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Abstract—The LAAS architecture [1] is a three-layer software
architecture for real-time control of mobile robots, that has been
used successfully in several systems. To improve its robustness,
the architecture is currently being restructured with BIP [2]. In
this paper, we describe a fault injection approach for testing the
architecture’s robustness.

I. INTRODUCTION

Robustness is defined as ”the degree to which a system or
component can function correctly in the presence of invalid
inputs or stressful environmental conditions” (IEEE Std. 610-
12, 1990). There are two objectives of robustness testing:
verification and evaluation. Robustness verification aims to
determine if a system’s behaviour conforms to its specification
(including exceptional behaviour) and to identify deficiencies
in the protection against external adverse situations, whereas
robustness evaluation aims to measure the carried out degree
of protection against external adverse situations.

Our work is being carried out in the scope of the project
MARAE1 which focuses on a design and validation method to
construct robust software for autonomous space systems, such
as satellites and rovers. The LAAS architecture was chosen as
a prototype to experiment our approach. This architecture de-
composes the controller system into three layers: a functional
layer, an execution control layer and a decisional layer. The
architecture has been successfully applied to several mobile
robots, some of which have performed missions in real situa-
tions. To construct a system that is more robust against external
adverse situations, the functional and execution control layers
are being restructured using BIP [2] (Behavior - Interaction -
Priority), a modeling environment for real time components.
The objective of this paper is to propose a method to evaluate
experimentally this architecture’s robustness.

II. FAULT INJECTION ENVIRONMENT

Our testing environment is based on fault injection into real
robot controller software with simulation of the physical robot.
Simulating the physical robot instead of using a real robot is
motivated by the two following important reasons:

• It is necessary to perform a large number of experiments
in order to achieve a high statistical confidence, whereas

1MARAE is partially funded by the “Fondation Nationale pour la Recherche
en Aéronautique et l’Espace”. The project consortium is LAAS-CNRS,
Verimag, and Astrium Espace

Fig. 1. Experiment environment with fault injection mechanism

experiments on a real system require a lot of time and
equipment, and are almost impossible to automate.

• Using a real robot could lead to real hazards if faults are
injected into its controller software.

A. Software Architecture

Our simulation environment is presented in Figure 1. It
incorporates three elements: an open source robot simulator
named Gazebo, an interface library named Pocosim, and the
components of the LAAS software architecture.

The robot simulator Gazebo2 is used to simulate the phys-
ical world, the physical robot components and the actions of
the autonomous system. It allows not only simulation of the
rigid object’s kinematics and typical robot sensors, but also
3D simulation of the robot environment.

The Pocosim library [3] is a software bridge between the
simulated robot (executed on Gazebo) and the robot functional
layer; it processes the requests and replies between Gazebo
and modules, and works as a synchronization center to bridge
the temporal gap resulting from using the modules (which
works in real time) in a simulated environment (which works
in simulated time).

2http://playerstage.sourceforge.net/index.php?src=gazebo



B. Fault Injection and Observation Mechanism
Figure 1 presents our proposed architecture for robustness

evaluation based on the FARM methodology [4]. The fault
injection occurs at the interaction level between the functional
layer (the target component) and the decisional layer.

1) Workload: We consider the case of a planetary explo-
ration robot for which a basic activity is defined by a mission
in a certain environment. The mission is defined by the goals
to be completed: scientific photos to be taken, the displacement
of the robot to a determined position, etc. The robot’s working
environment is composed of a group of known or unknown
obstables which can prevent it from accomplishing its goals.

As exploration missions are very expensive, it is necessary
to avoid dangerous situations which could jeopardize the robot
or its missions. To do this, a set of safety constraints is
defined, e.g, a maximum robot speed, exclusion of simul-
tanous execution of certain actions, absence of deadlock, etc.
The functional layer thus has a protective role to ensure
that these safety constraints will not be violated. The BIP
runtime platform consists of a synchronization engine and
inter-component “glue” code that together aim to enforce
the safety constraints. The proposed robustness evaluation
method aims to assess the effectiveness of this mechanism.
The experimentation campaign thus will include a group of
activities with different difficulties and adversity degrees to
take into account the possible variability of multiple missions
in an open environment.

2) Faultload: As the functional layer communicates with
the decisional layer via messages (requests and replies) trans-
ferred using a Mail Box, robustness testing can be implemented
by injecting faults at the level of these messages. The targetted
faults types are: (a) unforeseen messages, (b) message trans-
mission disruptions and (c) message parameter corruptions.
These techniques aim to test the robustness of the functional
layer under overload conditions and with invalid inputs at the
message flow level.

a) Unforeseen messages: Faults can be implemented
without modifying the Mail Box but generating and injecting
additional messages into it. By bombarding the functional
layer with many such messages, we expect to push the robot
towards situations which can threaten its safety constraints.

b) Message transmission disruption: This technique re-
quires “opening” the Mail Box to modify message-handling
routines in order to manipulate message transmission. Message
disruption can include: (a) removal of messages, (b) delaying
messages, (c) inversion of message order, and (d) repetition
of messages.

c) Message parameter corruption: Message parameter
corruption is similar to the technique used in BALLISTA [5],
MAFALDA [6] and DBench [7]. By analysing message
parameters, we define selective substitutions appropriate to
these parameters. Message corruption is then carried out by
intercepting messages and replacing their parameters on the fly
according to these substitutions. To implement this fault type,
we have to “open” the Mail Box to manipulate the messages.

There are two types of value substitutions:

TABLE I
OBSERVATION SCALE

Interface
(Error
messages)

- None: No error message returned.
- Expected error message.
- Unexpected error message.

System
(Crashes)

- None: Nothing observed.
- Module crash: One or several modules crash.
- BIP engine crash: The whole functional layer blocks.
- OS crash: The simulated robot’s OS collapses.

Application
(Property
violations)

- Mission fulfilled.
- Mission failure: One or several mission objectives are
not completed.
- Safety violation: A safety condition is violated.

• Valid value: the corrupted value is in the validity range
of the parameter. For example, an int valid value is in the
range of [MIN INT, MAX INT].

• Invalid value: this is an out-of-range value.
3) Observation: Since the faults injected affect not only

the functional layer but also the whole system, we propose to
observe the system’s behaviour at three levels: the functional
(interface) level where we observe any error messages that
are returned to the upper layer; the system level where we
are interested in the observing various sorts of crashes; and
the application level where we observe whether the mission is
accomplished and whether the safety constraints are violated.

Table I presents our proposed observation scale to char-
acterize the test results, which is inspired from BALLISTA,
MAFALDA and DBench and adapted to our context.

III. CONCLUSION

The proposed fault injection environment allows us to
observe the system’s response in the face of external adverse
situations. We are currently working on a refinement of
the observations in terms of a vector of outcomes and the
definition of a scale for measuring robustness. A parallelisation
on a computing grid to perform a large number of experiments
is also being envisaged.
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