a MOP. The
proposed arder reduces the test effort by enabling the reuse of the mechanisms already tested for
testing the remaining ores, thus facilitating the implementation d the test environments. The test
strategy must obviously be instantiated acoording to the set of reflective mechanisms supgied by a
MOP (as shown in Section 6). The four testing levels defined in the strategy are required for checking
the implementation d the family of MOPs gecified in Section 3.2. However, other MOPs may be
tested using orly some of the testing levels. For instance, MOPs that only provide reification and
behavioral intercesson mechanisms (like those defined in MAUD and GARF) require only testing
levels 1 and 2 to be instantiated; the CORBA portable interceptors [26] (a form of refication o
CORBA reguests) can be tested using testing level 1; the testing d the serialization features provided
by a Java virtual machine [9] (a form of introspection and structural intercesson mechanisms) only
requires levels 3 and 4 to be instantiated.

8. Open issues and challenges

Clearly from the state of the art and aur current experience, the use of MOPs in dependable systems
is far from being a panacea. As motivated all through Sections 3 and 4, the design and implementation
of a fault tolerant system requires a deg knowledge of information that does not belong to the
application layer but to the eecutive support of the system. For instance, how can we exsure
determinism for active replication when using multi-threading, or how can be saved and restored those
site-dependent informations belongng to application djects? Solutions to these problems call for a
disciplined control and access to the eecutive layers of the system (middeware and erating
system). In aher words, a radical reflective solution is thus required in arder to hande the above
problems. However, a reflective solution cannd be defined in general; it must be defined according to
each particular aim, in our case the provision d open frameworks for the implementation d fault-
tolerant systems. Accordingy, an owerview of the various reflective solutions that must be
investigated in the future is supgdied in Figure 18. All system levels must provide adequate reflective
features, but which are these features? This is a major track of our current research onthe definition o
architectural reflective frameworks.

As far as testing is concerned, we currently focus on the definition d rigorous test criteria to guide
the automatic selection d test case input values according to the test objectives gecific to each testing
leved of the strategy define in Section 5. This criteria definition benefits from existing approaches
defined in [13] [15 [32] and considers both specification-based concerns — those that impats any
MOP-based reflective architecture — and (more specific) implementation-based isaies that are
particular to each type of MOP. The longterm objective of this research focuses on the extension d

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 32

the proposed test strategy in arder to consider the integration d base- and meta-level mechanisms
using the reflective capabilities of the MOP. Then, further test work will be aso required for
eliminating problems associated to the recursive application d multiple metaobjects to a singe object
(as $own in Figure 5). Finally, the approach should be generalized for tackling the verification of
other types of reflective systems not based onMetaobject Protocols.

o Application level runtime metaobjeC
lan gﬂ‘g@‘] o « language constructs and wrappers
» structural information
* object interaction fault-tolerance
Middleware level error detection
i dcc)JIIOQ\C/r\]/ar . structural information fault containment
* management policies strategy adaptation
* signal and events
Kernel level
Open » structural information
kernel « management policies
* signal and events

Intercession Reification
process process

Figure 18. A radical reflective solution for dependable systems

9. Conclusions

This paper summarizes sveral years of research on development and \erification of reflective
architectures for building dependable systems. Developing a fault-tolerant system is rather expensive
and its maintenance and evolution is a complex process We have showed haw reflection enhances the
flexibility of such systems by providing properties like: ease of use and transparency of mechanisms
for the application programmer, seamless reuse and extension d both functional and nonfunctional
software and compasition d mechanisms. Consequently, from both an architectural and an econamic
viewpoint, this approach constitutes a step forward in the development of fault-tolerant systems.

The work performed on reflective architectures has down that implementing fault tolerance
impacts all the layers of a system. When the underlying layers are nat reflective, some aspects of the
problem canna be handed and some programming conventions and restrictions have to be obeyed. In
this case, the use of open compiler facilities is both an attractive way to provide the epected
properties, but also a very powerful tod to filter and control programming conventions.

Considering the underlying executive support as a “black box” is the core assumption d the work
presented in this paper. Acoordingy, we believe that the specification d the presented MOP still hads
whatever the underlying executive support is. As we have see, the implementation d this MOP can

MOP-based Fault-Tolerant Systems: From Experience to Challenges Page 33

be optimized and extended as the reflection paradigm progresses into language runtimes, middleware
(CORBA interceptors and other serialization techniques) and operating system kernds. A radical
solution based on multilevel reflection seems very attractive and is a real challenge today. We
anticipate that this approach will solve many problems in building fault-tolerant systems with the
current component technology.

Another originality of the proposed framework consists in the integration of validation concerns to
the devdopment of reflective fault-tolerant systems. The test strategy presented constitutes a step
forward in the definition of a global strategy for the verification of reflective architectures. It focuses
on the corner stone of the reflective architectures that we consider, i.e., the MOP. The main interest of
the approach is the systematic and incremental order proposed for testing each one of the reflective
mechanisms supplied by a MOP. This order reduces the test effort by enabling the reuse of the
mechanisms already tested for testing the remaining ones, thus facilitating the implementation of the
test environments. Furthermore, it allows the tester to progressively identify and fix potential problems
related to the reflective mechanisms, one after the other.

The efficiency of such a progressive testing and debugging process was noticeable al along the
experiments that we have conducted on real MOPs. Indeed, these experiments were performed in
paralld with the development of the case study MOP presented in Section 6, i.e., with the definition of
the code transformation rules used to automatically generate reflective classes from non reflective
ones (see Figure 8). In that MOP, specific rules are associated with each of the four reflective
mechanisms covered by the test strategy. As a result, each testing level only concentrates on a
particular subset of the rules defining the MOP. Due to dependency between the reflective
mechanisms, fixing potential faults in a given subset of rules before defining another subset avoids
possible ripple effects of these corrections on the new defined rules. Following this approach, errors
are early and incrementally detected and fixed (when possible). When a problem cannot be (easily)
fixed, the test results allow at least the identification of restrictions on the use of the MOP.

Finally, we would like to point out that, beyond the various examples provided in this document,
the major output of this work is the definition of a development and verification framework for a next
generation of adaptable fault-tolerant systems. This framework considers the executive support as a
black-box and can thus be easily ported to other implementation contexts. For instance, it can be used
on top of real-time microkernels or on top of many different middieware supports (like CORBA - as
shown in Section 4.2, DCOM and others). The defined framework solves many issues related to the
reuse and evolution of system platforms with dependability requirements.

Acknowledgements

This work has been partially supported by the European ESPRIT project DEVA (n. 20072), by the European IST project
DSoS (IST-1999-11585), by a contract with FRANCE-TELECOM (ST.CNET/DTL/ASR/97049/pT) and a grant from CNRS
(National Center for Scientific Research in France) in the framework of the international agreements between the CNRS and
the JSPS (Japan Society for the Promation of Science).

MOP-based Fault-Tolerant Systems: From Experienceto Challenges Page 34

10.

10.
11

12

13

14.

15.

16.

17.

18.

19

20.
2L

22.

References

Plank, J.S., M. Be, and G. Kingdey, "Compil er-Asdgsted Memory Exclusion for Fast Chedpointing",
in IEEE Technical Comnittee on Operating S/stems and Appli cation Environments, Spedal Issie on
Fault-Tolerance. 1995

Maes, P. "Concepts and Experiments in Computational Refledion™ in Conference on Objed-Oriented
Programming §stems, Languages and Appli cations (OOPSLA'87). 1987. pp. 147-155

Kiczdes, G., Jd. Riviéres, and D.G. Bolrow, The Art of the MetaObjed Protocol. 1992 Cambridge:
The MIT Press 335 ages, ISBN: 0-262-610744.

Agha, G, et a. "A Linguistic Framework for Dynamic Composition of Dependability Protocols' in
Dependalde Computing for Critical Applications 3. 1993 pp. 345363

Garbinato, B., R. Guerraoui, and K. Mazouni, "Implementation of the GARF Replicated Objeds
Patform™. Distributed S/stems Engineeing Journal, 1995 2: p. 14-27.

Fabre, J.C. and T. Pérennou, "A Metaolhjea Architedure for Fault-Tolerant Distributed Systems: the
FRIENDS Approach". IEEE Transactions on Computers, Spedal issie on Dependaklity of
Computing Systems, 1998 47(1): p. 78-95.

Y okote, Y. "The Apertos Refledive Operating System: The Concept and Its Implementation” in Objed-
Oriented Programming Systems, Languages and Appli cations (OOPSLA'92). 1992 pp. 414434

Costa, F.M., G.S. Blair, and G. Coulson, "Experiments with an architedure for refledive middeware',
in Integrated Computer-Aided Engineeing, I0SPress 200Q

Sun, Java Objed Serialization Sgdfication - Release 1.2, ftp:/ftp.java.sun.com/docs/j2sel. 3/serial-
specps, 1996

OMG, CORBA2.5 spedfi cation, http://www.omg.org/cgi-bin/doc*ormal/01-09-01, 2001

Welch, I. and R. Stroud, Adaptation d Conredors in Sdtware Architedures, in ECOOP'98, Workshop
on Refledive OO Programming Systems. July 1998 Brussls, Belgium.

Marsden, E., J.-C. Ruiz, and J.-C. Fabre. "Towards vali dating refledive architedures. Formali zation of
aMOP" in Workshop onRefledive Middeware. 200Q New York. pp. 33-35.

Bochmann, G.V. and A. Petrenko. "Protocol testing: review of methods and relevance for software
testing” in Internationd Symposium on Sdtware Testing andAnalysis. 1994 Sesttle (USA). pp. 109
124

Barbey, S., M. Ammann, and A. Strohmeier, Open Isales in Testing Objed-Oriented Sdtware, in
European Conference on Sdtware Quality (ECSQ'94), K. Fruhauf, Editor. 1994: Basel, Switzerland.
pp. 257-267.

Binder, R\V., Testing Objed-Oriented Systems. 2000 Addison-Wedley. 1248 pages, 1SBN: 0-201-
809389.

Chiba, S., OpenC++ 2.5 Reference Manud,
http://www.csg.is.titedh.ac.jp/~chiba/opencxx/html/index.html, 1999

Chiba, S. "A Metaoljed Protocol for C++" in Objed-Oriented Programmning S/stems, Languags and
Applications (OOPSLA'95). 1995 Austin, Texas. pp. 285299,

Allen, JR., "A Formal Approach to Software Architedure'. 1997, PhD Thesis, Carnegie Mdlon
University.

Hoare, C.A.R., Comnunicating Squential Processes. 1985 Prenctice Hall. 256 mges, ISBN: 0-13-
1532715.

Milner, A., ed. A Calculus of Communicating Systems. LNCS. Val. 92. 198Q Springer Verlag.

Killi jian, M.O., "Tolérance aux Fautes sir CORBA par Protocole a Méaohjets et Langages Réflexifs".
200Q LAAS/CNRS. PhD Thesisn. 00022. 163 pages.

Ruiz, J.C., et a. "Optimized Objea State Chedpointing using Compile-Time Reflection” in IEEE
Workshop onEmbedded Fault Tolerant Systems (EFTS98). 1998 Boston, USA. pp. 46-48.

MOP-based Fault-Tolerant Systems: From Experienceto Challenges Page 35

23

24,

25,

26.

27.

28,

29,

30.

3L

32

Ruiz, J.C. and M.-O. Killi jian, "Objed Chedkpointing: A Refledive Approach”, LAAS-CNRS research
report n. 99004

Killi jian, M.-O. and J.-C. Fabre, "A Refledive Fault-Tolerant CORBA System Based On Open
Languages', LAAS/CNRS research report n. 99497

Killi jian, M.-O. and J.-C. Fabre. "Implementing a Refledive Fault-Tolerant CORBA System™ in 19%th
Sysmposium on Reliable Distributed Systems. 200Q Nirnberg (Germany). pp. 154163

OMG, Fault-Tolerant CORBA Spedfication v 1.0, http://cgi.omg.org/cgi-bin/doc?orbas/199805-04,
1998

Chiba, S. "Macro processng in objed-oriented languages' in Techndogy of Objed-Oriented
Languags and §stems (TOOLS98). November 1998 Australia. pp. 113126,

Tatsubori, M., et al., OpenJava: A Classbased Macro System for Java, in Refledion and Sdtware
Engineeing, Springer Verlag, Editor. 2000 LNCS 1826 pp. 119135

Ruiz, J.C., P. Thévenod-Foss, and J.-C. Fabre. "Testing MOP-based refledive architedures' in
Internationd Conference on Dependade Systems and Networks (DSN'2001). 2001 Goteborg
(Sweden). pp. 327-336.

Ruiz, J.C., J-C. Fabre, and P. Thévenod-Foss. "Testing MetaObjed Protocols Generated by Open-
Compil ersfor Safety-Critical Systems' in 3rd Internationd Conferenceon Metaleve Architeduresand
Separation d Crossutting Concerns (Reflection’2001). 2001 Kyoto, Japan. pp. 134152

Thévenod-Fosse, P., H. Waesdlynck, and Y. Crouzet. "Software Statistical Testing" in Predictably
Dependalde Computing §stems (Randell, Kopetz, Littlewood eds.). Springer Verlag. 1995 pp. 253
272

Kung, D., P. Hsig, and J. Gao, Testing Objed-Oriented Sdtware. 1998 280 mges, ISBN: 0-8186:8520
4.

