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Abstract

Mobile devices (e.g., laptops, PDAs, cell phones) are

increasingly relied on but are used in contexts that put

them at risk of physical damage, loss or theft. This pa-

per discusses the dependability evaluation of a coopera-

tive backup service for mobile devices. Participating de-

vices leverageencounterswith other devices to temporar-

ily replicate critical data. Permanent backups are creat-

ed when the participating devices are able to access the

fixed infrastructure. Several data replicationand scatter-

ing strategies are presented,including the use of erasure

codes. Amethodology tomodel and evaluate them using

Petri nets and Markov chains is described. We demon-

strate that our cooperative backup service decreases the

probability of data loss by a factor up to the ad hoc to

Internet connectivity ratio.

1. Introduction

Mobile devices (e.g., laptops, PDAs, cell phones) are
increasingly relied on but are used in contexts that put
them at risk of physical damage, loss or theft. Howev-
er, fault-tolerance mechanisms available for these de-
vices often suffer from shortcomings. For instance, data
“synchronization” mechanisms, which allow one to repli-
cate a mobile device’s data on a desktop machine, usual-
ly require the desktop machine to be either physically ac-
cessible or reachable via the Internet. Use of third-party
backup servers typically also requires access to some net-
work infrastructure.
We aim to address these issues by providing a co-

operative backup service, called MoSAIC [3, 12]. Our
approach seeks to apply the peer-to-peer data storage
and backup paradigm that has been successful on the
Internet [7, 14] to data backup among communicating
devices. Participating mobile devices share storage re-
sources. When devices encounter one another, theymay
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exchange critical data and store the data received from
the peer device; eventually, when a participating device
gains access to the Internet, it forwards data stored on be-
half of other nodes to an Internet-accessible store.
Various replication and data scattering algorithms

may be used to implement the cooperative backup ser-
vice. Replicationmay be handled by creating full copies
of individual data items (we refer to this as simple repli-
cation) or by more sophisticated erasure coding tech-
niques. Choosing between these techniques implies a
tradeoff between storage efficiencyand data confidential-
ity [3]. This tradeoff can be done beforehand and is well
understood; however, its impact on data dependability,
particularly in our scenario, is unclear. The analytical
evaluation presented in this paper aims to clarify this.
We analyze the fault-tolerance gain provided byMo-

SAIC as a function of (i) the various environmental pa-
rameters (frequency of Internet access, device encounter
rate, node failure rate) and (ii) different replication strate-
gies. Our approach is based on model-based evaluation,
which is well suited to support design tradeoff studies
and to analyze the impact of several parameters of the
design and the environment from the dependability and
performance points of view.
The analysis presented in this paper has two main

goals. First, it should help us determine under what cir-
cumstancesMoSAIC is themost beneficial, compared to
solutions that do not replicate data in the ad hoc domain.
Second, it should help us choose among different repli-
cation strategies, depending on a given scenario’s param-
eters and user preferences (e.g., target data availability,
confidentiality requirements).
The work presented here builds on our previous

work on the design of a cooperative backup service for
mobile devices [3, 5, 12]. Its major contribution lies in
the dependability evaluation of data replication and scat-
tering strategies using analytical methods, taking into ac-
count a variety of influential parameters. It differs sub-
stantially from earlier evaluation work by other authors
due to the entirelynovel characteristicsof the system and
environment modelled (see Section 5).



Section 2 provides an overview of MoSAIC and
background information on erasure codes. Section 3 de-
scribes our methodology. Section 4 summarizes the re-
sults obtained and discusses their impact on the design
of the cooperative backup service. Section 5 presents re-
lated work. Finally, Section 6 concludes on our findings
and depicts future research directions.

2. Background

This section gives an overview of MoSAIC and provides
background information about erasure codes.

2.1. MoSAICOverview

Our cooperative backup service,which we callMoSAIC,
can leverage (i) excess storage resources available on mo-
bile devices and (ii) short-range, high-bandwidth, and rel-
atively energy-efficient wireless communications (Blue-
tooth,Zigbee,orWi-Fi).The aim is to improve long-term
availability of data produced by mobile devices. The
idea is borrowed from peer-to-peer cooperative services:
participating devices offer storage resources and doing
so allows them to benefit from the resources provided
by other devices in order to replicate their data [12]. Par-
ticipating devices discover other devices in their vicinity
and communicate through single-hop connections, there-
by limiting interactions to small physical regions.
Anyone is free to participate in the service and, there-

fore,participantshave no prior trust relationship. Weuse
the term contributor when referring to a device acting
as a storage provider; we use the term data owner when
referring to a “client” device, i.e., one that uses storage
provided by the contributors to replicate its data. All de-
vices may play both the owner and the contributor role.
Since participating devices are mutually distrustful,

the storage layer of the backup service must guarantee
confidentiality through encryption [3].Care is also taken
tominimize attacks to user privacy and to protect against
denial-of-service attacks such as refusal to cooperate or
flooding [5]. In this paper, we do not focus on these is-
sues, but rather, we explore possible strategies to maxi-
mize the chances of being able to restore the user’s data
in the presence of faulty participants, be they malicious
or not.
When out of reach of Internet accessand network in-

frastructure, devices may meet and spontaneously form
ad hoc networks that they can use to back-up data. Since
it would be unrealistic to rely on chance encounters be-
tween devices for recovery, we require contributing de-
vices to eventually send data stored on behalf of other
devices to an Internet-based store accessible by the data
owners [3, 12].

MoSAIC’s approach to cooperative backup bears
some similarity with earlier work on cooperative data
storage [2, 10] and caching for mobile devices [18, 24].
However, it differs from them in several ways. First, un-
like typical distributed file systems access patterns, data
that is backed up is produced by a single device and may
usually not be accessed by other devices. Second,unlike
most caching strategies, our approach does not seek to
improve locality of data replicas: insteadwe expect repli-
cas to propagate to the Internet-based store, much like
packets in a delay-tolerant network (DTN) [25].

2.2. Erasure Codes

Erasure coding algorithms have been studied extensive-
ly [15, 17, 21, 22, 23]. Here we do not focus on the algo-
rithms themselves but on their properties. A common-
ly accepted definition of erasure coding is the following
[15, 23]:

• Given a k-symbol input datum, an erasure coding
algorithm produces n ≥ k fragments.

• m fragments are necessary and sufficient to recover
the original datum,where k ≤ m ≤ n.Whenm = k, the
erasure code algorithm is said to be optimal [22].

Although not all erasure coding algorithms are optimal
(many of them are near-optimal [22]), we will assume
in the sequel the use of an optimal erasure code where
m = k. By convention, we note (n,k) such an optimal
erasure code [23].
When all k fragments are stored on different de-

vices, an optimal erasure code allows n − k failures (or
erasures) to be tolerated (beside that of the primary repli-
ca).The storage cost (or stretch factor) for an optimal era-
sure code is n

k
(the inverse ratio k

n
is often called the rate

of an erasure code). To tolerate a number of erasures f ,
we need n = k + f , so the storage cost is 1 +

f
⁄k. Therefore,

erasure coding (with k ≥ 2) ismore storage-efficient than
simple replication (k = 1). For instance, (2,1) and (3,2)
erasure codes both tolerate one failure, but the former
requires twice asmuch storage as the original data while
the latter only requires 1.5 times as much.
When all k fragments are distributed to different

devices belonging to different non-colluding users (or
under different administrative domains), erasure codes
can be regarded as a means for improving data confiden-
tiality: to access the data, an attacker must have control
over k contributing devices instead of just one when sim-
ple replication is used [8]. This effectively raises the bar
for confidentiality attacks and may usefully complement
ciphering techniques used at other layers. Similar con-
cerns are addressed by generalized threshold schemes
where, in addition to the definition above, less than p ≤ k



fragments convey no information about the original data,
from an information-theoretic viewpoint [9].

3. Methodology

In this section,we present the approach we have taken to
model our cooperative backup service, and the depend-
ability measures we made.

3.1. System Characteristics

The backup service that we model is characterized by its
replication and scattering strategy, and the device-to-de-
vice and device-to-Internet backup opportunities.

3.1.1. Replication Strategy

We consider the case of a data owner that needs to repli-
cate a single data item (generalization to more than one
data item is straightforward). We consider that the own-
er follows a pre-defined replication strategy, using (n,k)
erasure coding, where n is decided off-line, a priori, and
where the owner distributes one and only one fragment
to each encountered contributor. When k = 1, the strat-
egy corresponds to simple replication. In practice, the
choice of n and k could be made as a function of the sce-
nario’s characteristics and the user’s dependability and
confidentiality requirements.
This replication strategy favors confidentiality over

data dependability: only one fragment is given to each
contributor encountered1, at the risk of being unable
to distribute all the fragments in the end (for instance,
because not enough contributors become available). An
alternative strategy that favors data dependability over
confidentiality consists in providing a contributor with
as many fragments as possible while it is reachable.
We consider a static replication strategy. In particu-

lar, we suppose that owners are not aware of the failures
of contributors storing data on their behalf. Thus, own-
ers cannot, for instance, decide to create more replicas
when previously encountered contributors have failed.
This assumption is realistic under most of the scenarios
envisaged: first, detection of the failure of a participat-
ing device would be hard to achieve in a mobile context
where nodes continuously come and go, and second,
since devices are mobile, they are likely to be out of
reach at the time the contributor fails.

3.1.2. Backup Opportunities

We consider that every encounter between devicesoffers
a backup opportunity. Specifically, every device encoun-

1 According to this policy, a contributor encountered more than once
will only be given a fragment the first time it is encountered.

tered is considered to be a contributor that uncondition-
ally accepts storage requests from the data owner. Data
owners unconditionally send one data fragment to each
contributor encountered. Note that scenarios in which
not all encounters offer backup opportunities (e.g., with
contributors refusing to cooperate) can be simply mod-
eled by introducing an opportunity/encounter ratio as an
additional parameter.
We consider that Internet connection is only ex-

ploited when it is cheap and provides a high bandwidth.
Thus,whenever a node gains Internet access,we assume
that it transfers all the data fragments it currently stores
on behalf of other nodes.

3.2. Modeling Approach

Analytical model-based techniques are commonly used
to support dependability evaluation studies. They allow
one to obtain mathematical expressions of the relevant
measures, which can then be explored to easily identify
trends and to carry out sensitivity analysis. When using
analytical techniques, the system must be described at a
high level of abstraction. Simplifying assumptions are
generally needed to obtain tractable models. Although
simulation can be used to describe the system at a more
detailed level, it ismore costly in terms of the processing
time needed to obtain accurate and statistically signifi-
cant quantitative results.
Markov chains and generalized stochastic Petri nets

(GSPNs) are commonly used to perform dependability
evaluation studies and sensitivity analyses aimed at iden-
tifying parameters having the most significant impact on
the measures. The corresponding models are based on
the assumption that all the underlying stochastic process-
es are described by exponential distributions. Although
such an assumption may not faithfully reflect reality, the
results obtained from themodels give preliminary indica-
tions about the expected behaviors and trends that can be
observed. More accurate results can be obtained consid-
ering more general distributions, using for example the
“stages method” [6] or non Markovian models. Howev-
er, in this paper, we assume that all stochastic processes
are exponentially distributed and we use GSPNs for the
construction of Markov models [16].

3.3. GSPN and Markov Models

Figure 1presents the GSPN model of MoSAIC using an
(n,k) erasurecoding algorithm. Themodel focuseson the
mobile ad hoc part of the cooperative backup service,
purposefully ignoring issues related to the implemen-
tation of the Internet-side functionalities. A data frag-
ment is considered “safe” (i.e., it cannot be lost) when-
ever either its owner or a contributor storing it is able to
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Figure 1. Petri net of the replication and scatter-

ing process for an (n,k ) erasure code.

access the Internet. In other words, the Internet-based
store of our cooperative backup service is abstracted as
a “reliable store”. Conversely, if a participating device
fails before reaching the Internet, then all the fragments
it holds are considered lost. Thus, with (n,k) erasure cod-
ing, a data item is definitely lost if and only if its owner
device failsand less than k contributorshold or have held
a fragment of the data item.
Our model consists of three main processes repre-

sented by timed transitions with constant rate exponen-
tial distributions:

• A process with rate α that models the encounter of a
contributor by the data owner,where the owner sends
one data fragment to the contributor.

• A process that models the connection of a device to
the Internet, with rate β0 for the owner and β for con-
tributors.

• A process that represents the failure of a device,with
rate λ0 for the owner and λ for contributors.

The GSPN in Figure 1is divided into two interacting sub-
nets. The subnet on the left describes the evolution of a
data item at the owner device: either it is lost (with rate
λ0), or it reaches the Internet store (with rate β0). Places
OU and OD denote situationswhere the owner device is
“up” or “down”, respectively. The subnet on the right de-
scribes: (i) the data replication process leading to the cre-
ation of “mobile fragments” (place MF) on contributor
devices as they are encountered (with rateα), and (ii) the
processes leading to the storage of the fragments (place
SF) in the reliable store (rate β), or its loss caused by the
failure of the contributor device (rateλ).The initialmark-
ing of place FC denotes the number of fragments to cre-
ate. The transition rates associatedwith the lossof a data

fragment or its storage on the Internet are weighted by
the marking of place MF, i.e., the number of fragments
that can enable the corresponding transitions.
Two places with associated immediate transitions

are used in the GSPN to identify when the data item is
safely stored in the reliable store (place DS), or is defi-
nitely lost (placeDL), respectively. The “data safe” state
is reached (i.e., DS is marked) when the original data
item from the owner node or at least k fragments from
the contributors reach the Internet. The “data loss” state
is reached (i.e., DL is marked) when the data item from
the owner node is lost and less than k fragments are avail-
able. This condition is represented by a predicate associ-
ated with the immediate transition that leads toDL.Final-
ly, L is the GPSN “liveliness predicate”, true if and only
if m(DS) = m(DL) = 0: as soon as either DS or DL con-
tains a token, no transition can be fired.
The GSPN model of Figure 1 is generic and can be

used to automatically generate the Markov chain associ-
ated with any (n,k) erasure code. Examples of Markov
chains for different (n,k) may be found in [4]. The total
number of states in such an (n,k)Markov chain isO( 2n ).
The models we are considering, with reasonably small
values of n are tractable using available modeling tools.

3.4. Quantitative Measures

We analyze the dependability of our backup service via
the probability of data loss, i.e., the asymptotic proba-
bility, noted PL, of reaching the “data lost” state. For a
given erasure code (n,k),PL can be easily evaluated from
the correspondingMarkov chain using well-known tech-
niques for absorbing Markov chains [11]. The smaller
PL is, the more dependable is the data backup service.
To measure the dependability improvement offered

by MoSAIC, we compare PL with the probability of
data loss PLref of a comparable, non-MoSAIC scenario
where:

• devices do not cooperate;

• data owner devices fail with rate λ0;

• data owners gain Internet access and send their data
items to a reliable store with rate β0.

This scenario is modeled by a simple Markov chain
where the owner’s device can either fail and lose the data
or reach the Internet and save the data. The probability
of loss in this scenario is: PLref = λ0

λ0+β0
.

We note LRF the data loss probability reduction fac-
tor offered by MoSAIC compared to the above non-Mo-
SAIC scenario,where LRF = PLref /PL. The higher LRF,
the more MoSAIC improves data dependability. For in-
stance,LRF = 100means that data on a mobile device is



100 times more unlikely to be lost when using MoSAIC
than when not using it.

3.5. Parameters

PL and LRF depend on a number of parameters (n, k, α,
β, λ, β0

, and λ0). Rather than considering absolute values
for the rates of stochastic processes, we consider ratios
of rates of pertinent competing processes.
First, the usefulness of cooperative backup will

depend on the rates at which contributing devices en-
counter one another relative to the rate at which connec-
tion to the fixed infrastructure is possible. Second, the ef -
fectiveness of devices towards data backup will depend
on the rate at which they fail relative to the rate at which
they are able to connect to the Internet to make the data
safe. We therefore studyLRF as a function of the contrib-
utor and data owner effectiveness ratios β

λ and
β0

λ0
.

Finally, one may question the assumption that con-
tributors accept all requests, at rate α, regardless of their
amount of available resources. However, simple back-
of-the-envelope calculations provide evidence that this
is a reasonable assumption. When the replication strate-
gy described in Section 3.1.1 is used, the number of frag-
ments (i.e., storage requests) that a contributor may re-
ceive during the time between two consecutive Internet
connections is, on average, αβ. Let s be the size of a frag-
ment: a contributor needs, on average, V = s(αβ) storage
units to serve all these requests. If a contributor’sstorage
capacity,C, is greater than V, it can effectively accept all
requests; otherwise, the contributor is saturated and can
no longer accept any storage request.
In other words, redefining α as the effective en-

counter rate (i.e., the rate of encounters of contributors
that accept storage requests), and letting γ be the actual
encounter rate, we have: α

β = min(γβ,C
s ). A realistic esti-

matewithC = 302 (contributor storage capacity of 1GB)
and s = 102 (fragment size of 1KB) shows that contribu-
tors would only start rejecting requests when γ

β > 202 , a
ratio that is beyond most realistic scenarios.

4. Results

This section discusses the results of our analysis.

4.1. Overview

Figure 2 shows the data dependability improvement
yielded by MoSAIC with a (2,1) erasure code using the
replication strategy outlined in Section 3.1.1. Here, we
assume that contributors and owners behave identically,
i.e., β0 = β and λ0 = λ.
Three observations can be made from this plot.

First, as expected, the cooperative backup approach is
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Figure 2. Loss reduction factor LRF for a (2,1)

erasure code.

not very relevant compared to the reference backup ap-
proach when α

β = 1 (i.e., when Internet access is as fre-
quent as ad hoc encounters). Looking at the contour
lines of LRF from Figure 2, it appears that, for the coop-
erative backup approach to offer at least an order of mag-
nitude improvement over the reference backup scheme,
the environment must satisfy β

λ > 2 and α
β > 10.

Second, for any given α
β, LRF reaches an asymptote

after a certain β
λ threshold. Thus, for any given connec-

tivity ratio α
β, increasing the infrastructure connectivity to

failure rate ratio β
λ is only beneficial up to that threshold.

The third observation that can be made is that the
dependability improvement factor first increases propor-
tionally to α

β, and then, at a certain threshold, rounds
off towards an asymptote (visible on Figure 2 for small
values of β

λ but hidden for high values due to choice of
scale). Other (n,k) plots have a similar shape.

4.2. Asymptotic Behavior

Figure 3 shows LRF as a function of β
λ, for different val-

ues of α
β and different erasure codes (again, assuming

the data owner’s failure and connection rates are the
same as those of contributors).This again shows that the
maximum value of LRF for any erasure code, as β

λ tends
to infinity, is a function of α

β. We verified the following
formula for a series of codes with n ∈




2,3,4,5


and

k ∈



1,2,3


(with k ≤ n) and postulate that it is true for

all positive values of n and k such that n ≥ k:

lim
β
λ →∞(LRFn,k(αβ,

β

λ)) = 1

1 −

k

( α

β

1+
α

β
)

(4.1)

First, it describes an asymptotic behavior, which con-
firms our initial numerical observation. Second, it does
not depend on n.Thisobservationprovidesuseful insight



in how to choose the most appropriate erasure coding pa-
rameters, as we will see in Section 4.3.
We can similarly compute the limiting value of

LRF(n,k) as α
β tends to infinity:

lim
α
β →∞(LRFn,k(αβ,

β

λ)) =

n

(1 + β

λ)
k−1∑x=0 (nx )

x

(βλ)
(4.2)

This shows that, when α
β grows, LRF reaches an asymp-

tote that depends on β
λ.

4.3. Erasure Coding vs. Simple Replication

Figure 3 allows us to compare the improvement factor
yielded by MoSAIC when different erasure codes are
used. The erasure codes shown on the plot all incur the
same storage cost: n

k
= 2. In all cases, the maximum de-

pendability improvement decreases as k increases. This
is confirmed analytically by computing the following ra-
tio, for any p > 1 such that pk and pn are integers:

Rp =

lim
β
λ →∞
(LRFpn,pk(αβ, β

λ))
lim
β
λ →∞
(LRFn,k(αβ, β

λ))
=

1 −

k

( α

β

1+
α

β
)

1 −

kp

( α

β

1+
α

β
)

(4.3)

We see that Rp < 1 for p > 1. Thus, we conclude that,
from the dependability viewpoint, simple replication
(i.e., with k = 1) is always preferable to erasure coding
(i.e., with k > 1) above a certain β

λ threshold. Below that
threshold, erasure coding is sometimes preferable to sim-
ple replication. Figure 4 compares the dependability im-
provement yielded by several erasure codes having the
same storage cost; only the top-most erasure code (i.e.,
the surface with the highest LRF) is visible from above.
The (2,1) plot is above all other plots, except in a small
region where the other erasure codes (thin dashed and
dotted lines) yield a higher LRF.
A look at a projection of this 3D plot on the β

λ and
α
β plane (omitted for reasons of space), allows the visu-
alization of the region where erasure codes perform bet-
ter than simple replication. Erasure codes yield a higher
data dependability than simple replication in the region
defined (roughly) by α

β > 100 and 1 < β
λ < 100. However,

in this region, the dependability yielded by erasure codes
is typically less than an order of magnitude higher than
that yielded by simple replication,even for the (extreme)
case where α

β = 1000 (see Figure 3).
Interestingly,similar plotsobtained for larger values

of n
k
(omitted for reasons of space) show that the region

where erasure codes prevail tends to shift towards lower

 1

 10

 100

 1000

 10000

 1  10  100  1000

L
o

s
s
 r

e
d

u
c
ti
o

n
 f

a
c
to

r 
(L
R
F

)

Participant effectiveness (β/λ)

EC (6,3), α/β=1000
EC (6,3), α/β=10
EC (4,2), α/β=1000
EC (4,2), α/β=10
EC (2,1), α/β=1000
EC (2,1), α/β=10

Figure 3. Loss reduction factor for different

erasure codes.

EC (2,1)
EC (4,2)
EC (6,3)
EC (8,4)

 1
 10

 100
 1000

 10000
 100000Participant effectiveness

(β/λ)
 1

 10

 100

 1000

 10000

 100000

Connectivity ratio
(α/β)

 1

 10

 100

 1000

 10000

 100000

Loss reduction
factor (LRF)

Figure 4. Comparing LRF for different erasure

codes with n
k

= 2.

β
λ values as

n
k
increases. In other words, the spectrum of

scenarioswhere erasure codes provide better dependabil-
ity than simple replication narrows as the chosen storage
overhead (the n

k
ratio) increases.

Nevertheless, when confidentiality is an important
criterion, using erasure coding instead of simple replica-
tion is relevant. Erasure coding can achieve better con-
fidentiality than simple replication [8] at the cost of a
slightly lower asymptotic dependability improvement
factor. For instance, in the context of Figure 3, if the user
wants to maximize confidentiality while requiring a min-
imum improvement factor of 100, a (6,3) erasure code
would be chosen rather than simple replication.



5. RelatedWork

There is a large literature dealingwith the design of peer-
to-peer file sharing architecturesand cooperative backup
services inmobile and fixed infrastructures. A recent sur-
vey can be found in [13].Here,we focus on related work
dealing with the dependability evaluation of replication
mechanisms, notably erasure coding algorithms.
Several papers analyze data dependability in dis-

tributed and peer-to-peer storage systems. The authors
of OceanStore conducted an analytical evaluation of
the MTTF (mean time to failure) of a distributed, self-re-
pairing storage system [21]. They conclude that erasure
codes yield MTTF orders of magnitude higher than sim-
ple replication; however, their computations are based
on probability distributions of hard disk failures, which
may be quite different from that of individual untrusted
peers on the Internet. A similar comparison for peer-to-
peer storage is proposed in [20], using a stochastic mod-
el. They conclude on the unsuitability of erasure codes
in a peer-to-peer environment where peer availability is
low. Themajor difference between these studies and our
work is that the authors model a data block repair pro-
cess that is inexistent in the context of a mostly-discon-
nected peer-to-peer backup system,notably because data
owners cannot be made aware of contributor failures.
In [15], the authors analyze erasure code replication

and compare the resulting data availability as a function
of individual host availability (assumingeach host stores
exactly one fragment of the original data) and erasure
code parameters (n,k). They identify a “switch point”
between scenarios where erasure coding is preferable
(from a data availability viewpoint) and scenarioswhere
simple replication should be used. More precisely, they
conclude that simple replication yields better data avail-
ability when host availability is low.
Our results comparing erasure codes and simple

replication in terms of dependability are in agreement
with those obtained on simpler models [1, 15, 20].We ob-
serve a switch point similar to that of [15]. For instance,
in our model, whether erasure codes yield better data de-
pendability than simple replication depends on α

β and
β
λ

(see, e.g., Figure 4).
Building on a similar analysis, TotalRecall [1], a

peer-to-peer storage system, proposes mechanisms to au-
tomate availability management, which includes dynam-
ic parameterization of erasure coding replication based
on predicted host availability. However, the authors do
not consider the use of erasure codes as a means to im-
prove data confidentiality [8]. Additionally, the mobile
environment we are addressing leads to a wider range
of scenarios (and connectivity). A dynamic replication
strategy for peer-to-peer cooperative data storage among

untrusted nodes is also presented in [19], though they do
not consider the use of erasure codes.

6. Conclusion and FutureWork

Our evaluation methodology allowed us to achieve our
goals (see Section 1). First, we have a better understand-
ing of the scenarios where MoSAIC yields noticeable
data dependability improvement. Namely, we showed
that the cooperative backup approach is beneficial (i.e.,
yields data dependability an order of magnitude higher
than without MoSAIC) only when β

λ > 2 and α
β > 10. We

demonstrated that MoSAIC can decrease the probability
of data loss by a factor that can be as large as the ad hoc
to Internet connectivity ratio α

β.
Second, we compared simple replication and era-

sure codes and concluded that erasure codes provide an
advantage (dependability-wise) over simple replication
only in narrow scenarios. Those scenarios are restricted
to low β

λ and high
α
β and the dependability improvement

provided by erasure codes in those cases is typically less
than an order of magnitude. Measurements of actual
use cases are needed in order to see what real-world situ-
ations these scenarios map to.
Based on our results, several replication strategies

can be envisioned. One possible strategy would be to
maximize data dependability for a given user-specified
storage overhead. Since in most scenarios little can be
gained from using erasure codes, and since the conse-
quence of a wrong decision would be detrimental to
data dependability (e.g., choosing erasure coding in a sce-
nario where simple replication would have been more
beneficial), the best way to maximize data dependability
is to always use simple replication.
Other replication strategies can be imagined. In-

stead of focusing only on dependability, users may spec-
ify additional fragmentation to increase confidentiality
[8]. Such a strategy could maximize fragmentation (i.e.,
by choosing a high k value) according to environmental
parameters, while honoring a user-specified minimum
dependability improvement factor. The ad hoc and In-
ternet connectivity rates could be estimated, for instance,
by collecting actual data about single-hop device encoun-
ters of a device that is carried around according to some
mobility scenario. These environmental parameters as
well as the effectiveness of encountered contributors
could also be estimated on-line based on past observa-
tions, perhaps augmented by user input, and used a hint
to the replication strategy.
Current and future work also includes refining our

model to allow for the distribution of more than one frag-
ment per contributor. Doing so would allow the eval-
uation of a wider range of replication and dissemina-



tion strategies. So-called rate-less erasure codes allow
the production of an unlimited number of distinct frag-
ments, out of which any k suffice to recover the original
data [17]. Their use could also be evaluated with little
impact on our model, for instance by choosing higher val-
ues of parameter n.
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