
An approach for improving Fault-Tolerance in
 Automotive Modular Embedded Software*

* This work has been partially supported by the SCARLET project financed by ANR (the French science foundation, ground transportation research

programme PREDIT) focused on robustness of executive software in critical automotive applications.

Caroline Lu1,2,3
1 RENAULT Technocentre

1, Avenue du Golf
78288 Guyancourt Cedex
caroline.lu@renault.com

Jean-Charles Fabre2,3, Marc-Olivier Killijian2,3
2 CNRS ; LAAS ; 7 avenue du colonel Roche,

F-31077 Toulouse, France;
3 Université de Toulouse ; UPS, INSA, INP, ISAE ;

{jean-charles.fabre, marco.killijian}@laas.fr

Abstract

Error detection and error recovery mechanism must
be carefully selected in automotive embedded
applications mainly because of limited resources and
economical reasons. However, major safety concerns,
brought by new customer services (i.e. chassis control),
motivate the automotive industry to search for new
means for improving robustness in operation. The
challenge is to study a “low-cost”, portable and
flexible dependability solution. The guiding principle is
to rigorously control what/when information is
essential to get, and what/when instrumentation is
necessary, to perform fault-tolerance. The paper
proposes an approach to develop a defense software,
as an external customizable component, based on
observation and control mechanisms provided by
current standard in the automotive industry.

1. Introduction

Improving software fault-tolerance is a common
interest for aeronautics, railway and automotive
software-based systems. However, the automotive
context meets more stringent economical constraints
and resources limitations, due to higher volume of
vehicle production and lower criticality of vehicle
functions compared to avionics. A “lightweight”
solution for fault tolerance is studied.

To optimize online verification means to avoid
exhaustive systematic information storage and checks,
thanks to preliminary safety analyses. Identifying, at
first, major critical data and control flows of
application software enables to perform selective
verification. The drawback of such an application-
specific approach would be a lack of adaptability and

portability for reuse of safety mechanisms, if they are
not well organized and coordinated.

Our approach favors reuse by applying the
“separation of concerns” principle [1] to realize
customizable defense software. The defense software,
implements a fault-tolerance strategy and is separated
from functional software. Both software parts interact
with each other only through an instrumentation
interface. The error monitoring strategy is application-
specific and derived from safety analysis, whereas the
instrumentation interface between functional and
defense software is as generic as possible. This way, if
functional software evolves, the interface may evolve
but the strategy and defense software remain
unchanged. On the other hand, if defense software has
to evolve due to arbitrary change (addition or removal
of a strategy) the interface may be adapted, without any
change on functional software. Feasibility of the
presented framework and robustness improvements has
been experimented with several prototypes. Efficiency
of the defense software is evaluated by fault injection.

The aim of the work reported in this paper is to
present the approach and the principle of the fault-
tolerance framework. It addresses particularly
interaction errors between application software and
lower software layers. Section 2 precisely describes the
context of the work, in terms of automotive software
architecture, fault model and safety requirements. The
fault-tolerance framework and a corresponding
development cycle are proposed in Section 3. The
architectural solution is discussed according to two
main aspects: design of defense software (Section 4)
and instrumentation interface (Section 5). Finally,
Section 6 gives an idea of early implementation issues.

2. Automotive software context

New major standards are emerging in the
automotive landscape and will probably influence

dependability of tomorrow’s embedded software. The
first one, AUTOSAR [2], standardizes complex
automotive software, structuring it in modules and
abstraction levels. We focus particularly on the
interaction between application and basic software
modules. Another standard, ISO-26262 [3], aims at
promoting functional safety measures, at each step of
the development cycle of a product.

2.1. Fault model
An automotive embedded system may fail in

operation due to either physical faults (hardware,
EMC, etc.) or residual bugs from design or
development phase of the software development
process [4].

Physical faults are modeled as permanent and
transient bit-flips and stuck-at in the code and data
memory segments. This kind of fault is always possible
due to the aggressive environment of automotive
applications and the increasing complexity of the
hardware components and system architecture.

Bugs during design may occur due to non respected
rules for design (MISRA), bad temporal design (sizing,
execution order, etc.), bad resource sizing, bad data
usage (wrong choice of data for usage, wrong handling
of a data, etc.) or non expected modes. Bugs at
development phase are likely to happen during manual
coding, because of misinterpretation of specifications,
coding errors, compiler or linker’s default.

A new growing trend is automated code generation.
Then scaling or configuration of tools may be wrong (it
is enhanced by software complexity). The adaptation to
the generator’s constraints may be uncomplete (e.g.
multiplication of boolean values is not optimal and not
supported by all generators). Generator’s defaults
(especially if the tool is not certified) may lead to
errors on the generated code. The integration phase
takes a major role in the context of component-based
systems and the use of Components-Of The-Shelf
(COTS) as black boxes most of the time. At the
integrator level, there may be again misinterpretation
of specifications, coding errors (of glue code), bad
scaling of global data, use of bad module version or
configuration, and compiler or linker’s default.

Actually, the statistical distribution of fault and their
diversity are not the major interests from the
application software viewpoint. All these faults result
in transient or permanent failures on the functional data
and control flow. Application-level faults are easier to
translate into customer effect, and can be evaluated
depending on levels of potential threat or undesirable
event to people.

2.2. Automotive safety constraints
A given automotive embedded system is described

by a set of specification documents and/or models.
They are derived from functional and mechatronics

levels to application software design requirements.
Safety analysis identifies a list of “unwanted system
events (USE)” at application software level. These
USE can be potentially safety-critical or not. In the first
case, the customer may be endangered, whereas in the
second one leads at worst to a dissatisfaction of the
customer. Safety barrier must be designed to avoid
both these types of unwanted events.

The selection of safety properties from these
specifications is defined case-by-case for a given
project, taking into account economical, hardware and
software sizing constraints.

About potentially critical unwanted system events,
the ISO26262 standard defines four safety levels called
ASIL (Automotive Safety Integrity Level). They are
graded from A to D level with a respectively increasing
criticality. Each level is given a set of requirements
within which safety methods and mechanisms are
listed with graduated recommendation. Therefore, the
proposed protection framework enables focusing on
highly critical (ASIL C-D) functions and/or
information only.

3. Framework overview

The proposed fault-tolerant architecture relies on
“computational reflection” [5]. Basic concepts and the
overall methodology are given before describing the
defense software design and implementation.

3.1. Reflective Principle
The reflection paradigm [6] for fault-tolerance

purpose relies on the ability of a system to check and to
correct itself in a separate abstraction level. In practical
terms, the software architecture (Figure 1) is clearly
divided into two parts (functional and defense
software) that interact together via an interface [7, 8].
The defense software has enough knowledge of the
structure and expected behavior of functional software,
to control it. To apply this principle to a given
functional software, the main activities concern the
definition of:

• Safety Assertions (Sections 3.5);
• Defense software (Section 4);
• Instrumentation interface (Section 5).

The fault-tolerant architecture corresponds to the
defense software and the instrumentation interface. The
defense software detects errors by checking safety
properties and performs recovery using generic
instrumentation and infrastructure functionalities.

The idea is similar to other industrial solutions to
improve system robustness and safety in railways and
aeronautics applications. In the electronic interlocking
system Elektra [9] a two-channel-approach (notion of
safety bag) performing specification diversity is used

for detecting software design faults. Airbus command
and control systems rely on the notion of self-checking
component composed of command and monitoring
computers, in the series A320 to A380 [10]. However,
such architectural solutions are not viable for the
automotive industry for the time being, due to strong
constraints on resources. A lightweight solution may be
less robust than these systems.

Figure 1. Reflective System.

3.2. Framework
Following the reflective principle, fault-tolerance

relies on the knowledge (a model) a system has of itself
and safety properties. The accuracy of the knowledge
determines the ability of the system to control its state
and behavior. This is why a few refinement steps,
using a top-down approach, may be necessary to
improve fault tolerance.

Figure 2 describes the main parts of the overall
framework. Automotive unwanted system events are
translated into basic safety assertions, according to a
functional “failure model”, described in Section 3.3. At
this stage, fault-tolerance is still designed at the
application software level, ignoring the execution
support. To deal with the real embedded system, a first
refinement step of the safety assertions aims to take
into account the software architecture and underlying
infrastructure. It relies on a simple “execution model”
(Section 3.4) of the system in operation.

Then, for each safety assertion, the corresponding
defense software and instrumentation can be defined
and implemented (Sections 4 and 5). In our approach,
verification of fault-tolerance coverage is performed by
fault injection. Depending on the results, a new
refinement of safety assertions can be carried out, and
fault-tolerance software design adapted accordingly.
The process can be repeated iteratively until the
expected fault-tolerance coverage is reached.

The next sections introduce briefly the two concepts
of “failure” and “execution” models that are used, as a
support to face the diversity of automotive
applications. The “failure model” is an input of the
definition of fault tolerance mechanisms. Regarding
implementation, an “execution model” is essential to
analyze the impact of faults and related errors on the
system behavior. For this purpose, we do not need
complex formalisms. We just need a simplified

representation of complex systems, highlighting
specific concerns. From this model, we can factorize
automotive safety needs into a limited number of
categories, for which generic protection mechanisms
can be defined and developed.

Figure 2. Overall framework.

3.3. Functional failure model
At application software level, we structure the

failure model into two parts: data flow and control
flow. Failures can impact both data and control: data
often accompany the control or when data moves,
control can be activated. The considered classification
is not orthogonal. From the control flow viewpoint, the
first question is the internal scheduling of computation
steps within a software component, whereas data flow
mainly means reasoning about data properties,
availability, transformation and latency. The user can
arbitrarily identify a data failure, a control failure or
both, depending on his major concern.

Critical control flow failures.
They fall into 3 categories. The first one targets control
events, which impact directly or indirectly, the
activation or termination of execution of a treatment.
Another type is a defect on the sequence of execution,
either at the application level or at lower levels. The
last category of control failure affects the execution
time (deadline, timing evolution, periodicity, etc.).

Critical data flow failures.
Value and timing defects can be separated. Data
include variables or exchanged messages, as inputs or
outputs of software modules. A value may be faulty
within a correct range or out of range. We may also
have complex requirements on the values of a set of
data (symbolic expression or equation). If functional
timing constraints are explicitly given on data, we
relate them to data communication instead of time of
execution.

Defense
Software

Instrumentation
interface

Safety
Assertions

Automotive
Complex

Functional
Software

Checking

Recovery

Defense
Software

Instrumentation
interface

Safety
Assertions

Automotive
Complex

Functional
Software

Checking

Recovery

Fault Tolerance Design:
- Defense Software
- Instrumentation

Prototyping:
- Defense Software
- Instrumentation

Verification of
fault-tolerance coverage:
Fault injection

Automotive Specifications:
Unwanted System Events

Reflective System Knowledge:
Safety Assertion

Basic functional assertion

Testing-based refinement

Architectural refinement

Failure model

Execution model

Failure model

Execution model

Fault Tolerance Design:
- Defense Software
- Instrumentation

Prototyping:
- Defense Software
- Instrumentation

Verification of
fault-tolerance coverage:
Fault injection

Automotive Specifications:
Unwanted System Events

Reflective System Knowledge:
Safety Assertion

Basic functional assertion

Testing-based refinement

Architectural refinement

Failure model

Execution model

Failure model

Execution model

3.4. Execution model
The difficulty to combine a classical state-transition

graph with the considered failure model, to highlight
potential error sources, leads to introduce a dedicated
simple representation. The objective is to describe the
runtime behavior of a system as a sequence of
“scheduled entity”. The “scheduled entities” are
triggered by events and generate triggering events.
They are also data consumers and producers.

The “scheduled entity” generic expression gathers
two viewpoints. For the operating system, “scheduled
entities” correspond to “tasks”. However, for the
designer of the application, implementation issues,
including tasks mapping, are generally unknown. For
example, if applications are developed originally with
Simulink tools, functional requirements specify the
sequence of execution of “application level” connected
boxes. Such “application level” boxes of the Simulink
model become application-level functions after code
generation. Consequently, these application level
functions are also considered as “scheduled entities”.
The mapping of a function within a task is the job of
the integrator.

Control flow of a scheduled entity relates to the
control events starting or stopping its execution. These
events are produced by the environment or other
entities. In parallel, data flow of a scheduled entity
corresponds to the input data it consumes and the
output data it produces during its execution.
Interactions (and error propagation sources) through
the software architecture at runtime are therefore based
on data exchange and control events, and potential
interweaving of scheduled entities.

The granularity level of the “failure” and

“execution” models enables to deal with different
automotive applications, from air-conditioning to
torque control modules.

3.5. Design steps and refinement process
An example is given now, showing the way a real

automotive unwanted system events is used in order to
define the “reflective system knowledge” (Figure 2).

Basic functional assertion example.
Preliminary safety analysis of an automotive system
identifies a list of “unwanted system events (USE)”
(Section 2.3). These USE are the requirements, so to
speak initial or basic functional assertions. For
example, a realistic USE on an automotive
transmission module could be the following:

 “The system is blocked (more than 1 second)
in mode A, while the engine status is equal to 2,
whereas it should switch to mode B”.

Figure 3 shows a Simulink-like model of the
automotive application (“Function1”, “Function2”),
which is targeted by the USE. Other functions, inputs
and outputs of the real system have been hidden to
keep the example simple. In the automotive context,
“Function1” belongs to the static control module that
interprets driver commands and environment measures.
“Function2” is a part of the dynamic system control
that computes the engine torque set-point. Figure 3 also
shows the defense software that implements the “basic
functional assertion” to be verified and that receives
application critical data as inputs.

At a coarse abstraction level, our defense software is
limited to a module that verifies the basic assertion,
and is eventually able to switch the system in a
predefined degraded mode. To perform the
verification, it is mandatory to dive into low-level
details to solve the following issues:
1) how/when to catch and store the information

required to perform the verification (run the
executable assertions with all parameters fixed).

2) how/when to perform the verification within the
control flow of the system (thanks to the execution
model) and when triggering the error recovery.

Figure 3. Example at functional level.

In this example, the considered type of fault is either

the loss of a control event or a wrong data event. Both
types of fault may lead to a miss of the change of
mode. To derive the executable assertion from such
high-level analysis, a refinement taking into account
the underlying software architecture is necessary.

Architectural refinement example.
To perform the refinement, low-level implementation
details are needed, either from underlying executive
layers or from the communication services

For the given example, the input event of
“Function1” (Figure 4) is implemented by the value
recorded by a hardware sensor. It is transmitted to
“Function1” every 10ms by a periodic task, reading the
value of the sensor. The output of “Function2”, called
“mode” must be consistent with the sensor value and

Function 1Function 1 Function 2Function 2

Basic Functional AssertionBasic Functional Assertion

EngineStatus Mode
Function 1Function 1 Function 2Function 2

Basic Functional AssertionBasic Functional Assertion

EngineStatus Mode

the engine status, according to the USE. An error may
happen when a corrupted data is read by the sensor.

After a careful analysis of the way these functions
have been implemented (i.e. mapped to OS or
middleware objects, connected to each other and to the
external world, the execution profile and which core
parameters have been considered), a refined version of
the assertion can be expressed, for instance:

 “At the end of each sensor task, the mode is
consistent with the value of the sensor, while
the engine status is equal to 2”.

This refinement process enables the initial USE

related assertion to be expressed in computing terms. It
is worth noting that the final assertion depends on the
implementation of the functions. It enables to identify:
• the required information to perform the check (e.g.

sensor value, mode, engine status);
• the logical and/or numerical expression or the

algorithm corresponding to perform the check ;
• where the check of the assertion has to be performed

in the execution flow (e.g. end of sensor task);

Refinement evaluation.
After prototyping the defense software for the selected
assertions, an evaluation phase can be started. We
perform verifications by a fault injection technique,
based on (i) the considered failures (cf. failure model)
and (ii) the USE. Control flow failures are realized by
the insertion of system calls in the program, whereas
data flow is disturbed by selected communication
service calls.

 If the fault-tolerance coverage rate and residual
failure modes do not match the expected results, then a
refinement is needed. This involves diving into deeper
analysis of the implementation, deeper knowledge of
the software architecture or revising some steps in the
assertion refinement process.

Finally, the refined assertions can be included into
the defense software. This is done naturally since the
defense software architecture is adaptable by
construction thanks to the reflective approach. Then the
“refinement-evaluation process” starts again until the
expected fault-tolerance coverage rate is obtained.

4. Defense Software

The defense software (Figure 4) is organized around
logging tables and three types of services that control
(i) information logging (“logging routines”), (ii) error
detection (“checking routines”), and (iii) error recovery
(“ recovery routines”). This application-related part of
the fault-tolerant architecture is specified from a given
set of selected safety properties.

Figure 4. Defense software organization.

4.1. Logging strategy and architecture
Logging or tracing are mechanisms often needed for

debugging and diagnosis issues. Amount of tracing
information depends on the objectives of the user:
defect analysis with possibility to reproduce the failure
scenario (extended tracing), defect analysis only to
remove a bug (local tracing), performance profiling to
determine where the system spends its execution time
(selective tracing), etc.

The capture of software trace induces significant
execution slowdown. Classical automotive applications
(e.g. Body Control Module), within an ECU, may
exchange several thousand of data, and may be
controlled by several dozens of tasks that include both
application and infrastructural tasks. Reducing
overhead requires either sacrificing details or using
hardware extensions.

As a result, the logging strategy has to select
rigorously the necessary and sufficient critical
information to get at runtime, according to fault-
tolerance concerns. Then, the structure of storage is a
major factor to reduce timing access to information for
online error detection. Actually, software architecture
for logging must be specified to favor reuse,
adaptability with the diversity of automotive
applications, and portability on different platforms.

The proposed logging strategy is derived from the

model of execution from section 2. In order to
supervise data and control flow, the system should
record a history of task switches, application-level
functions entries and exits, some system calls and data
communication. Then, information logging consists in
storing only events that belong to a critical flow. This
preliminary selection (resulting in less than a hundred
of critical data and a few critical tasks, for example)
enables stored information to be redundant and
diversified. It provides multiple viewpoints, like
OS/application or data/control flow, that are of high
interest for improving fault-tolerance. Instrumentation
to catch information is detailed in section 5.

The logging architecture is organized into several

“bracket-tables” that are updated and used at runtime.
Any storage table can be considered as an opening or
closing “bracket”. Each logging table has an associated
table because information they store is symmetric. For

Defense Software Instrumentation
interface

Logging Routines Automotive
Complex

Functional
Software

Checking Routines

Recovery Routines

Logging Tables

Defense Software Instrumentation
interface

Logging Routines Automotive
Complex

Functional
Software

Checking Routines

Recovery Routines

Logging Tables

instance, when information regarding the start of a task
is stored in a table (“opening bracket”), the information
regarding the end of the same task is stored in an
associated table (“closing bracket”). The number of
tables depends on the number and the complexity of
safety properties to be protected by the defense
software. Tables should be kept small to reduce
scanning of information by error detection routines.
The “bracket-tables” are sorted into 4 categories:
• The execution trace from OS viewpoint: when a

critical task starts execution, an “opening-bracket-
table” entry is filled basically with the task identifier
and a timestamp. The “closing-bracket-table” stores
the same type of information, when the task ends
(not when it is preempted). The length of the table
depends on the complexity of the safety properties.
For example, if a periodical sequence of execution
must be verified, the length is that of the sequence.
This category contains at most one couple of
bracket-table (opening/closing).

• The execution trace from application viewpoint:
when a critical application-level function starts, an
“opening-bracket-table” entry is filled basically with
the function identifier, the task identifier in which
the function runs and a timestamp. The associated
“closing-bracket-table” stores the same type of
information, when the function ends (not when it is
preempted). As above, the length of the table
depends on safety properties. This category contains
at most one couple of bracket-table that may replace
(if functions are considered more meaningful than
tasks) or be redundant with the preceding table
providing the OS viewpoint.

• The control event trace: when an activation event
(that impacts directly or indirectly the activation of a
task) happens, an “opening-bracket-table” entry is
filled basically with parameters that characterize the
event, the current running task identifier, and a
timestamp. The “closing-bracket-table” stores the
same type of information, when the termination
event occurs. This category may group several
bracket-tables because there are several types of
control events.

• The data event trace: when a critical data is written,
an “opening-bracket-table” entry is filled basically
with the data, the function identifier that produces
the data, the task identifier in which it runs and a
timestamp. The “closing-bracket-table” stores the
same type of information, when the data is read.
This category may group several bracket-tables
because there are several types of data
communication services.

Each table is associated with a dedicated routine

(“logging routine”) that uses preferably existing
infrastructure services to get information (“basic sensor
services”, Section 5.2). When these services are not

available, data are collected through the routine
parameters, or by additional instrumentation (“hooks”,
Section 5.1).

4.2. Error detection strategy
Once application-specific safety properties are

specified, the corresponding error detection routine is
developed as an executable assertion. An assertion is
verified at runtime within a corresponding “checking
routine”. When an error is detected, the checking
routine triggers a “recovery routine” (Section 4.3).

Safety properties may address critical data flow,
control flow or both. The knowledge of defense
software, about the behavior of functional software,
and more particularly the critical flows, is gathered into
the logging tables (that must be trusted). Checking
routines rely on the information stored in these tables
to verify assertions. The structure of logging tables is
given in section 4.1. The content of tables is equal to
the information that is needed to check safety
assertions and recover from errors. As a result, this
content (which event, when, how many) is determined
from the safety assertions.

Assertions are pre- or post- condition at a
verification point. The verification point depends on
the safety property and if error detection “as soon as
possible” is expected or not. For example, it can be the
beginning of execution, a waiting point within a task,
or the reception or emission of a control event, etc.

According to 3.3 that describe the main types of
failures, the corresponding types of assertions address
1) control events, 2) sequences of execution, 3) timing
constraints of execution, and 4) values or 5) timing
constraints on data exchange.

Table 1. Basic reference to logging tables.

Assertion with: Logging tables

Control event Control event trace

Sequence of execution Execution trace

Timing constraints of execution Execution trace

Value constraints on data Data event trace

Timing constraints on data Data event trace

The analysis of an example gives an idea of how to

derive the checking routine from an assertion such as:

“The acknowledgement of reception of
Message 1, notified to Task 1, at latest 2ms after
Message 1 has been sent, allows Task1 to
activate Task 2, else Task 3 must be activated”.

“The acknowledgement of reception of Message 1”

and the “activation of Task 2” are control events. “At

latest 2ms after Message 1 has been sent” is a timing
constraint on data. The pseudo-code of the checking
routine (called before the execution triggering of
Task2) for this assertion is given in Figure 6.

 Figure 6. Checking routine.

4.3. Error recovery strategy
Error recovery from application and from

infrastructure viewpoints have complementary
advantages and limitations. To reduce error latency and
improve efficiency the core idea is to use infrastructure
recovery controlled by application level consideration.

Degraded modes of automotive applications are
generally very sophisticated at the system and
application level. Once an error is detected the
application is turned into a safe state. About data flow,
degraded data is usually known to recover from invalid
values. Missed timeout or acknowledgement of data
exchange may lead to new communication requests or
use of degraded values again. About control flow, apart
from reset, recovery actions are limited, it consist in a
change of working mode or application-level functions
inhibition.

At the infrastructure level, recovery actions on
control flow are also basic: reset, terminate and restart
a task or a set of OS objects. Recovery actions are
difficult to take without knowledge of the application.
Killing and restarting an air conditioning, an airbag or

a torque control module has not same impact. From the
application level, the support of execution is not
supposed to take alone uncontrolled recovery decisions
that could leave the system in an unexpected state. It is
worth noting that infrastructure services represent a
collection of software actuator (Section 5.3), which can
improve fault-tolerance.

In the proposed fault-tolerant architecture, each
“checking routine” is associated with one or more
“recovery routines”. Recovery routines are calling
available executive services (“basic actuator services”,
Section 5.3) and update logging tables, if necessary.

The recovery action depends on the detected error.
Going back to the example given in section 4.2, an
example of pseudo-code of the recovery routine would
be:

Recov_P1 { /* Error: Task 2 must not be activated but Task 3 */

ActivateTask (Task3); }

Control flow error recovery.
If a lost control event has been detected, the logging
tables should have stored the event so that we can
chain the correct treatment (activate a task, wake up a
waiting task, etc). Another option is to duplicate the
event and make sure it is received. On the contrary, if a
wrong or untimely control event has been detected, it
should be cleared.

If an error in the sequence of execution is detected,
two types of recovery can be considered. Usually, we
can terminate or chain a task, to restart another task
within a degraded mode, or the same task. Otherwise,
the whole application software component can be
stopped, reinitialized and restarted.

Data flow error recovery.
In case of data flow error, a first option is to update
data values, either with a good value if the error
detection part managed to save the correct value, or
with old/default value. If timeout data reception or
acknowledgement data emission is missed, logging
routines could have saved the exchanged value and the
recovery restores communication, or it repeats the
communication call.

5. Instrumentation

Two types of software instrumentation are
considered (Figure 6): hooks and basic services. Hooks
are the means to tie up defense software to functional
software, and to insert code. The possibility to generate
hooks automatically is an advantage regarding
development cost. Basic services play the role of
software sensors and actuators. The availability and
authorization of their use enables to limit intrusiveness
especially to get information. All fault-tolerance

Check_P1 {

If {

/* Check in the control event trace of “ActivateTask” system call to find activation
of Task 2 by Task1 */

LogTable_ActivateTask.ActivatedTaskID[i] == Task 2;

LogTable_ActivateTask.RunningTaskID[i] = = Task 1;

LogTable_ActivateTask.Return[i] = = ok;

/* Check in the control event trace of “DataAcknowledgement” service call to find
notification of reception of Message 1 to Task 1 */

LogTable_DataAck.TaskID[j] = = Task 1;

LogTable_DataAck.MessageID[j] = = Message 1;

LogTable_DataAck.Return[k] = = ok;

/* Check in the date event trace of “DataSent” service call to find time of emission
of Message 1 by Task 1 */

LogTable_DataSent.TaskID[k] = = Task 1;

LogTable_DataSent.MessageID[k] = = Message 1;

T1= LogTable_DataSent.Time[k];

/* Check the timing contraint */

T2 = LogTable_DataAck.Time[j];

T1 – T2 < 2ms;

}

/* An error is detected */

Else Recov_P1();

}

intelligence and control is contained in defense
software described before. Now, instrumentation, as
tools, intends to be generic, flexible and reusable.

5.1. Hooks
In C programming, hooks are entry points, with

empty routines, located at selected places in the
program. They are commonly used as debugging
breaking points or exception treatments triggering. In
the AUTOSAR OS specification [2], some hook
functions are defined and implemented by the user.
The operating system invokes them at specified times,
such as tasks context switch, startup, shutdown, or
detected errors.

These hooks are very convenient for “logging”,
“checking” or “recovery” routines belonging to the
defense software. The insertion of a hook, at a selected
place in the source code, is related to both a place in
the architecture of the software system and a moment
of execution at runtime.

Figure 6. Instrumentation organization.

Hooks must be placed on critical data and control

flow. Considering the 4 types of traces (section 4.1),
recording the execution from OS and application
viewpoints, can be done with hooks set at the
beginning and at the end of execution of critical tasks
and application-level functions. Hooks are also set at
the corresponding critical services calls to capture the
control and data event traces.

The instant of execution to trigger the “checking
routine” and thus the location of the hook, is crucial.
For the “logging routine”, the location of the hook is
set where information is easier to capture.

Recovery routines are essentially triggered by
checking routines, immediately after error detection.
Nevertheless, an application can specify that after error
detection the recovery has to be delayed to the end of
task execution for example. In this case, a hook at the
end of the considered task contains the recovery
routine, which is activated only if quoted by the
corresponding checking routine.

Several implementations of automatically generated
hooks can be considered, especially “at” service calls.
Hooks can be inserted just before or after the call
instruction. Another solution is to add them within the
service routine, at the beginning or the end. The
difference is important with system calls, if the system

supports the separation between user and supervisor
mode. In the first case, the hook routine runs in user
mode, whereas in the second case, it runs in kernel
mode and has access to more information if needed
(task priority, etc.).

Another implementation issue is the use of
parameters or not at the hook interface. It is an
alternative to the use of sensor services. For example,
after a write-service, the data value may be collect as
an input parameter of a hook, instead of using a read-
service to get the value.

5.2. Basic sensor services
Types of information that contribute to describe

execution, control event and data event traces are:

• Exchanged parameters (what): return notification,
activated task, set event, activated alarm, exchanged
data, etc.

• Current execution context (where): application-
level function identifier, task identifiers (task state,
priority, etc. if needed) or interrupt routine
identifier, current mode, etc.

• Timestamp (when): e.g. counter register value

Executive support should give the possibility to the
user to get this information through an observation
interface. For example, via OSEK-VDX operating
system standard interface [11, 2, 12], some information
is reachable: the running task identifier (“GetTaskID”),
the task state (“GetTaskState”), the current state of
event mask of a task (“GetEvent”), alarm
characteristics (“GetAlarmBase”, “ GetAlarm”), and the
current mode (“GetActiveApplicationMode”). Autosar
OS that can be considered as an extension of OSEK,
has additional standardized interfaces: “GetISRID” to
get the identifier of interrupt routines,
“GetApplicationID” to get the identifier of a sort of
partition (if the OS uses memory protection), and
information about predefined scheduling tables
(“GetScheduleTableStatus”, “ GetCounterValue”,
“GetElapsedCounterValue”).

The observation interface of the Autosar operating
system is rich enough, if the user does not need to
check the task priority. What is missing, at higher
level, is essentially an identifier for application-level
functions, which is added manually otherwise.

5.3. Basic actuator services
Basic actuator services can be defined

independently from a particular implementation, even
if the reference studied architecture is that of Autosar
standard. Practically, functional infrastructural services
are used (Table 2), even if they are not designed to
perform recovery. Ideally, a specialized recovery
interface should be provided by the infrastructure and
should be well controlled by the user. Referring to the

Defense Software
Instrumentation interface

Logging Routines
Application

Software

Checking Routines

Recovery Routines

Logging Tables

Hooks

Basic Sensor/Actuator Services

Infrastructure
Software

Defense Software
Instrumentation interface

Logging Routines
Application

Software

Checking Routines

Recovery Routines

Logging Tables

Hooks

Basic Sensor/Actuator Services

Infrastructure
Software

model of execution in section 2, actuator services can
be structured into control actions and data actions.

Control flow actuators.
At the operating system level, actions on control flow
concern the life cycle of tasks and can be classified into
3 categories:
• End of task execution: the idea is to terminate the

erroneous current treatment.
• Start of task execution: the objective is for example

to launch a degraded task if switch to degraded
mode is decided; or to launch the expected task after
error detection on sequence of execution; or else to
launch again the same task from the beginning to re-
execute the same treatment with right entries. The
activation of a task may be synchronous or
asynchronous.

• Suspension of task execution: the idea is to
temporarily stop the current execution, to allow the
execution of another action/task.

Table 2. Recovery actions with AUTOSAR.

Recovery action Useful Autosar services

End of task execution
TerminateApplication, TerminateTask,

ChainTask, CancelAlarm

Start of task execution
ActivateTask, ChainTask, RestartTask

(with TerminateApplication), SetEvent,

SetRelAlarm, SetAbsAlarm

Hang of task
execution

- (difficult with a static priority based

scheduling)

Production of data
Rte_Write, Rte_IWrite, Rte_IrvWrite,

Rte_IrvIwrite, Rte_Send

Consumption of data
Rte_Read, Rte_IRead, Rte_IrvRead,

Rte_IrvRead, Rte_Receive

Renewal of data
request

Rte_Send, Rte_Call

Inhibition of data - (no direct means)

Data flow actuators.
At the communication level, actions on data flow relate
to actions on data value and on data timing occurrence:
• Production of correct or degraded data: the

recovery strategy overwrites the preceding
erroneous data, by the right one.

• Consumption of correct or degraded data: data
consumption instruction is called another time to get
the correct value which is has been updated by the
recovery strategy.

• Renewal of data request: data production or
consumption instruction is called another time,
when timeout reception or acknowledgement of
emission is missed.

• Inhibition or delay of data: when invalid or
untimely data is received, the recovery strategy acts

as a filter, to transmit only right data to the
application.

The following section refines the description of

defense software and instrumentation in the context of
memory protection with kernel and user separation of
modes and address space.

5.4. Protection of defense software
The protection of defense software is principally a

matter of economical constraints. The more measures
are taken to improve defense software, the more it is
expensive. A “low-cost” solution is required, although
all the proposed fault tolerance strategy relies on the
robustness of defense software. The only design
property of defense software that satisfies both
opposite requirements is: the complexity of the defense
software is considered much lower to that of the
functional software by construction. Concerning
enhanced validation process and hardware protection,
it will depend case by case on available resources that
are given to particular projects.

Enhanced validation process.
A rigorous development process, including verification
methods, has to be performed. We use fault injection
techniques (Section 3.5) to measure fault-tolerance
coverage, and to detect remaining software errors of
defense software.

When defense software is based on safety assertions
that have a complex behavior (check of transitions that
implies many data and control elements), the use of a
formal language to implement these routines is to be
considerate. Again, some automotive projects may not
take this option for culture or economical reasons. In
our work, we use the C language, respecting MISRA
coding rules [12].

Hardware protection.
To strictly follow the principle of separation of
functional and safety concerns promoted by the
reflective approach, both software part should be
spatially and timely separated. Taking the example of
Elektra railway system [9], three processors operate
functional services and three other processors supervise
the functional part, in parallel. So many resources are
still unaffordable in the automotive world. Instead,
software redundant information logging is realistic, in
the proposed architecture, if other resources and timing
constraints are respected.

Simple separation of functional and defense
software can be done by the use of hardware memory
protection. Considering this particular context, hooks
can be implemented in user space, for convenience of
existing automatic code generation of hooks. The
logging tables are the most critical data, so they must
be stored in protected address space, separated from

functional part. Logging, checking and recovery
routines, with the software sensor and actuator they
contain, have to access the logging tables by reading or
writing, so they also must be trustable. As these
routines are called within hooks in user mode, that
requires a switch from user mode to kernel mode.

6. Early implementation issues

We have developed several AUTOSAR software
platforms, both on a virtual processor running on an
UNIX machine and on a real embedded evaluation
board. We use a Freescale evaluation board
S12XEP100TM 16 bit microcontroller, with memory
protection unit, and another S12XDP512TM, without
memory protection. Our development environment is
CodeWarriorTM from Freescale.

The AUTOSAR RTE is automatically generated by
a software tool from Vector (Microsar RTE, DaVinci
DeveloperTM 2.2). We worked both on several
application components we synthesized, and on serial
automotive software products we adapted to the
AUTOSAR context. The safety properties we take as
inputs are derived from real automotive requirements.

We use Trampoline [13], an open source operating
system from IRCCYN, compliant to AUTOSAR OS.

Our current experiments show the feasibility of the
approach to improve robustness on prototypes. We
have compared protected and non-protected
applications with similar hardware, by carrying out
verification testing, using controlled fault injections
that cause USE (Unwanted System Events). Protected
applications perform fault tolerance of their failure
model. However, the evaluation of robustness should
be completed by comparison with other fault-tolerance
solutions.

7. Conclusion

The automotive industry is facing increasing
complexity of embedded software, error propagation
and the need to meet robustness challenges, in spite of
stringent economical constraints. As a representative
context of tomorrow’s automotive software, we chose
to deal with the two emergent standards: AUTOSAR
for modular multilayered software architecture, and
ISO26262 about safety concerns.

The work reported in this paper shows an approach
to develop customizable defense software, externally to
the target system. The proposed fault-tolerant
architecture is based on the classical separation of the
functional implementation and that of the safety
functions, using the interfaces (entry points) defined by
AUTOSAR.

This approach is very attractive for the automotive
industry since it enables to tailor defense mechanisms
according to the needs on a case-by-case basis.

Feasibility study has been carried out on early
implementations of synthetic AUTOSAR applications.
Current work exemplifies in deep error detection and
recovery mechanisms and focus on fault injection to
evaluate the efficiency of the approach.

References

[1] C. Lopes, W. Hursch. “Separation of Concerns”.
Technical Report, College of Computer Science,
Northeastern University, Boston, USA, Feb 1995.

[2] AUTomotive Open Standard ARchitecture,
http://www.autosar.org

[3] ISO/CD 26262-6, “Road vehicles, Functional safety,
Part 6: Product development: software level”, 2008.

[4] R. Chillarege, IS. Bhandari, JK. Chaar, MJ. Halliday,
DS. Moebus, BK. Ray, and MY. Wong, “Orthogonal
defect classification-a concept for in-process
measurements”, IEEE Trans. Softw. Eng., 18(11):943–
956, 1992.

[5] P. Maes, “Concepts and Experiments in Computational
Reflection”. Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), Orlando, Florida, pp. 147-155, 1987.

[6] J. Voas, “A Defensive Approach to Certifying COTS
Software”, Reliable Software Technologies
Corporation, Technical Report: RSTR-002-97-002.01,
1997.

[7] M. Rodriguez, J.C. Fabre, J. Arlat, “Wrapping real-time
systems from temporal logic specifications”. European
Dependable Computing Conference (EDCC-4, 2002),
Toulouse (F), pp. 253-270, 2002.

[8] F. Taiani, J.C. Fabre, M.O. Killijian, “Towards
Implementing Multi-Layer Reflection for Fault-
Tolerance”. IEEE International Conference on
Dependable Systems and Networks (DSN’2003), San
Francisco (CA, USA), pp. 435-444, 2003.

[9] H. Kantz, C. Koza, “The ELEKTRA railway Signaling-
System: Field Experience with an Actively Replicated
System with Diversity”. Alcatel Austria AG., Vienna,
Austria, 1995.

[10] P. Traverse, I. Lacaze, J. Souyris, “Airbus fly-by-wire:
A total approach to dependability”, 2004.

[11] “OSEK/VDX Operating system”. Technical report,
2005.

[12] The Motor Industry Software Reliability Association,
http://www.misra.org.uk

[13] J.L. Béchennec, M. Briday, S. Faucou, Y. Trinquet,
“Trampoline : An Open Source
Implementation of the OSEK/VDX RTOS
Specification”, IEEE Int. Conf. on Emerging
Technologies & Factory Automation (ETFA’2006),
Prague, Czech Republic. pp. 62--69 (2006)
– see : http://trampoline.rts-software.org –

