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Abstract 

Error detection and error recovery mechanism must 
be carefully selected in automotive embedded 
applications mainly because of limited resources and 
economical reasons. However, major safety concerns, 
brought by new customer services (i.e. chassis control), 
motivate the automotive industry to search for new 
means for improving robustness in operation. The 
challenge is to study a “low-cost”, portable and 
flexible dependability solution. The guiding principle is 
to rigorously control what/when information is 
essential to get, and what/when instrumentation is 
necessary, to perform fault-tolerance. The paper 
proposes an approach to develop a defense software, 
as an external customizable component, based on 
observation and control mechanisms provided by 
current standard in the automotive industry. 

 

1. Introduction 

Improving software fault-tolerance is a common 
interest for aeronautics, railway and automotive 
software-based systems. However, the automotive 
context meets more stringent economical constraints 
and resources limitations, due to higher volume of 
vehicle production and lower criticality of vehicle 
functions compared to avionics. A “lightweight” 
solution for fault tolerance is studied.  

To optimize online verification means to avoid 
exhaustive systematic information storage and checks, 
thanks to preliminary safety analyses. Identifying, at 
first, major critical data and control flows of 
application software enables to perform selective 
verification. The drawback of such an application-
specific approach would be a lack of adaptability and 

portability for reuse of safety mechanisms, if they are 
not well organized and coordinated.  

Our approach favors reuse by applying the 
“separation of concerns” principle [1] to realize 
customizable defense software. The defense software, 
implements a fault-tolerance strategy and is separated 
from functional software. Both software parts interact 
with each other only through an instrumentation 
interface. The error monitoring strategy is application-
specific and derived from safety analysis, whereas the 
instrumentation interface between functional and 
defense software is as generic as possible. This way, if 
functional software evolves, the interface may evolve 
but the strategy and defense software remain 
unchanged. On the other hand, if defense software has 
to evolve due to arbitrary change (addition or removal 
of a strategy) the interface may be adapted, without any 
change on functional software. Feasibility of the 
presented framework and robustness improvements has 
been experimented with several prototypes. Efficiency 
of the defense software is evaluated by fault injection. 

The aim of the work reported in this paper is to 
present the approach and the principle of the fault-
tolerance framework. It addresses particularly 
interaction errors between application software and 
lower software layers. Section 2 precisely describes the 
context of the work, in terms of automotive software 
architecture, fault model and safety requirements. The 
fault-tolerance framework and a corresponding 
development cycle are proposed in Section 3. The 
architectural solution is discussed according to two 
main aspects: design of defense software (Section 4) 
and instrumentation interface (Section 5). Finally, 
Section 6 gives an idea of early implementation issues.  

2. Automotive software context 

New major standards are emerging in the 
automotive landscape and will probably influence 



dependability of tomorrow’s embedded software. The 
first one, AUTOSAR [2], standardizes complex 
automotive software, structuring it in modules and 
abstraction levels. We focus particularly on the 
interaction between application and basic software 
modules. Another standard, ISO-26262 [3], aims at 
promoting functional safety measures, at each step of 
the development cycle of a product.  

2.1. Fault model  
An automotive embedded system may fail in 

operation due to either physical faults (hardware, 
EMC, etc.) or residual bugs from design or 
development phase of the software development 
process [4].  

Physical faults are modeled as permanent and 
transient bit-flips and stuck-at in the code and data 
memory segments. This kind of fault is always possible 
due to the aggressive environment of automotive 
applications and the increasing complexity of the 
hardware components and system architecture.  

Bugs during design may occur due to non respected 
rules for design (MISRA), bad temporal design (sizing, 
execution order, etc.), bad resource sizing, bad data 
usage (wrong choice of data for usage, wrong handling 
of a data, etc.) or non expected modes. Bugs at 
development phase are likely to happen during manual 
coding, because of misinterpretation of specifications, 
coding errors, compiler or linker’s default.  

A new growing trend is automated code generation. 
Then scaling or configuration of tools may be wrong (it 
is enhanced by software complexity). The adaptation to 
the generator’s constraints may be uncomplete (e.g. 
multiplication of boolean values is not optimal and not 
supported by all generators). Generator’s defaults 
(especially if the tool is not certified) may lead to 
errors on the generated code. The integration phase 
takes a major role in the context of component-based 
systems and the use of Components-Of The-Shelf 
(COTS) as black boxes most of the time. At the 
integrator level, there may be again misinterpretation 
of specifications, coding errors (of glue code), bad 
scaling of global data, use of bad module version or 
configuration, and compiler or linker’s default.  

Actually, the statistical distribution of fault and their 
diversity are not the major interests from the 
application software viewpoint. All these faults result 
in transient or permanent failures on the functional data 
and control flow. Application-level faults are easier to 
translate into customer effect, and can be evaluated 
depending on levels of potential threat or undesirable 
event to people. 

2.2. Automotive safety constraints  
A given automotive embedded system is described 

by a set of specification documents and/or models. 
They are derived from functional and mechatronics 

levels to application software design requirements. 
Safety analysis identifies a list of “unwanted system 
events (USE)” at application software level. These 
USE can be potentially safety-critical or not. In the first 
case, the customer may be endangered, whereas in the 
second one leads at worst to a dissatisfaction of the 
customer. Safety barrier must be designed to avoid 
both these types of unwanted events.   

The selection of safety properties from these 
specifications is defined case-by-case for a given 
project, taking into account economical, hardware and 
software sizing constraints. 

About potentially critical unwanted system events, 
the ISO26262 standard defines four safety levels called 
ASIL (Automotive Safety Integrity Level). They are 
graded from A to D level with a respectively increasing 
criticality. Each level is given a set of requirements 
within which safety methods and mechanisms are 
listed with graduated recommendation. Therefore, the 
proposed protection framework enables focusing on 
highly critical (ASIL C-D) functions and/or 
information only.   

3. Framework overview 

The proposed fault-tolerant architecture relies on 
“computational reflection” [5]. Basic concepts and the 
overall methodology are given before describing the 
defense software design and implementation. 

3.1. Reflective Principle 
The reflection paradigm [6] for fault-tolerance 

purpose relies on the ability of a system to check and to 
correct itself in a separate abstraction level. In practical 
terms, the software architecture (Figure 1) is clearly 
divided into two parts (functional and defense 
software) that interact together via an interface [7, 8]. 
The defense software has enough knowledge of the 
structure and expected behavior of functional software, 
to control it. To apply this principle to a given 
functional software, the main activities concern the 
definition of: 

 
• Safety Assertions (Sections 3.5);  
• Defense software (Section 4);   
• Instrumentation interface (Section 5). 
 

The fault-tolerant architecture corresponds to the 
defense software and the instrumentation interface. The 
defense software detects errors by checking safety 
properties and performs recovery using generic 
instrumentation and infrastructure functionalities.  

The idea is similar to other industrial solutions to 
improve system robustness and safety in railways and 
aeronautics applications. In the electronic interlocking 
system Elektra [9] a two-channel-approach (notion of 
safety bag) performing specification diversity is used 



for detecting software design faults. Airbus command 
and control systems rely on the notion of self-checking 
component composed of command and monitoring 
computers, in the series A320 to A380 [10]. However, 
such architectural solutions are not viable for the 
automotive industry for the time being, due to strong 
constraints on resources. A lightweight solution may be 
less robust than these systems.  

 

Figure 1. Reflective System. 

 
 
 
 
 
 

 

3.2. Framework 
Following the reflective principle, fault-tolerance 

relies on the knowledge (a model) a system has of itself 
and safety properties. The accuracy of the knowledge 
determines the ability of the system to control its state 
and behavior. This is why a few refinement steps, 
using a top-down approach, may be necessary to 
improve fault tolerance.  

Figure 2 describes the main parts of the overall 
framework. Automotive unwanted system events are 
translated into basic safety assertions, according to a 
functional “failure model”, described in Section 3.3. At 
this stage, fault-tolerance is still designed at the 
application software level, ignoring the execution 
support. To deal with the real embedded system, a first 
refinement step of the safety assertions aims to take 
into account the software architecture and underlying 
infrastructure. It relies on a simple “execution model” 
(Section 3.4) of the system in operation.  

Then, for each safety assertion, the corresponding 
defense software and instrumentation can be defined 
and implemented (Sections 4 and 5). In our approach, 
verification of fault-tolerance coverage is performed by 
fault injection. Depending on the results, a new 
refinement of safety assertions can be carried out, and 
fault-tolerance software design adapted accordingly. 
The process can be repeated iteratively until the 
expected fault-tolerance coverage is reached.  

The next sections introduce briefly the two concepts 
of “failure” and “execution” models that are used, as a 
support to face the diversity of automotive 
applications. The “failure model” is an input of the 
definition of fault tolerance mechanisms. Regarding 
implementation, an “execution model” is essential to 
analyze the impact of faults and related errors on the 
system behavior. For this purpose, we do not need 
complex formalisms. We just need a simplified 

representation of complex systems, highlighting 
specific concerns. From this model, we can factorize 
automotive safety needs into a limited number of 
categories, for which generic protection mechanisms 
can be defined and developed.  

  

Figure 2. Overall framework. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

3.3. Functional failure model 
At application software level, we structure the 

failure model into two parts: data flow and control 
flow. Failures can impact both data and control: data 
often accompany the control or when data moves, 
control can be activated. The considered classification 
is not orthogonal. From the control flow viewpoint, the 
first question is the internal scheduling of computation 
steps within a software component, whereas data flow 
mainly means reasoning about data properties, 
availability, transformation and latency. The user can 
arbitrarily identify a data failure, a control failure or 
both, depending on his major concern.    
 
Critical control flow failures.   
They fall into 3 categories. The first one targets control 
events, which impact directly or indirectly, the 
activation or termination of execution of a treatment. 
Another type is a defect on the sequence of execution, 
either at the application level or at lower levels. The 
last category of control failure affects the execution 
time (deadline, timing evolution, periodicity, etc.).  
 
Critical data flow failures.   
Value and timing defects can be separated. Data 
include variables or exchanged messages, as inputs or 
outputs of software modules. A value may be faulty 
within a correct range or out of range. We may also 
have complex requirements on the values of a set of 
data (symbolic expression or equation). If functional 
timing constraints are explicitly given on data, we 
relate them to data communication instead of time of 
execution. 
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3.4. Execution model 
The difficulty to combine a classical state-transition 

graph with the considered failure model, to highlight 
potential error sources, leads to introduce a dedicated 
simple representation. The objective is to describe the 
runtime behavior of a system as a sequence of 
“scheduled entity”. The “scheduled entities” are 
triggered by events and generate triggering events. 
They are also data consumers and producers. 

The “scheduled entity” generic expression gathers 
two viewpoints. For the operating system, “scheduled 
entities” correspond to “tasks”. However, for the 
designer of the application, implementation issues, 
including tasks mapping, are generally unknown. For 
example, if applications are developed originally with 
Simulink tools, functional requirements specify the 
sequence of execution of “application level” connected 
boxes. Such “application level” boxes of the Simulink 
model become application-level functions after code 
generation. Consequently, these application level 
functions are also considered as “scheduled entities”. 
The mapping of a function within a task is the job of 
the integrator.      

Control flow of a scheduled entity relates to the 
control events starting or stopping its execution. These 
events are produced by the environment or other 
entities. In parallel, data flow of a scheduled entity 
corresponds to the input data it consumes and the 
output data it produces during its execution. 
Interactions (and error propagation sources) through 
the software architecture at runtime are therefore based 
on data exchange and control events, and potential 
interweaving of scheduled entities.   

 
The granularity level of the “failure” and 

“execution” models enables to deal with different 
automotive applications, from air-conditioning to 
torque control modules.  

3.5. Design steps and refinement process 
An example is given now, showing the way a real 

automotive unwanted system events is used in order to 
define the “reflective system knowledge” (Figure 2).  

 
Basic functional assertion example.  
Preliminary safety analysis of an automotive system 
identifies a list of “unwanted system events (USE)” 
(Section 2.3). These USE are the requirements, so to 
speak initial or basic functional assertions. For 
example, a realistic USE on an automotive 
transmission module could be the following:  
 

 “The system is blocked (more than 1 second) 
in mode A, while the engine status is equal to 2, 
whereas it should switch to mode B”.   

 

Figure 3 shows a Simulink-like model of the 
automotive application (“Function1”, “Function2”), 
which is targeted by the USE. Other functions, inputs 
and outputs of the real system have been hidden to 
keep the example simple. In the automotive context, 
“Function1” belongs to the static control module that 
interprets driver commands and environment measures. 
“Function2” is a part of the dynamic system control 
that computes the engine torque set-point. Figure 3 also 
shows the defense software that implements the “basic 
functional assertion” to be verified and that receives 
application critical data as inputs.  

At a coarse abstraction level, our defense software is 
limited to a module that verifies the basic assertion, 
and is eventually able to switch the system in a 
predefined degraded mode. To perform the 
verification, it is mandatory to dive into low-level 
details to solve the following issues: 
1) how/when to catch and store the information 

required to perform the verification (run the 
executable assertions with all parameters fixed). 

2) how/when to perform the verification within the 
control flow of the system (thanks to the execution 
model) and when triggering the error recovery.  

 

Figure 3. Example at functional level. 

 
 
 
 
 
 
 
 
 
 

 
In this example, the considered type of fault is either 

the loss of a control event or a wrong data event. Both 
types of fault may lead to a miss of the change of 
mode. To derive the executable assertion from such 
high-level analysis, a refinement taking into account 
the underlying software architecture is necessary. 

 
Architectural refinement example.  
To perform the refinement, low-level implementation 
details are needed, either from underlying executive 
layers or from the communication services  

For the given example, the input event of 
“Function1” (Figure 4) is implemented by the value 
recorded by a hardware sensor. It is transmitted to 
“Function1” every 10ms by a periodic task, reading the 
value of the sensor. The output of “Function2”, called 
“mode” must be consistent with the sensor value and 
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the engine status, according to the USE. An error may 
happen when a corrupted data is read by the sensor.   

After a careful analysis of the way these functions 
have been implemented (i.e. mapped to OS or 
middleware objects, connected to each other and to the 
external world, the execution profile and which core 
parameters have been considered), a refined version of 
the assertion can be expressed, for instance: 

 
 “At the end of each sensor task, the mode is 
consistent with the value of the sensor, while 
the engine status is equal to 2”.  

 
This refinement process enables the initial USE 

related assertion to be expressed in computing terms. It 
is worth noting that the final assertion depends on the 
implementation of the functions. It enables to identify: 
• the required information to perform the check (e.g. 

sensor value, mode, engine status); 
• the logical and/or numerical expression or the 

algorithm corresponding to perform the check ; 
• where the check of the assertion has to be performed 

in the execution flow (e.g. end of sensor task); 
 
Refinement evaluation.  
After prototyping the defense software for the selected 
assertions, an evaluation phase can be started. We 
perform verifications by a fault injection technique, 
based on (i) the considered failures (cf. failure model) 
and (ii) the USE. Control flow failures are realized by 
the insertion of system calls in the program, whereas 
data flow is disturbed by selected communication 
service calls.  

 If the fault-tolerance coverage rate and residual 
failure modes do not match the expected results, then a 
refinement is needed. This involves diving into deeper 
analysis of the implementation, deeper knowledge of 
the software architecture or revising some steps in the 
assertion refinement process.  

Finally, the refined assertions can be included into 
the defense software. This is done naturally since the 
defense software architecture is adaptable by 
construction thanks to the reflective approach. Then the 
“refinement-evaluation process” starts again until the 
expected fault-tolerance coverage rate is obtained.   

4. Defense Software 

The defense software (Figure 4) is organized around 
logging tables and three types of services that control 
(i) information logging (“logging routines”), (ii) error 
detection (“checking routines”), and (iii) error recovery 
(“ recovery routines”). This application-related part of 
the fault-tolerant architecture is specified from a given 
set of selected safety properties.  

 

Figure 4. Defense software organization. 

 
 
 
 
 

 

4.1. Logging strategy and architecture 
Logging or tracing are mechanisms often needed for 

debugging and diagnosis issues. Amount of tracing 
information depends on the objectives of the user: 
defect analysis with possibility to reproduce the failure 
scenario (extended tracing), defect analysis only to 
remove a bug (local tracing), performance profiling to 
determine where the system spends its execution time 
(selective tracing), etc.  

The capture of software trace induces significant 
execution slowdown. Classical automotive applications 
(e.g. Body Control Module), within an ECU, may 
exchange several thousand of data, and may be 
controlled by several dozens of tasks that include both 
application and infrastructural tasks. Reducing 
overhead requires either sacrificing details or using 
hardware extensions. 

As a result, the logging strategy has to select 
rigorously the necessary and sufficient critical 
information to get at runtime, according to fault-
tolerance concerns. Then, the structure of storage is a 
major factor to reduce timing access to information for 
online error detection. Actually, software architecture 
for logging must be specified to favor reuse, 
adaptability with the diversity of automotive 
applications, and portability on different platforms.   

 
The proposed logging strategy is derived from the 

model of execution from section 2. In order to 
supervise data and control flow, the system should 
record a history of task switches, application-level 
functions entries and exits, some system calls and data 
communication. Then, information logging consists in 
storing only events that belong to a critical flow. This 
preliminary selection (resulting in less than a hundred 
of critical data and a few critical tasks, for example) 
enables stored information to be redundant and 
diversified. It provides multiple viewpoints, like 
OS/application or data/control flow, that are of high 
interest for improving fault-tolerance. Instrumentation 
to catch information is detailed in section 5. 

 
The logging architecture is organized into several 

“bracket-tables” that are updated and used at runtime. 
Any storage table can be considered as an opening or 
closing “bracket”. Each logging table has an associated 
table because information they store is symmetric. For 
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instance, when information regarding the start of a task 
is stored in a table (“opening bracket”), the information 
regarding the end of the same task is stored in an 
associated table (“closing bracket”). The number of 
tables depends on the number and the complexity of 
safety properties to be protected by the defense 
software. Tables should be kept small to reduce 
scanning of information by error detection routines. 
The “bracket-tables” are sorted into 4 categories: 
• The execution trace from OS viewpoint: when a 

critical task starts execution, an “opening-bracket-
table” entry is filled basically with the task identifier 
and a timestamp. The “closing-bracket-table” stores 
the same type of information, when the task ends 
(not when it is preempted). The length of the table 
depends on the complexity of the safety properties. 
For example, if a periodical sequence of execution 
must be verified, the length is that of the sequence. 
This category contains at most one couple of 
bracket-table (opening/closing).    

• The execution trace from application viewpoint: 
when a critical application-level function starts, an 
“opening-bracket-table” entry is filled basically with 
the function identifier, the task identifier in which 
the function runs and a timestamp. The associated 
“closing-bracket-table” stores the same type of 
information, when the function ends (not when it is 
preempted). As above, the length of the table 
depends on safety properties. This category contains 
at most one couple of bracket-table that may replace 
(if functions are considered more meaningful than 
tasks) or be redundant with the preceding table 
providing the OS viewpoint.    

• The control event trace: when an activation event 
(that impacts directly or indirectly the activation of a 
task) happens, an “opening-bracket-table” entry is 
filled basically with parameters that characterize the 
event, the current running task identifier, and a 
timestamp. The “closing-bracket-table” stores the 
same type of information, when the termination 
event occurs. This category may group several 
bracket-tables because there are several types of 
control events.  

• The data event trace: when a critical data is written, 
an “opening-bracket-table” entry is filled basically 
with the data, the function identifier that produces 
the data, the task identifier in which it runs and a 
timestamp. The “closing-bracket-table” stores the 
same type of information, when the data is read. 
This category may group several bracket-tables 
because there are several types of data 
communication services. 

 
Each table is associated with a dedicated routine 

(“logging routine”) that uses preferably existing 
infrastructure services to get information (“basic sensor 
services”, Section 5.2). When these services are not 

available, data are collected through the routine 
parameters, or by additional instrumentation (“hooks”, 
Section 5.1).  

4.2. Error detection strategy  
Once application-specific safety properties are 

specified, the corresponding error detection routine is 
developed as an executable assertion. An assertion is 
verified at runtime within a corresponding “checking 
routine”. When an error is detected, the checking 
routine triggers a “recovery routine” (Section 4.3). 

Safety properties may address critical data flow, 
control flow or both. The knowledge of defense 
software, about the behavior of functional software, 
and more particularly the critical flows, is gathered into 
the logging tables (that must be trusted). Checking 
routines rely on the information stored in these tables 
to verify assertions. The structure of logging tables is 
given in section 4.1. The content of tables is equal to 
the information that is needed to check safety 
assertions and recover from errors. As a result, this 
content (which event, when, how many) is determined 
from the safety assertions.   

Assertions are pre- or post- condition at a 
verification point. The verification point depends on 
the safety property and if error detection “as soon as 
possible” is expected or not. For example, it can be the 
beginning of execution, a waiting point within a task, 
or the reception or emission of a control event, etc. 

According to 3.3 that describe the main types of 
failures, the corresponding types of assertions address 
1) control events, 2) sequences of execution, 3) timing 
constraints of execution, and 4) values or 5) timing 
constraints on data exchange. 

 

Table 1. Basic reference to logging tables. 

Assertion with: Logging tables 

Control event Control event trace 

Sequence of execution Execution trace 

Timing constraints of execution Execution trace 

Value constraints on data Data event trace 

Timing constraints on data Data event trace 

 
The analysis of an example gives an idea of how to 

derive the checking routine from an assertion such as:  
 

“The acknowledgement of reception of 
Message 1, notified to Task 1, at latest 2ms after 
Message 1 has been sent, allows Task1 to 
activate Task 2, else Task 3 must be activated”.  

 
“The acknowledgement of reception of Message 1” 

and the “activation of Task 2” are control events. “At 



latest 2ms after Message 1 has been sent” is a timing 
constraint on data. The pseudo-code of the checking 
routine (called before the execution triggering of 
Task2) for this assertion is given in Figure 6. 

 Figure 6. Checking routine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

4.3. Error recovery strategy  
Error recovery from application and from 

infrastructure viewpoints have complementary 
advantages and limitations. To reduce error latency and 
improve efficiency the core idea is to use infrastructure 
recovery controlled by application level consideration.  

Degraded modes of automotive applications are 
generally very sophisticated at the system and 
application level. Once an error is detected the 
application is turned into a safe state. About data flow, 
degraded data is usually known to recover from invalid 
values. Missed timeout or acknowledgement of data 
exchange may lead to new communication requests or 
use of degraded values again. About control flow, apart 
from reset, recovery actions are limited, it consist in a 
change of working mode or application-level functions 
inhibition.   

At the infrastructure level, recovery actions on 
control flow are also basic: reset, terminate and restart 
a task or a set of OS objects. Recovery actions are 
difficult to take without knowledge of the application. 
Killing and restarting an air conditioning, an airbag or 

a torque control module has not same impact. From the 
application level, the support of execution is not 
supposed to take alone uncontrolled recovery decisions 
that could leave the system in an unexpected state. It is 
worth noting that infrastructure services represent a 
collection of software actuator (Section 5.3), which can 
improve fault-tolerance.  

In the proposed fault-tolerant architecture, each 
“checking routine” is associated with one or more 
“recovery routines”. Recovery routines are calling 
available executive services (“basic actuator services”, 
Section 5.3) and update logging tables, if necessary.  

The recovery action depends on the detected error. 
Going back to the example given in section 4.2, an 
example of pseudo-code of the recovery routine would 
be: 

 
Recov_P1 { /* Error: Task 2 must not be activated but Task 3 */ 

ActivateTask (Task3); } 

 
Control flow error recovery.  
If a lost control event has been detected, the logging 
tables should have stored the event so that we can 
chain the correct treatment (activate a task, wake up a 
waiting task, etc). Another option is to duplicate the 
event and make sure it is received. On the contrary, if a 
wrong or untimely control event has been detected, it 
should be cleared.  

If an error in the sequence of execution is detected, 
two types of recovery can be considered. Usually, we 
can terminate or chain a task, to restart another task 
within a degraded mode, or the same task. Otherwise, 
the whole application software component can be 
stopped, reinitialized and restarted.  

 
Data flow error recovery.  
In case of data flow error, a first option is to update 
data values, either with a good value if the error 
detection part managed to save the correct value, or 
with old/default value. If timeout data reception or 
acknowledgement data emission is missed, logging 
routines could have saved the exchanged value and the 
recovery restores communication, or it repeats the 
communication call.   

5. Instrumentation 

Two types of software instrumentation are 
considered (Figure 6): hooks and basic services. Hooks 
are the means to tie up defense software to functional 
software, and to insert code. The possibility to generate 
hooks automatically is an advantage regarding 
development cost. Basic services play the role of 
software sensors and actuators. The availability and 
authorization of their use enables to limit intrusiveness 
especially to get information. All fault-tolerance 

Check_P1 { 

If { 

/* Check in the control event trace of “ActivateTask” system call to find activation 
of Task 2 by Task1 */

LogTable_ActivateTask.ActivatedTaskID[i] == Task 2;

LogTable_ActivateTask.RunningTaskID[i] = = Task 1;

LogTable_ActivateTask.Return[i] = = ok;

/* Check in the control event trace of “DataAcknowledgement” service call to find 
notification of reception of Message 1 to Task 1 */

LogTable_DataAck.TaskID[j] = = Task 1;

LogTable_DataAck.MessageID[j] = = Message 1;

LogTable_DataAck.Return[k] = = ok;

/* Check in the date event trace of “DataSent” service call to find time of emission 
of Message 1 by Task 1 */

LogTable_DataSent.TaskID[k] = = Task 1;

LogTable_DataSent.MessageID[k] = = Message 1;

T1= LogTable_DataSent.Time[k];

/* Check the timing contraint */

T2 = LogTable_DataAck.Time[j];

T1 – T2 < 2ms; 

}

/* An error is detected */

Else Recov_P1( );                                   

}



intelligence and control is contained in defense 
software described before. Now, instrumentation, as 
tools, intends to be generic, flexible and reusable.  

5.1. Hooks 
In C programming, hooks are entry points, with 

empty routines, located at selected places in the 
program. They are commonly used as debugging 
breaking points or exception treatments triggering. In 
the AUTOSAR OS specification [2], some hook 
functions are defined and implemented by the user. 
The operating system invokes them at specified times, 
such as tasks context switch, startup, shutdown, or 
detected errors. 

These hooks are very convenient for “logging”, 
“checking” or “recovery” routines belonging to the 
defense software. The insertion of a hook, at a selected 
place in the source code, is related to both a place in 
the architecture of the software system and a moment 
of execution at runtime.  

Figure 6. Instrumentation organization. 

 
 
 
 
 
 

 
 
Hooks must be placed on critical data and control 

flow. Considering the 4 types of traces (section 4.1), 
recording the execution from OS and application 
viewpoints, can be done with hooks set at the 
beginning and at the end of execution of critical tasks 
and application-level functions. Hooks are also set at 
the corresponding critical services calls to capture the 
control and data event traces.  

The instant of execution to trigger the “checking 
routine” and thus the location of the hook, is crucial.  
For the “logging routine”, the location of the hook is 
set where information is easier to capture. 

Recovery routines are essentially triggered by 
checking routines, immediately after error detection. 
Nevertheless, an application can specify that after error 
detection the recovery has to be delayed to the end of 
task execution for example. In this case, a hook at the 
end of the considered task contains the recovery 
routine, which is activated only if quoted by the 
corresponding checking routine. 

Several implementations of automatically generated 
hooks can be considered, especially “at” service calls. 
Hooks can be inserted just before or after the call 
instruction. Another solution is to add them within the 
service routine, at the beginning or the end. The 
difference is important with system calls, if the system 

supports the separation between user and supervisor 
mode. In the first case, the hook routine runs in user 
mode, whereas in the second case, it runs in kernel 
mode and has access to more information if needed 
(task priority, etc.). 

Another implementation issue is the use of 
parameters or not at the hook interface. It is an 
alternative to the use of sensor services. For example, 
after a write-service, the data value may be collect as 
an input parameter of a hook, instead of using a read-
service to get the value. 

5.2. Basic sensor services 
Types of information that contribute to describe 

execution, control event and data event traces are: 
 

• Exchanged parameters (what): return notification, 
activated task, set event, activated alarm, exchanged 
data, etc. 

• Current execution context (where): application-
level function identifier, task identifiers (task state, 
priority, etc. if needed) or interrupt routine 
identifier, current mode, etc.   

• Timestamp (when): e.g. counter register value 
 

Executive support should give the possibility to the 
user to get this information through an observation 
interface. For example, via OSEK-VDX operating 
system standard interface [11, 2, 12], some information 
is reachable: the running task identifier (“GetTaskID”), 
the task state (“GetTaskState”), the current state of 
event mask of a task (“GetEvent”), alarm 
characteristics (“GetAlarmBase”, “ GetAlarm”), and the 
current mode (“GetActiveApplicationMode”). Autosar 
OS that can be considered as an extension of OSEK, 
has additional standardized interfaces: “GetISRID” to 
get the identifier of interrupt routines, 
“GetApplicationID” to get the identifier of a sort of 
partition (if the OS uses memory protection), and 
information about predefined scheduling tables 
(“GetScheduleTableStatus”, “ GetCounterValue”, 
“GetElapsedCounterValue”). 

The observation interface of the Autosar operating 
system is rich enough, if the user does not need to 
check the task priority. What is missing, at higher 
level, is essentially an identifier for application-level 
functions, which is added manually otherwise.  

5.3. Basic actuator services 
Basic actuator services can be defined 

independently from a particular implementation, even 
if the reference studied architecture is that of Autosar 
standard. Practically, functional infrastructural services 
are used (Table 2), even if they are not designed to 
perform recovery. Ideally, a specialized recovery 
interface should be provided by the infrastructure and 
should be well controlled by the user. Referring to the 
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model of execution in section 2, actuator services can 
be structured into control actions and data actions.  

 
Control flow actuators. 
At the operating system level, actions on control flow 
concern the life cycle of tasks and can be classified into 
3 categories:  
• End of task execution: the idea is to terminate the 

erroneous current treatment.  
• Start of task execution: the objective is for example 

to launch a degraded task if switch to degraded 
mode is decided; or to launch the expected task after 
error detection on sequence of execution; or else to 
launch again the same task from the beginning to re-
execute the same treatment with right entries. The 
activation of a task may be synchronous or 
asynchronous.   

• Suspension of task execution: the idea is to 
temporarily stop the current execution, to allow the 
execution of another action/task. 

 

Table 2. Recovery actions with AUTOSAR. 

Recovery action Useful Autosar services 

End of task execution 
TerminateApplication, TerminateTask, 

ChainTask, CancelAlarm 

Start of task execution 
ActivateTask, ChainTask, RestartTask 

(with TerminateApplication), SetEvent, 

SetRelAlarm, SetAbsAlarm 

Hang of task 
execution 

- (difficult with a static priority based 

scheduling) 

Production of data 
Rte_Write, Rte_IWrite, Rte_IrvWrite, 

Rte_IrvIwrite, Rte_Send 

Consumption of data 
Rte_Read, Rte_IRead, Rte_IrvRead, 

Rte_IrvRead, Rte_Receive 

Renewal of data 
request 

Rte_Send, Rte_Call 

Inhibition of data - (no direct means) 

 
Data flow actuators. 
At the communication level, actions on data flow relate 
to actions on data value and on data timing occurrence: 
• Production of correct or degraded data: the 

recovery strategy overwrites the preceding 
erroneous data, by the right one.  

• Consumption of correct or degraded data: data 
consumption instruction is called another time to get 
the correct value which is has been updated by the 
recovery strategy.  

• Renewal of data request: data production or 
consumption instruction is called another time, 
when timeout reception or acknowledgement of 
emission is missed.     

• Inhibition or delay of data: when invalid or 
untimely data is received, the recovery strategy acts 

as a filter, to transmit only right data to the 
application. 

 
The following section refines the description of 

defense software and instrumentation in the context of 
memory protection with kernel and user separation of 
modes and address space.   

5.4. Protection of defense software 
The protection of defense software is principally a 

matter of economical constraints. The more measures 
are taken to improve defense software, the more it is 
expensive. A “low-cost” solution is required, although 
all the proposed fault tolerance strategy relies on the 
robustness of defense software.  The only design 
property of defense software that satisfies both 
opposite requirements is: the complexity of the defense 
software is considered much lower to that of the 
functional software by construction. Concerning 
enhanced validation process and hardware protection, 
it will depend case by case on available resources that 
are given to particular projects. 
 
Enhanced validation process. 
A rigorous development process, including verification 
methods, has to be performed. We use fault injection 
techniques (Section 3.5) to measure fault-tolerance 
coverage, and to detect remaining software errors of 
defense software.  

When defense software is based on safety assertions 
that have a complex behavior (check of transitions that 
implies many data and control elements), the use of a 
formal language to implement these routines is to be 
considerate. Again, some automotive projects may not 
take this option for culture or economical reasons.  In 
our work, we use the C language, respecting MISRA 
coding rules [12]. 

Hardware protection.  
To strictly follow the principle of separation of 
functional and safety concerns promoted by the 
reflective approach, both software part should be 
spatially and timely separated. Taking the example of 
Elektra railway system [9], three processors operate 
functional services and three other processors supervise 
the functional part, in parallel. So many resources are 
still unaffordable in the automotive world. Instead, 
software redundant information logging is realistic, in 
the proposed architecture, if other resources and timing 
constraints are respected.  

Simple separation of functional and defense 
software can be done by the use of hardware memory 
protection. Considering this particular context, hooks 
can be implemented in user space, for convenience of 
existing automatic code generation of hooks. The 
logging tables are the most critical data, so they must 
be stored in protected address space, separated from 



functional part. Logging, checking and recovery 
routines, with the software sensor and actuator they 
contain, have to access the logging tables by reading or 
writing, so they also must be trustable. As these 
routines are called within hooks in user mode, that 
requires a switch from user mode to kernel mode.  

6. Early implementation issues 

We have developed several AUTOSAR software 
platforms, both on a virtual processor running on an 
UNIX machine and on a real embedded evaluation 
board. We use a Freescale evaluation board 
S12XEP100TM 16 bit microcontroller, with memory 
protection unit, and another S12XDP512TM, without 
memory protection. Our development environment is 
CodeWarriorTM from Freescale.  

The AUTOSAR RTE is automatically generated by 
a software tool from Vector (Microsar RTE, DaVinci 
DeveloperTM 2.2). We worked both on several 
application components we synthesized, and on serial 
automotive software products we adapted to the 
AUTOSAR context. The safety properties we take as 
inputs are derived from real automotive requirements.  

We use Trampoline [13], an open source operating 
system from IRCCYN, compliant to AUTOSAR OS.  

Our current experiments show the feasibility of the 
approach to improve robustness on prototypes. We 
have compared protected and non-protected 
applications with similar hardware, by carrying out 
verification testing, using controlled fault injections 
that cause USE (Unwanted System Events). Protected 
applications perform fault tolerance of their failure 
model. However, the evaluation of robustness should 
be completed by comparison with other fault-tolerance 
solutions. 

7. Conclusion 

The automotive industry is facing increasing 
complexity of embedded software, error propagation 
and the need to meet robustness challenges, in spite of 
stringent economical constraints. As a representative 
context of tomorrow’s automotive software, we chose 
to deal with the two emergent standards: AUTOSAR 
for modular multilayered software architecture, and  
ISO26262 about safety concerns.  

The work reported in this paper shows an approach 
to develop customizable defense software, externally to 
the target system. The proposed fault-tolerant 
architecture is based on the classical separation of the 
functional implementation and that of the safety 
functions, using the interfaces (entry points) defined by 
AUTOSAR.   

This approach is very attractive for the automotive 
industry since it enables to tailor defense mechanisms 
according to the needs on a case-by-case basis.  

Feasibility study has been carried out on early 
implementations of synthetic AUTOSAR applications. 
Current work exemplifies in deep error detection and 
recovery mechanisms and focus on fault injection to 
evaluate the efficiency of the approach. 
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