
 1

 Robustness of modular multi-layered software in the automotive domain:
a wrapping-based approach

Caroline Lu 1, 2, 3 Jean-Charles Fabre 2,3 , Marc-Olivier Killijian 2,3

1 Renault Technocentre,
1 Avenue du Golf

78288 Guyancourt Cedex,
France

caroline.lu@renault.com

2 CNRS ; LAAS ; 7 avenue du colonel Roche,
F-31077 Toulouse, France;

3 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ;
F-31077 Toulouse, France

{jean-charles.fabre, marco.killijian}@laas.fr

Contact author: Jean-Charles Fabre {Jean-Charles.Fabre@laas.fr}

Keywords: Wrappers, Reflective computing, On-line checking, Defense software, Autosar software architecture

Abstract

New automotive modular multi-layered software organization
particularly favors use and interoperability of Components-Off-
The-Shelf. However, the integration of software components is
error-prone, if their coordination is not rigorously controlled.
The risk of failure is increased with the possibility to multiplex
software components with heterogeneous levels of criticality,
observability. Most of dependability mechanisms, today, address
locally errors within each component or report them to further
diagnosis services. Instead, we consider a global wrapping-based
approach to deal with multilevel properties to be checked on the
complete multilayered system at runtime. In this paper, we intro-
duce a framework to design robust software, from analysis to
implementation issues, and we illustrate the methodology on
simple case study.

1. Introduction

Initially, in automotive embedded systems, software was

mainly standalone, controlling a single functionality. To-
day, as increasing number of vehicle functions is con-
trolled by software, we can find from hundreds of mega-
bytes up to several gigabytes of code in a car. To cope with
this evolution, automotive software architecture tends to
follow principles of componentization and superposition of
software layers. Better structuring aims to improve main-
tainability, obsolescence management, and the use of
COTS (Components-off-the-Shelf).

Complexity, multiple sources of faults, and cost reduc-
tion stand in the way of software robustness. Actually,
dependability requirements become higher with the intro-
duction of some safety critical applications, such as X-by-
Wire. Another challenge, but classical problem in terms of
reliability, is the robust integration in a whole system, of
software components having different levels of criticality,
observability and controllability. To answer these depend-
ability constraints, most of automotive protection mecha-

nisms address errors locally, within each software compo-
nent, or report them to further diagnostic services.

However, we consider that addressing some real-time
problems requires a global approach able to manage in-
formation through the fences of modularity and layers of
abstraction at the same time, having the complete system
under supervision. In this paper, we discuss how to apply
software wrapping to improve robustness of automotive
modular multilayered software. But, more than an addi-
tional technique dealing with robustness, we intend to
build a methodology to design robust software. In fact,
classical mechanisms are used and combined but a new
way of thinking is introduced.

The contribution of this paper is to show how “princi-
pled defense software” can be developed, as wrapping
software devoted to fault tolerance. The new trend of sys-
tem design in application automotive relies on COTS com-
ponents and extensive use of glue code generators and
tools provided by external software houses. This new con-
text may introduce multiple software fault sources (e.g.
component integration faults, bugs in code generation
tools), not forgetting classical physical faults (hardware
defects, ECM, etc.). From a system integrator viewpoint,
i.e. a car manufacturer, this is a real problem for the next
future.

The paper is organized as follow. Section 2 describes the

problem statement and the objectives of our work. Section
3 introduces the proposed approach principles. In section
4, we briefly present AUTOSAR [1] that is our reference
architecture. Section 5 defines how to express application-
specific safety properties, which represent selective
knowledge of the system to perform fault-tolerance. Sec-
tion 6 describes the core issues of the defense software
implementation. We illustrate the methodology by an early
case study in Section 7. Related works is discussed in Sec-
tion 8 before concluding in Section 9.

Regular paper submitted to ETFA 2009 Approx. word count: 5500
The material contained in this paper has been cleared through the authors’ affiliations

 2

2. Problem statement and objectives

The Autosar standard [1] (see. Section 4) promotes a

multi-layered software architecture for automotive applica-
tions, basically composed of an executive software layer
and a thin middleware layer, supporting the execution of
applications. Although this architecture is slightly different
from conventional middleware-based systems, it intro-
duces similar problems from a dependability viewpoint.
Application takes advantage but also depends on generic or
specific services that belong to the underlying layers (mid-
dleware and OS services). This way, the architecture intro-
duces potentially error propagation channels. In addition,
the observed failure modes of the system are more severe
when the initial error propagates [2]. In a multi-layered
architecture, the correct behavior of an application not only
depends on the correctness of underlying services. It has
been shown in [3] that the correct behavior of an applica-
tion also relies on multilevel properties. As an example,
determinism depends on various decisions taken at various
levels of the software architecture.

The objective of the work is to develop a lightweight so-
lution to the above problem due to resource constraints in
automotive applications. To achieve this, our robustness
approach consists in developing a defense software as a set
of wrappers checking multilevel properties at runtime [4].
The defense software corresponds to error detection and
recovery mechanisms and can be customized according to
the need. The checks may only address a subset of the ap-
plications running on the same executive support. We can
thus choose to target only selected critical applications.

The wrappers check the correctness of the application
that depends on the behavior of the middleware (commu-
nication channels between application components) and
OS functions (task management and scheduling) despite
accidental and design faults that could impair both the con-
trol flow and the data flow of the application. They also
trigger recovery actions.

3. Technical issues & framework principles

Software wrappers sit around a software component and

limit its behavior in desirable ways. As far as dependability
is concerned, the wrappers are devoted to error confine-
ment and recovery actions, for instance to put the system
in a safe state or to trigger some degraded mode of opera-
tion. To be efficient the wrappers must intercept compo-
nent interaction but also observe and control internal ob-
jects. This implies that software sensors and actuators
must be added to software components. Software hooks are
implemented, in order to enable fault detection and recov-
ery actions, to be added to the system, as external software
with limited intrusiveness. Our design method is based on
behavioral reflection [5] providing separation of concerns

between applications and dependability monitoring serv-
ices. The software development, the maintenance and the
evolution of each part are then simplified.

The defense software is thus organized in two parts: Er-
ror Detection (EDMs) and Error Recovery Mechanisms
(ERMs). The EDMs are composed of several algorithms,
each of them corresponding to a given multilevel property
to be checked. When errors are detected, EDMs send re-
ports to ERMs (error filtering or recovery strategies that
depend on specified degraded modes). The interface be-
tween functional and non-functional software is made of
software sensors and actuators. Their location in the soft-
ware architecture depends on the design and the algorithms
implemented in EDMs and ERMs. Sensors log information
at runtime and trigger EDMs whenever necessary. Actua-
tors are recovery functions that are monitored by ERMs.

Our proposed framework (cf. Figure 1) based on behav-
ioral reflection [5] generalizes the notion of hooks that can
be found in the automotive basic software (namely the
real-time kernel, AUTOSAR OS in this context). A meta-
interface corresponds to the set of software sensors and
actuators that is necessary and sufficient to check a given
multilevel property at runtime. This specific set of sensors
and actuators corresponds to the notion of reflective foot-
print associated to a given system property [3].

Fig. 1. Wrapping framework principle

To reach this aim, our approach follows the steps given
below:
1) Analysis of the target system and its provided services;
2) Selection of the faults that are considered at various

levels of abstraction;
3) Definition of the dependability properties that must be

verified on-line;
4) Definition of the error detection and recovery mecha-

nisms;
5) Definition and implementation of the corresponding

observation and control mechanisms;
6) Implementation of the fault tolerance mechanisms

based on software sensors and actuators;
7) Evaluation by fault injection of the coverage of such

fault tolerance mechanisms.

 3

The work reported in this paper does not dive into the
details of each step, but motivates and illustrates to some
extent the global approach that we propose step-by-step.

4. AUTOSAR software architecture

AUTomotive Open Standard ARchitecture [1] is a de-

velopment partnership started in 2002 supported by major
automotive manufacturers, suppliers and tool developers.
Its goal is to define a common automotive software devel-
opment environment, which enhances reuse on different
hardware platforms. The Autosar methodology relies on
description, static configuration, and automatic code gen-
eration tools, and it favors interoperability of tools.

The Autosar reference model is composed of three prin-
cipal software layers:

Application Layer. At the application layer, software pro-
grams are divided into “runnables”, similar to functions
(in C programming), or methods (in object-oriented pro-
gramming). Runnables are the schedulable application
entities that the system integrator maps into tasks managed
by the operating system. During the integration phase, run-
nables can be grouped within a task, depending on criteri-
ons like workflow, periodicity, data consistency, etc… For
example, in order to avoid concurrent writing or reading
access on a given data, the integrator can force an execu-
tion sequence of the concurrent runnables in the same task.

Runtime environment. The Autosar Runtime environ-
ment is a software part, which provides interfaces enabling
the exchange of signals between runnables, and it is re-
sponsible for data consistency. In the Autosar methodol-
ogy, the RTE is automatically generated from the configu-
ration of software components and basic software. Due to
its intermediate position, the RTE also plays the role of a
glue code: it uses OS objects such as tasks, resources,
events to provide its own functionalities to the application
layer.

Basic Software Layer. The basic software layer provides
the services that are necessary to the execution of the ap-
plication. Inside this layer, there are two main components
from the RTE point of view: AUTOSAR OS that manages
task processing, memory and inter-process communica-
tion; AUTOSAR COM, which deals with message ex-
change management. This layer runs on top of one ECU.

The analysis of the target architecture and services cor-
respond to step 1 in the design process of the defense soft-
ware.

5. Dependability properties definition

5.1. Fault assumptions – application level
We assume a system may fail in operation due to either

physical faults or residual bugs. From the user viewpoint,
these faults all result in transient or permanent failures on
the functional data and control flow. The effect, then, can
be evaluated depending on levels of potential threat to
people or undesirable event to the customer.

We structure the failure model on application software
into two parts: data and control flow (Table 1). Better or
more detailed modeling is out of the scope of this paper.
The user can arbitrarily identify a concrete failure regard-
ing data flow, control flow failure or both, depending on
his major concern, and the target application requirements.

We define three main types of critical Control Flow fail-
ures:
• The first one, in table 1, targets “triggering events” of

execution. These events may be ruled by timing con-
straints, data reception, emission or other mixed pre-
or post-conditions. At executive level, for instance, an
asynchronous functional treatment can be imple-
mented with an explicit “task activation” call within
another treatment. The “task activation” call is a “trig-
gering event”. A failure may occur if an event is not ex-
pected or if it is missed.

• Another control failure type is a “wrong sequence of
execution”. We make a slight difference between un-
expected sequences (that makes sense only if refer-
ence functional sequences are defined) and forbidden
sequence (that has been specified). For instance, a
wrong sequence failure may be due to a wrong map-
ping of runnables to tasks.

• A third category of control failure type affect the “time
of execution” of a treatment unit. It may be a conse-
quence of a wrong computation but also all other fail-
ure types of Table 1. Complex timing (timing evolu-
tion, periodicity, etc.) requirements may be missed.
Non expected early delivery may also corrupt both
data treatments and dependencies of execution. A
deadline miss is conventional example of a timing fail-
ure.

Concerning critical Data Flow failures, we distinguish

value and timing defects. Data include global variables,
data queues, or exchanged messages, as inputs or outputs
of software modules. A value may be faulty for two rea-
sons, either it is a valid value but wrong in the computing
context or the value is out of range. We may also have
more complex requirements on the values of a set of data.
A Byzantine failure is an example of inconsistency be-
tween several data.

 4

Table 1. Failure Model and related Basic Safety Assertion

If functional timing constraints are explicitly given
on data, we classify such constraints as a requirement
on time of communication exchange of data, instead of
time of execution. We have in the same way, the no-
tion of too late and too early delivery of data. When we
deal with data items produced by several entities and
consumed by only one entity, we can be faced to syn-
chronization problems (e.g. all data items must be
available before consumer starts processing).

The application-specific failure model is step 2 in the
design process of the defense software.

5.2. Multilevel architecture related properties
The generic failure model presented above is con-

cerned only with faults affecting the application soft-
ware level. Once a sub-model is identified and ex-
tracted for a given case study, we need to derive, from
these high-level concerns, implementation issues on
the complete software architecture down to low-level
layers. Therefore, we consider that the global depend-
ability of the application is a “multi-level” problem,
making the bridge between applications and software
infrastructure.

To better understand how multilevel properties are
verified at runtime, we need to introduce two notions:
1) Execution control point (i.e. a verification point):

this notion indicates where/when the verification of

the property must be performed in the execution
flow. An analogy can be made with the notion of
joinpoint in AOP, the advice being the implementa-
tion of the assertion verification. The control point
can be the first instruction of a runnable, or the
termination of a task (similarly to before and after
notions in AOP);

2) Execution Context: this notion relates to the context
of execution in which the verification must be per-
formed, that includes the identification of runnable
in progress, the task where the runnable is activated
or an interrupt routine (an ISR, Interrupt Service
Routine, that is scheduled as a task in practice).
Some timing information can be attached to an en-
tity execution, such as a deadline.

For example, in table 1, a non-expected triggering

event means concretely that when an additional un-
timely event happened at runtime, the system must to
detect the case and inhibit it. The execution context or
other characteristics of events have to be identified in
order to discriminate nominal events from others, pos-
sibly unexpected. The safety assertion (or “multilevel
property”) we can draw from this failure example is:

At Execution Control Point, only specified critical
triggering events with specified Execution Context
including timing constraints must be processed”.

Critical
Flow

Type of failure Basic Safety Assertion to be verified
at appropriate Execution Control Points

Non expected Only critical triggering events with predefined execution context constraints
or timing constraints must be processed.

Triggering
Event

 Invalid/ forbidden/
missed

Critical sent triggering events with predefined execution context constraints
or timing constraints must not be lost.

Non expected Critical sequences of execution are referenced and other are non-expected. Functional
sequence of
execution

Invalid/ forbidden Critical invalid or forbidden sequences of execution are referenced and must
not happen.

Too late/ missed
deadline

Critical scheduled units must meet their timeout constraints.

Too early Critical sent triggering events and data with predefined execution context
constraints or timing constraints must not be lost.

Control
Flow

Time of exe-
cution

Bad evolution
/missed periodicity

Critical scheduled units must meet their timing constraints.

Invalid/ out of
range / forbidden

Critical data must meet their value constraints (range, forbidden values, pro-
duced value equal to consumed value).

Wrong value
(within range)

Critical data must meet their value constraints (evolution, dependencies).

Exchanged
data value(s)

Byzantine
(inconsistent)

Critical input data for several consumers must be the same for all consumers.

Too late Critical data must meet their timeout constraints.
Too early Critical data must be produced and logged to prevent late consumption.

Data
Flow

Time of
communica-

tion exchange Missed
synchronization

Several critical data must be all produced before being consumed.

 5

Using AUTOSAR OS implementation, a triggering
event may be the activation of a task (through the “Ac-
tivateTask” service), the triggering of an Interrupt Serv-
ice Routine, or an OS event emission (through the
“SetEvent” service).
- The Execution Control Point can be the beginning

of execution or a waiting point within a task, or the
instant of reception of the triggering event.

- The Execution Context of the triggering event
means the identifiers of the current task or an Inter-
rupt Service Routine.

These notions are of interest to trace, through the
system layers, the semantic information that is required
to perform the verification of a multilevel property.

In the same way, we can express other basic asser-
tions of table 1. The “scheduled units”, mean either
tasks at OS level, or runnables that are schedulable
functions used by application designers at high-level.
Functional specifications address first Runnables that
can be mapped to separate Tasks or not. Expressing the
safety assertion with Runnables or Tasks is arbitrary; it
depends on the use case and optimization issues. This
way, “sequence of execution” means a sequence of one
or the other type of scheduled entities, either runnable
or tasks. The complexity of the mapping of runnables
to tasks, the use of external tools to generate the RTE,
are possible sources of faults during the development
process that can impair the expected “sequence of exe-
cution”.

The definition of multilevel properties is step 3 in the
design process of the defense software.

6. Defense software implementation

6.1. Error detection and recovery strategies
For a given failure, the error detection algorithm is

the implementation of the multilevel property, in other
words the detection assertion. The detection algorithm
uses information captured at various layers of the sys-
tems; the notion of hook gives a practical mean to im-
plement the reflective footprint required to verify some
assertion. The invocation of the error detection algo-
rithm depends on the multilevel property and can be
done within a hook routine. The algorithm should also
check if the detected error is sporadic or permanent.

Error recovery depends on degraded modes of the
application. However, degraded modes of automotive
applications are generally very sophisticated at the
system/application level. On the contrary, at the infra-

structure level, recovery actions are usually basic: re-
set, inhibition of applicative functions, termination and
restart of tasks, recovery of messages timeout reception
or non-acknowledgement emission. The idea is to use
infrastructure recovery controlled by application level
consideration, to take advantage of both approaches.
Practically, recovery is implemented by low-level serv-
ice calls that are performed either within hooks, or
within safety tasks. For example, when an error is de-
tected on the sequence of execution, the software ac-
tuators, which are used to modify the flow of execu-
tion, are the system call to terminate or to activate
tasks.

The use of standard hooks or additional hooks is
necessary to implement the defense software. In sum-
mary the hooks are used (i) to capture information, (ii)
to trigger the verification of the assertion and (iii) to
trigger the recovery actions.

The definition of error detection and recovery strate-

gies is step 4 in the design process of the defense soft-
ware.

6.2. Software instrumentation
In C programming, hooks are entry points, located at

selected places in the program. They are commonly
used as debugging breaking points or exception treat-
ments triggering. The idea is to use hooks as software
instrumentation, in order to collect and store the infor-
mation that is required to compute error detection algo-
rithms and to control recovery actions. The hooks are
used to (i) observe the computation in progress, (ii)
verify the assertions at Execution Control Points ac-
cording to a pre-defined Execution Context, and (iii)
finally execute recovery actions.

Using hook routines, the minimum information that
we log is:
• Time, which is needed to make timestamps;
• OS object identifiers that can be obtained by using

OS services;
• Runnables identifiers (which do not exit in the

AUTOSAR specification);
• Exchanged data, between runnables for instance.

The precise location of the hook depends the infor-
mation to get and on implementation optimization.
Actually, we need hooks around service calls that per-
form critical control or data flow actions. Putting
hooks before or after an interface can be easily realized
by automatic code generation.

 6

Fig. 2. Scheme of considered critical control and data flow

In the AUTOSAR context, the RTE [1] implements a
series of hook functions with empty routines that are
invoked automatically by the generated RTE when
selected events occur (e.g. several OS service calls,
runnables invocation, etc.). We use these hooks when
they exist in the AUTOSAR RTE specification, and
add the missing ones depending on our use case. For
instance, the OS primitive ChainTask (triggering a task
from another task) has no hook attached in the stan-
dard. For detection purposes first, we introduced such
hook that is invoked when the primitive ChainTask is
called. Actually, this hook can be used to notify the
termination and activation of tasks. On the other hand,
this hook may be also be of high interest for recovery,
e.g the ChainTask call can be inhibited when an error
is detected, or a safety task can be activated instead.

The definition of software instrumentation is step 5
in the design process of the defense software.

7. Simple case study

We have developed several AUTOSAR software

platforms, both on a virtual processor running on
UNIX and on a real embedded evaluation board. We
experienced the adaptation of serial automotive soft-
ware products to the AUTOSAR context, adding our
multilevel reflective mechanisms. We showed the fea-
sibility of our approach and obtained promising ro-
bustness improvement on the studied prototypes by
testing and early fault injection campaigns.

In this paper, we briefly illustrate the steps of our
approach with a simple synthetic case study, from step
2 to 6 (step 1 correspond to Section 4). Due to space
limitation, step 7 is out of the scope of this paper that
only intends to highlight the methodology.

7.1. Platform description
We have developed an embedded system, imple-

mented on a Freescale evaluation board Star12XETM 16
bit microcontroller, with memory protection unit. We
use Trampoline [6] an open source operating system
from IRCCYN compliant to AUTOSAR OS (see also
http://trampoline.rts-software.org). Our development
environment is CodeWarriorTM from Freescale. The
RTE is automatically generated by an AUTOSAR tool
from Vector (DaVinci DeveloperTM 2.2). We have syn-
thesized several application software components and
multiplexed them on the AUTOSAR infrastructure.
We develop our “multilevel reflective framework” on
selected critical control flow that realizes simplified
part of torque control arbitration.

Only the critical control and data flow is described
here (Figure 2). The case study application is com-
posed of three tasks that manage 6 runnables. (Real
names of functions and data have been omitted).
• The task Task_Driver, including runnables Run-

nable1 and Runnable2 is activated by an alarm
every 16 ms, with a priority equal to 3.

• The task Task_ESP, including runnables Run-
nable3 and Runnable4 is activated by an alarm
every 4 ms, with a priority equal to 5.

• The task Task_Torque, including runnables Run-
nable5 and Runnable6, is activated by an alarm
every 16 ms, with a priority equal to 1.

Runnables communicate through global variables (pro-
duce and consume data), as shown in Figure 2.

7.2. Failure model & safety assertions
We illustrate here 2 types of failures to be avoided:

the first one about control flow, and the second one
about data flow. Extracts from table 1 are given to
show the corresponding generic failures and assertions.
Then they are specialized to the case study.

 7

Failure & assertion n°1.
Functional sequence of

Execution
Non expected event

At Execution Control Point, critical sequences of
execution are referenced and other are non-expected.
Table 2. Extract of Table 1 (Control Flow)

The expected periodic atomic sequence pattern are

S1= {Runnable1, Runnable2}, S2= {Runnable3, Run-
nable4}, S3= {Runnable5, Runnable6}. If S1 or S3
atomic sequence is broken, it has to be re-executed. If
it is S2, degraded values are taken. Before S3, if S1 is
older than 4 executions of S2, S1 must be re-executed
before S3.

Failure & assertion n°2.

Time of communication
exchange

Missed synchronization

At Execution Control Point, several critical data must
be all produced before being consumed”.
Table 3. Extract of Table 1 (Data Flow)

Each runnable must have its inputs available before
it can run. If the produced data is inconsistent with the
consumed data, the logged data is taken as an input. If
the produced data is invalid, a default value is taken.

7.3. Defense software implementation

Error Detection. The algorithms are simply the im-
plementation of assertions 1 and 2. For the first asser-
tion, the atomicity of sequences S1, S2 and S3 are
checked at the beginning of each critical runnables
(Execution Control Point). The verification of prece-
dence of S3 is done before the execution of
Task_Torque. For the second assertion about data flow,
data consistency is checked before each critical run-
nables.

Error Recovery. When error is detected, recovery
actions are immediately taken. The re-execution of
runnables is implemented by the “ChainTask” OS serv-
ice, that terminates the current task and activates the
requested one. Concerning data flow, the decision to
take default values, is realized by a “Rte_IWrite” serv-
ice of AUTOSAR RTE. Default values are in our case
the last correct value.

Hooks. Information needs to be caught at runtime
before and after each critical runnable and task runs,
which gives the location where some hooks must be
added. Hooks around runnables log the runnable ID,
task ID and timestamp, which are updated at runtime.
These hooks type is defined in the RTE specification,
for debugging issues. Hooks around tasks log task ID

and timestamp. For this purpose, we use OS hooks
routines: “PreTaskHook” and “PostTaskHook”, that
occur at each context task switch.

About data flow, we need to use hooks around
“Rte_IWrite” and “Rte_IRead” service calls of the
RTE. They already exist in the standard. Within these
hook routines, we store the exchanged data and the
execution context (Runnable ID, task ID, timestamp).

Figure 3 illustrates, for assertion n°1, in pseudo-
code, the structure of functional software (RTE.c), de-
fense software (DefenseSW.c) and instrumentation
(Hooks). Bold instructions in RTE.c are original appli-
cation. Those in DefenseSW.c are the existing services
of the software infrastructure we use to perform fault
tolerance.

8. Related works and comments

Reflective computing provides separation of con-
cerns that is of interest for managing non-functional
mechanisms, e.g. implementing defense software as
error detection and recovery wrappers. Our work is
based on previous works: (i) wrapping for improving
robustness was carried out on real-time microkernels
[2], wrapping multilayered software using reflection
for fault-tolerance was described in [3].

Fig. 3. Defense software for assertion n°1

 8

The proposed approach is a lightweight alternative
wrt other industrial solutions to improve system ro-
bustness and safety in railways and aeronautics appli-
cations. In the electronic interlocking system Elektra
[7] a two-channel-approach with specification diversity
is used for detecting software design faults and provid-
ing safety (Safety bag). Airbus command and control
systems rely on the notion of self-checking component
composed of command and monitoring computers, in
the series A320 to A380 [8], as a corner stone for
heavy redundant architectures. Clearly such heavy ar-
chitectural solutions are not economically viable for
the automotive industry for the time being, due to
strong constraints in terms of resources.

The approach cannot compete with such redundant
architecture with respect to crash/hang faults, but can
be efficient to deal with residual software faults, inte-
gration faults, transient hardware faults. The underly-
ing assumption is that the defense software is more
reliable than the target system software (possibly in-
cluding COTS) because a strong validation process can
used during its development by the system integrator.
Ideally, the defense software should be isolated from
the target system software in a separate address space
(memory protection). This decision also depends on
performance tradeoffs.

The proposed work is consistent with the forthcom-
ing ISO26262 [9] standard that defines graded safety
levels called ASIL (Automotive Safety Integrity Level).
They are graded from A level to D level with a respec-
tively increasing criticality. We believe that our ap-
proach and framework provide a suitable technical
solution to improve the robustness of applications at
various safety levels running on the same platform.

9. Conclusion

Robustness of embedded software is a crucial issue

due to the increasing complexity software functions
and their supporting runtime environment. The multi-
plexing of software components on a given hardware
platform, the reuse of existing software components,
the flexibility of system configurations and the adapta-
tion to user needs are essential. To this aim, complex
multilayer software architectures have been defined.
Improving the robustness of application in such soft-
ware architecture is a real challenge. The automotive
industry is very active to meet this challenge through
standardization activities (AUTOSAR, ISO26262).
Our approach relies on multilevel reflection concepts.
The work reported in this paper shows that this ap-
proach is promising and that the proposed framework
can be of high interest to check runtime properties of
complex applications based on a multilayered system.

The initial case study showed the feasibility of the
approach and its consistency with the automotive ex-
ecutive layers concepts (runnables, RTE/OS and
hooks). This simple implementation already shows
interesting characteristics of the multilevel RTE (this is
where most of hooks can be placed even for applica-
tion or operating system purposes). Additional hooks
that we define and do not exist in existing specifica-
tions may be proposed to AUTOSAR consortium. The
implementation of the defense software is thus consis-
tent with the standards and flexible.

The main benefit of this approach is clearly that the
defense software can be developed as an external
software customized on a case-by-case basis for an
embedded application and its critical safety properties.

Current work focuses on fault injection to evaluate
the approach efficiency on more complex case studies.

10. References

[1] AUTomotive Open Standard ARchitecture,

http://www.autosar.org
[2] Rodriguez, M., Fabre, J.C., Arlat, J.: Wrapping real-

time systems from temporal logic specifications.
European Dependable Computing Conference (EDCC-
4, 2002), Toulouse (F), pp. 253--270 (2002).

[3] Taiani, F., Fabre, J.C., Killijian, M.O.: Towards
Implementing Multi-Layer Reflection for Fault-
Tolerance. IEEE Int. Conf on Dependable Systems and
Networks (DSN’2003), San Francisco (CA, USA), pp.
435--444 (2003).

[4] Voas, J.: A Defensive Approach to Certifying COTS
Software. Reliable Software Technologies Corporation,
Technical Report: RSTR-002-97-002.01 (1997).

[5] Maes, P.: Concepts and Experiments in Computational
Reflection. In Proc of Int. Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), Orlando, Florida. pp. 147--155 (1987).

[6] Béchennec, J.L., Briday, M., Faucou, S., Trinquet, Y.:
Trampoline : An Open Source
Implementation of the OSEK/VDX RTOS
Specification, IEEE Int. Conf. on Emerging
Technologies & Factory Automation (ETFA’2006),
Prague, Czech Republic. pp. 62--69 (2006).

[7] Kantz, H., Koza, C.: The ELEKTRA railway
Signaling-System: Field Experience with an Actively
Replicated System with Diversity. In Proc of the Int.
Conf. on Fault Tolerant Systems (FTCS 1995),
Pasadena, USA, pp 463--471(1995).

[8] P. Traverse, I. Lacaze, J. Souyris, “Airbus Fly-by-
Wire: A Total Approach to Dependability”, in Proc.
18h IFIP World Computer Congress, Toulouse (F),
pp.191--212, Kluwer Academic Publishers, 2004.

 [9] ISO/WD 26262-6: Road vehicles, Functional safety,
Part 6: Product development: software level (2007).

