Using Compile-Time Reflection for Objects State
Capture:

Marc-Olivier Killijian, Juan-Carlos Ruiz-Garcia, Jean-Charles Fabre

LAAS-CNRS, 7 Avenue du Colonel Roche
31077 Toulouse cedex, France
{killijian, fabre, ruiz} @laas.fr

1 Motivations

Checkpointing is a major issue in the design and the implementation of dependable
systems, especially for building fault tolerance strategies. Checkpointing a distributed
application involves complex algorithms to ensure the consistency of the distributed
recovery state of the application. All these algorithms make the assumption that the
internal state of the application objects can be obtained easily. However, this is a
strong assumption and, in practice, it is not so easy when complex active objects are
considered. This is the problem we focus on in our current work. The available
solutions to this problem either rely on :

= a gpecific hardware/operating-system/middleware that can provide runtime

information about the mapping used between memory and application objects;

= a reflective runtime which provides access to class information, such as Java

Serialization [1] based on the Java Reflection API;
= intervention at the language level, rewriting the original code to add checkpointing

mechanisms (e.g. Porch [2] for C programs);
= the provision of state handling mechanisms by the user; since the implementation of

these mechanisms must be error-free, thisis aweak solution.

When neither the underlying system nor the language runtime is sufficiently
reflective to provide type information about the object classes, the only solution is to
obtain this information at the language level. Two approaches can be investigated
here: (i) developing a specific compiler (as Porch does) or (ii) using a reflective
compiler such as OpenC++ [3] or OpenJava [4]. Since diving into a compiler is very
complex and can lead to the introduction of new software faults, we think that the
latter is a better solution. Clearly, compile-time reflection opens up the compilation
process without impacting the compiler itself. Off-the-shelf compilers can thus be
used to produce the runtime entities.

1 This work has been partially supported by the European Esprit Project n° 20072, DEVA, by a
contract with FRANCE TELECOM (ref. ST.CNET/DTL/ASR/97049/DT) and by a grant from CNRS
(National Center for Scientific Research in France) in the framework of international
agreements between CNRS and JSPS (Japan Society for the Promotion of Science).



2 Approach Overview

To provide state handling facilities to target objects, we have to implement two new
methods for each class. saveSt at e and r est or eSt at e. The former is responsible
for saving the state of an object and the latter for restoring this state; these methods
are similar to the readObj ect and writ eObj ect methods provided by the Java
runtime.

These methods must save/restore the values of each attribute: basic and structured
types of the language, arrays, and inherited fields. Furthermore, they must be able to
traverse object hierarchies, i.e. savelrestore the objects included in the object currently
processed. To generate these methods we use OpenC++, an open-compiler for C++
which provides a nice APl for both introspection and intercession of application
classes. Thanks to the static type information it provides, we are able to analyse the
structure of the classes and can thus generate the necessary methods for
checkpointing.

However, since C++ is an hybrid between object-oriented and procedural
languages, some of its features are very difficult to handle. Features which break the
encapsulation principle must be avoided from a dependability viewpoint: friend
classes or functions and the pointer model of C++. We decided to handle only asingle
level of indirection for pointers and to forbid the use of pointer arithmetic; pointers
can thus be seen as simple object references asin Java.

Filtering programs and rejecting those that don't respect these restrictionsis easy to
implement using compile-time reflection. Enforcing other programming restrictions is
also useful for validation aspects. Dependability can be significantly enhanced by
restricting to a subset of alanguage [5] in many respects.

It is worth noting that this approach does not deal with multithreaded objects.
Indeed, compile-time reflection is not sufficient to save the state of threads, thread
introspection is needed [6].

3 Current Implementation Status

We have implemented this approach using OpenC++ 2.5.1 and GCC 2.8.1 on both
Solaris and Linux operating systems. Firstly the application program is parsed by the
metaclasses we designed, these metaclasses generate the necessary facilities
(savelrestore state methods and related state buffer classes). Secondly, the C++
compiler compiles the instrumented code.

We are currently working on the validation of this toolkit. We are using some
application benchmarks in order to evaluate the correctness of the states obtained (the
coverage of the class' structure analysis), and to evauate the efficiency of the state
capture/restoration compared to Java serialization and Porch checkpointing. The first
efficiency results obtained on simple examples are promising.

We have also implemented an optimisation of this approach that saves only the
modified attributes of an object. This technique uses runtime reflection in order to
know which of the object’s members have been modified since the last checkpoint.



The idea is to savelrestore a delta-state instead of the full object state. Since an
object’s methods often modify only a small subset of its attributes, this approach is
more efficient in practice. It is worth noting that this new technique can only be
applied for checkpointing. Cloning an object requiresits full state to be available.

4 Conclusion

The work briefly describe here is part of a reflective architecture for dependable
CORBA applications [7] which implements fault-tolerance mechanisms as
metaobjects on any off-the-shelf ORB. The metaobject protocol controls both object
interaction and object state. It has been developed for C++ objects and is currently
being ported for Java objects using OpenJava. The implementation relies on a
combined use of tools and techniques, such as open compiler, IDL compiler and
reflective runtime when available.

Acknowledgements. We would like to thank Shigeru Chiba and Michiaki Tatsubori
for their contribution to this work and invaluable assistance in using OpenC++.

Refer ences

[1] Sun Microsystems, “ Java Object Serialization Specification”.

[2] V. Strumpen and B. Ramkumar , “Portable Checkpointing for Heterogeneous
Architectures,” in Fault-Tolerant Parallel and Distributed Systems, D.
Avresky, R. and D. Kéli, R., Eds.: Kluwer Academic Press, pp. 73-92, 1998.

[3] S. Chiba, “ A Metaobject Protocol for C++,” presented at OOPSLA, Austin,
Texas, USA, pp. 285-299, 1995.

4] M. Tatsubori, “ An Extensible Mechanism for the Java Language”, Master of
Engineering Dissertation, Graduate School of Engineering, University of
Tsukuba, University of Tsukuba, |baraki, Japan, Feb 2, 1999.

[5] P. J. Plauger, "Embedded C++", appeared in C/C++ Users Journal, vol.15,
issue 2, February 1997.

[6] M. Kasbekar, C. Narayanan, and C. R. Dar, “Using Reflection for
Checkpointing Concurrent Object Oriented Programs’ Center for
Computational Physics, University of Tsukuba, UTCCP 98-4, ISSN 1344-
3135, October 1998.

[7 M.-O. Killijian, J.-C. Fabre, J.-C. Ruiz-Garcia, and S. Chiba, “A Metaobject
Protocol for Fault-Tolerant CORBA Applications,” presented at |IEEE
Symposium on Reliable Distributed Systems, West Lafayette, Indiana, USA,
pp. 127-134, 1998.



