Fault Tolerant Planning for Critical Robots

Benjamin Lussier, Matthieu Gallien, Jérémie Guiochet,
Félix Ingrand, Marc-Olivier Killijian, David Powell
LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
firstname.lastname @laas.fr

Abstract

Autonomous robots offer alluring perspectives in numer-
ous application domains: space rovers, satellites, medical
assistants, tour guides, etc. However, a severe lack of trust
in their dependability greatly reduces their possible usage.
In particular, autonomous systems make extensive use of
decisional mechanisms that are able to take complex and
adaptative decisions, but are very hard to validate. This
paper proposes a fault tolerance approach for decisional
planning components, which are almost mandatory in com-
plex autonomous systems. The proposed mechanisms fo-
cus on development faults in planning models and heuris-
tics, through the use of diversification. The paper presents
an implementation of these mechanisms on an existing au-
tonomous robot architecture, and evaluates their impact on
performance and reliability through the use of fault injec-
tion.

1. Introduction

Autonomous systems cover a large range of functionali-
ties and complexities, from robotic pets to space rovers, in-
cluding elderly care assistants, museum tour guides, and au-
tonomous vehicles. As successes arise in autonomous nav-
igation, exemplified by Mars rovers and the clearing of the
DARPA Grand Challenge [17], complex autonomous sys-
tems that are able to choose and execute high-level actions
without human supervision are not yet ready for real life
applications. Indeed, one of the major drawbacks in the
utilization of such systems is the difficulty to predict and
validate their behavior. To increase the confidence that we
may have in such systems so that they may be used in more
critical applications, we consider in this paper the tolerance
of residual development faults in planning models.

First, we introduce autonomous systems and specific as-
pects such as decisional mechanisms, robustness and plan-
ning. Second, we propose error detection and recovery
mechanisms that are appropriate for planning to tolerate de-

velopment faults in their application-dependent knowledge.
Finally, we validate the proposed mechanisms through an
experimental framework based on fault injection.

2. Dependability in Autonomous Systems

This section presents several aspects of autonomous sys-
tems relevant to their dependability. We present a definition
of autonomy and give key aspects of architectures for au-
tonomous robots.

2.1. Autonomy

A dictionary definition of “autonomy” is “the ability to
act independently”. However, in the field of robotics, this
definition is insufficient since it does not enable a distinc-
tion between classic automatic systems, that simply apply
preprogrammed reactions in response to the system’s inputs
(e.g., as in feedback control), and truly autonomous systems
that seek to carry out goal-oriented tasks whose implemen-
tation details are not defined in advance, either by neces-
sity (the input space is unbounded) or as a design strategy
(to simplify the code). We adopt here the definition of au-
tonomy given in [11]: “An unmanned system’s own abil-
ity of sensing, perceiving, analyzing, communicating, plan-
ning, decision-making, and acting, to achieve its goals as
assigned by its human operator(s) through designed human-
robot interaction (HRI). Autonomy is characterized into lev-
els by factors including mission complexity, environmental
difficulty, and level of HRI to accomplish the missions.”

The level of autonomy of an autonomous system is of-
ten discussed in terms of its “robustness”. Indeed, au-
tonomous robots are intended to cope with uncertainty and
non-nominal situations. A good or “’robust” robot is under-
stood to be one that can survive and fulfill its mission de-
spite partial knowledge about its environment as well as un-
foreseen contingencies such as obstacles, rough terrain and
failures. In this paper, we choose to distinguish between
robustness and fault tolerance as follows:

Robustness is the ability of an autonomous system to

cope with adverse environmental situations (lighting con-
ditions, unexpected obstacles, etc.) while providing an ac-
ceptable service.

Fault Tolerance is the ability of an autonomous system
to provide an acceptable service despite system faults (hard-
ware failures, software bugs, etc.).

2.2. Autonomous System Architectures

Four architectural styles for designing autonomous robot
systems are usually distinguished:

1. The sense-plan-act style is based on a closed loop of
three components devoted respectively to sensing the
environment, finding a plan to reach a goal state, and
acting on the environment according to the plan.

2. The subsumption style allows several “behavior” com-
ponents to simultaneously sense and act on the envi-
ronment, with actions that can be prioritized or cross-
inhibited between different components.

3. The multi-agent style considers a set of autonomous
systems or agents immersed in the same environment
and interacting to achieve their individual or shared
goals.

4. The hierarchical style defines several abstraction lev-
els with different real-time constraints, resulting in a
layered architecture.

Whereas the sense-plan-act style has largely been aban-
doned (at least as the basis for a monolithic architecture)
due to its poor real-time performance, the subsumption style
is still commonly used in entertainment robots, such as
Sony’s Aibo™. The multi-agent style is now receiving con-
siderable attention both as the basis for designing a taskable
robot [18] and in the context of agent swarms with emerg-
ing “intelligence” [20]. However, most practical robots cur-
rently adopt the hierarchical style, usually resulting in an ar-
chitecture with three layers [8]: (a) a decisional layer that is
responsible for elaborating plans to reach operator-defined
mission goals, (b) an executive layer that selects and se-
quences elementary actions that implement the high-level
tasks included with the current plan, and (c) a functional
layer that interfaces with the hardware sensory and action
devices. In some architectures the executive layer is merged
into either the decisional layer or the functional layer.

Hierarchical architectures for autonomy include the
RAX architecture developed by NASA as part of its Deep
Space One project [19], JPL’s CLARATy [23] and the
LAAS architecture [1] developed at LAAS-CNRS (the lat-
ter architecture will be described in more detail in 3.2.1).
From a dependability viewpoint, tolerance of hardware
faults is considered in some of these architectures [16].
For example, the RAX architecture includes a model-based
mode identification and reconfiguration (MIR) component

specifically aimed at diagnosing and recovering from faults
affecting hardware resources [19]. For development faults,
apart from on-line checking mechanisms aimed at guaran-
teeing safety [21], the focus has largely been on fault avoid-
ance approaches (rigorous design, and thorough verifica-
tion and testing). For example, intensive testing was carried
out on the RAX architecture [3]: six test beds were imple-
mented throughout the development process, incorporating
600 tests. The authors of [3] underline the relevance of in-
tensive testing, but acknowledge particular difficulties re-
garding autonomous systems, notably the problem of defin-
ing suitable test oracles. Given the inherent difficulty of
testing autonomous systems, we believe that a tolerance ap-
proach with respect to residual development faults should
be of considerable interest. Yet, to the best of our knowl-
edge, such an approach has not been previously envisaged.

2.3. Deliberation and Decision

From our perspective, deliberation and decision are the
key features of autonomy. Many different decisional capa-
bilities have been studied and deployed on robots or other
autonomous systems. Here, we discuss what distinguishes
such decisional capabilities from other programmed func-
tionalities.

Most decisional mechanisms boil down to some sort of
search in a very large state space. In general, this search
leads to a decision (a plan to reach a goal, a diagnosis, an
action, etc.). This search can be done either off-line or on-
line, that is in advance to produce a precompiled data struc-
ture or on the fly while the system is running. It may reason
about past states (as in diagnosis) or about future states (as
in planning). It may have a limited horizon or, conversely, a
very deep scope. But a key aspect is that the search needs to
be efficiently guided to avoid a combinatorial explosion. As
aresult, a decisional mechanism can be complete (it is guar-
anteed to find a solution if one exists) or not (it can “miss
it”), correct (solutions are always valid) or not (they are ap-
proximate), tractable (solutions are found in a polynomial
time and space) or not.

Another important feature of decisional mechanisms is
that they are organized in a way that makes a clear separa-
tion between the knowledge and the inference mechanism.
The aim is to make the inference mechanism (e.g., a search
engine) as generic and as independent as possible from the
application. Conversely, the knowledge is domain-specific
and typically specifies what states are reachable through
the search process and what is the “best” next state from
any given state. However, knowledge and inference mech-
anisms are often tightly linked in practice (e.g., heuristics
that guide a search engine).

The implementation of decisional mechanisms relies on
various formalisms (logic, neural networks, Markov mod-

els, constraints, simple temporal networks, etc.) and com-
putational models (constraint-based programming, logic
programming, heuristic search, dynamic programming,
etc.).

The most common decisional functionalities deployed
on autonomous systems are the following: planning, execu-
tion control, diagnosis, situation recognition and learning.
In this paper, we focus particularly on planning, which is
the activity of producing a plan to reach a goal from a given
state, using given action models (e.g., the activity plan for
the day of an exploration rover).

2.4. Planning

Planning is necessary in complex autonomous systems
as a mean to select and organize the robot’s future actions to
achieve specified high-level goals. We introduce here some
generalities on planning in autonomous systems, before pre-
senting dependability issues.

2.4.1. General Principle. Planning can be implemented in
several ways but, in practice, two approaches are preferred:
search in a state space and constraint planning.

Search in a state space manipulates a graph of actions
and states. It explores different action sequences from an
initial state to choose the most suitable one to achieve given
goals.

Constraint planning uses CSP (Constraint Satisfaction
Problem) solving to determine a possible evolution of the
system state that satisfies a set of constraints, some of which
specify the system goals. CSP solving is commonly an it-
erative algorithm assigning successively possible values to
each variable and verifying that all constraints remain satis-
fied.

Two robustness techniques are commonly implemented
to recover from a plan failure caused by adverse environ-
mental situations:

* Replanning consists in developing a new plan from the
current system state and still unresolved goals. De-
pending on the planning model complexity, replanning
may be significantly time costly. Other system activi-
ties are thus generally halted during replanning.

* Plan repair may be attempted before replanning, with
the aim of reducing the time lost in replanning. It uses
salvageable parts of the previous failed plan, that are
executed while the rest of the plan is being repaired.
However, if reducing the salvaged plan conflicts with
unresolved goals, plan repair is stopped and replanning
is initiated.

2.4.2. Dependability Issues. Planning, like other deci-
sional mechanisms, poses significant challenges for valida-
tion. Classic problems faced by testing and verification are

exacerbated. First, execution contexts in autonomous sys-
tems are neither controllable nor completely known; even
worse, consequences of the system actions are often uncer-
tain. Second, planning mechanisms have to be validated in
the complete architecture, as they aim to enhance function-
alities of the lower levels through high level abstractions
and actions. Integrated tests are thus necessary very early
in the development cycle. Third, the oracle problem' is
particularly difficult since (a) equally correct plans may be
completely different and (b) an unforeseen adverse environ-
mental situation may completely prevent some goals from
being achieved, thus ineluctably degrading the system per-
formance, however well it behaves (for example, cliffs, or
some other feature of the local terrain, may make a position
goal unreachable).

One way to address the latter issue is to define an oracle
as a set of constraints that necessarily and sufficiently char-
acterizes a correct plan: plans satisfying the constraints are
deemed correct. Such a technique was used for thorough
testing of the RAX planner during the NASA Deep Space
One project [3], or in the VAL validation tool [10]. Ex-
tensive collaboration of application and planner experts is
necessary to generate the correct set of constraints. A Fail-
ure Recovery Analysis tool is proposed in [9] to ease model
corrections during development.

Automatic static analysis may also be used to ascertain
properties on planning models, whereas manual static anal-
ysis requires domain experts to closely scrutinize models
proposed by planning developers. For example, the devel-
opment tool Planware [2] offers facilities for both types of
analysis.

Some work has also been done on evaluating planning
dependability. A measure for planner reliability is proposed
in [5], which compares theoretical results to experimen-
tal ones, showing a necessary compromise between tem-
poral failures (related to calculability of decisional mech-
anisms) and value failures (related to correctness of deci-
sional mechanisms). Later work [4] proposes concurrent
use of planners with diversified heuristics to answer this
compromise: a first heuristic, quick but dirty, is used when
a slower but more focussed heuristic fails to deliver a plan
in time. To our knowledge, no other fault tolerance mech-
anisms have been proposed in this domain. We strongly
believe, however, that such mechanisms are essential to pro-
vide more dependability in autonomous systems.

3. Fault Tolerant Planning

We investigate here how to tolerate design and imple-
mentation faults in planner models and heuristics. These
mechanisms are particularly well adapted to hierarchical

"How to conclude on correctness of a program’s outputs to selected test
inputs?

autonomous systems with a centralized planner at the de-
cisional layer.

3.1. Principles

Complementary to testing, diversity is the only known
approach to improve trust in the behavior of a critical sys-
tem regarding development faults (e.g., diversification is
used in software components of the Airbus A320, and in
hardware components of the Boeing B777). The general
principle of the mechanisms that we propose is to execute
sequentially or concurrently diversified variants of the plan-
ner, following similar approaches to recovery blocks [22]
and distributed recovery blocks [13]. In particular, diver-
sity is encouraged by forcing the use of different algorithms,
variable domains and parameters in the models and heuris-
tics of the variants.

3.1.1. Detection. Implementing error detection for deci-
sional mechanisms in general, and planners in particular, is
difficult [16]. There are often many different valid plans,
which can be quite dissimilar. Therefore, error detection
by comparison of redundantly-produced plans is not a vi-
able option. Thus, we must implement error detection by
independent means. Here, we propose four complementary
error detection mechanisms: a watchdog timer, a plan ana-
lyzer, a plan failure detector and an on-line goal checker.

A watchdog timer is used to detect when the search pro-
cess is too slow or when a critical failure such as a deadlock
occurs. Timing errors can be due to faults in the planner
model, in its search engine, or ineffectiveness of the search
heuristics.

A plan analyzer can be applied on the output of the plan-
ner. It is an acceptance test (i.e., an on-line oracle) that ver-
ifies that the produced plan satisfies a number of constraints
and properties. This set of constraints and properties can be
obtained from the system specification and from domain ex-
pertise but it must be diverse from the planner model. This
mechanism is able to detect errors due to faults in the plan-
ner model or heuristics, and in the planner itself.

A plan failure detector is a classical mechanism used in
robotics for execution control. Failure of an action which
is part of the plan may be due to an unresolvable adverse
environmental situation, or may indicate errors in the plan
due to faults in the knowledge or in the search engine. Usu-
ally, when such an action failure is raised, thesearch engine
tries to repair the plan. When this is not possible, it raises a
plan failure. We use these plan failure reports for detection
purposes.

An on-line goal checker verifies whether goals are
reached while the plan is executed. Goals can only be de-
clared as failed when every action of the plan has been car-
ried out. This implies that the checker maintains an internal

1. begin mission
2 failed_planners +«— 0;
3 while (goals # 0)
4. candidates <«— planners;
5 while (candidates # @ & goals # 0)
6 choose k such as (k € candidates)
& (k ¢ failed_planners);

7. candidates <« candidates \ k;
8. init_watchdog (max_duration);
9. send (plan) to k;
10. wait ¢ we wait any of these two events
11. O receive (plan_found) from k
12. stop watchdog;
13. if analyze(plan)=0K then
14. failed_planners «+ 0;
15. k.execute_plan();
% if the plan fails goals != empty
% and then we loop line 3
16. else
17. send(invalid_plan) to operator;
18. failed_planners <« failed planners U k;
19. end if
20. O watchdog timeout
21. failed_planners <+ failed_planners U k;
22. end wait
23. if failed_planners = planners then
24. raise exception "no valid plan

found in time";
% no remaining planner,
% the mission has failed

25. end if
26. end while
27. end while

28. end mission

Figure 1. Sequential Planning Policy

representation of the system state and of the goals that have
been reached.

3.1.2. Recovery. We propose two recovery mechanisms,
both using different planners based on diverse knowledge.

With the first mechanism, the planners are executed se-
quentially, one after another. The principle is given in Fig-
ure 1. Basically, each time an error is detected, we switch to
another planner until all goals have been reached or until all
planners fail in a row. Once all the planners have been used
and there are still some unsatisfied goals, we go back to the
initial set of planners. This algorithm illustrates the use of
the four detection mechanisms presented in Section 3.1.1:
watchdog timer (lines 8 and 20), plan analyzer (line 13),
plan failure detector (line 15), on-line goal checker (lines 3
and 5).

Reusing planners that have been previously detected as
failed makes sense for two different reasons: (a) a perfectly
correct plan can fail during execution due to an adverse en-
vironmental situation, and (b) some planners, even faulty,
can still be efficient for some settings since the situation
that activated the fault may have disappeared.

It is worth noting that the choice of the planners, and the
order in which they are used, is arbitrary in this particular
example (line 6). However, the choice of the planner could
take advantage of application-specific knowledge about the
most appropriate planner for the current situation or knowl-
edge about recently observed failure rates of the planners.

With the second recovery mechanism, the planners are
executed concurrently [15]. The main differences with re-
spect to the algorithm given in Figure 1 are: (a) the plan re-
quest message is sent to every planning candidate, (b) when
a correct plan is found, the other planners are requested to
stop planning, and (c) a watchdog timeout means that all the
planners have failed.

Here, the choice of planner order is implicit: the first
planner obtaining a plan is chosen. However, this could
lead to the repeated selection of the same faulty but rapid
planner. Some additional mechanism is thus required to cir-
cumvent this problem. For example, the planner selected
during the previous round can be withdrawn from the set of
candidates for the current round.

3.1.3. Coordination. From a dependability point of view,
the fault-tolerance mechanisms have to be as independent as
possible from the decisional layer, i.e., in this case from the
planners. This is why we propose to handle both the detec-
tion and recovery mechanisms and the services necessary
for their implementation in a middleware level component
called FTplan, standing for Fault-Tolerant PLANner coor-
dinator.

This component has to integrate the fault tolerance
mechanisms into the robot architecture. This implies es-
sentially communication between, and synchronization and
coordination of, the error detection mechanisms and the re-
dundant planners.

To avoid error propagation from a possible faulty plan-
ner, FTplan should not take any information that comes
from or depends on the planners themselves. The watchdog
can easily be implemented from the operating system tim-
ing primitives. Action failure detection is performed at the
execution control layer, so error reports can be obtained and
reused at the FTplan level. A plan analyzer performs sim-
ple acceptance checks using rules expressed independently
from the planners and their knowledge.

However, implementing an on-line goal checker without
relying on information obtained through the planner is more
difficult. FTplan maintains for this purpose its own system
state representation, based on information gathered from the
lower layers. It obtains this information from the execution
control layer, whose abstraction level is near to that of the
decisional layer. This system state representation is checked
against the set of goals prescribed for the current mission.

Whatever the particular recovery mechanism it imple-
ments, sequential or parallel, FTplan has to manage sev-
eral planners. It needs to communicate with them, e.g., for
sending plan requests or for updating their goals and system
state representations before replanning. It also needs to be
able to control their life cycle: start a new instance or even
stop one when it takes too long to produce a plan.

FTplan is intended to allow tolerance of development

faults in planners (and particularly in planning models). FT-
plan itself is not fault-tolerant, but being much simpler than
the planner it coordinates, we can safely rely on classic ver-
ification and testing to assume that it is fault-free.

3.2. Implementation

We present here the implementation of the proposed
mechanisms. We introduce the target architecture and then
give some implementation details about the FTplan compo-
nent.

3.2.1. LAAS architecture. The LAAS architecture is pre-
sented in [1], and some recent modifications have been pro-
posed in [14]. It has been successfully applied to several
mobile robots, some of which have performed missions in
real situations (human interaction or exploration). It is com-
posed of three main components® as presented in Figure 2:
GenoM modules, OpenPRS, and IxTeT.

The functional level is composed of a set of automati-
cally generated GenoM modules, each of them offering a
set of services, which perform computation (e.g., trajectory
movement calculation) or communication with physical de-
vices (sensors and actuators).

The procedural executive OpenPRS (Open Procedural
Reasoning System), is in charge of decomposing and re-
fining plan actions into lower-level actions executable by
functional components, and executing them. This compo-
nent links the decisional component (IxTeT) and the func-
tional level. During execution, OpenPRS reports any action
failures to the planner, in order to re-plan or repair the plan.
As several IxTeT actions can be performed concurrently, it
has also to schedule sequences of refined actions.

IxTeT (IndeXed TimE Table) is a temporal constraint
planner as presented in Section 2.4.1, combining high level
actions to build plans. Each action is described in a model
file used by the planner as a set of constraints on attributes
(e.g., robot position), resources (e.g., energy consumption),
numeric or temporal data (e.g., action duration). Then, a
valid plan is calculated combining a set of actions in such a
way that they are conflict-free and they fulfill the goals. The
description of actions in the planner model is critical for the
generation of successful plans and thus for the dependabil-
ity of the robot as a whole.

3.2.2. Fault Tolerant Planner Implementation. The fault
tolerance principles presented in Section 3.1 have been im-
plemented in a fault tolerant planner component as pre-
sented in Figure 3. This component replaces the original
component “Planner” presented in Figure 2. The FTplan
component is in charge of communicating with OpenPRS

2 An additional robustness component, R2C, is introduced in [21]. We
have not considered it in this study since its current implementation is not
compatible with our experimentation environment.

Planner
(IXTeT)

!

Procedural Executive
(OpenPRS)

Functional
modules

T

;ﬁw*

Physical layer

m@

Figure 2. The LAAS architecture

~0

~"Model1

IxTeT1 (]
Watchdog FTPlan A D

'\ |~ Goals

Model2

Fault tolerant planner

hSY

Procedural
Executive
(OpenPRS)

Figure 3. Fault tolerant planner

as the original planner does. To be consistent with the cur-
rent implementation, FTplan uses the same technologies as
OpenPRS and IxTeT for communication.

The current version of FTplan implements the sequential
redundant planner coordination algorithm presented earlier
(Section 3.1, Figure 1) with two IxTeT planners. Currently,
the plan analysis function is empty (it always return true) so
error detection relies solely on just three of the mechanisms
presented in Section 3.1.1: watchdog timer, plan failure de-
tection, and on-line goal checker.

The watchdog timer is launched at each start of planning.
As soon as a plan is found before the time limit (40 seconds
in our implementation: a sufficient time to produce plans in
our activities), the watchdog is stopped. If timeout occurs,
FTplan stops the current IxTeT, and sends a plan request
to the other IxTeT planner, until a plan is found or both
planners have failed. In the latter case, the system is put
in a safe state (i.e., all activities are ceased), and an error
message is sent to the operator.

On-line goal checker is performed after each action ex-
ecuted by OpenPRS that can result in a modification in the
goal achievements (for instance: a camera shot, a commu-
nication, movement of the robot, etc.). This checking is
carried out by analyzing the system state at the end of an
action, determining goals that may have been accomplished
and checking that no inconsistent actions have been exe-

cuted simultaneously. Unfulfilled goals are resubmitted to
the planner during the next replanning or at the end of plan
execution.

In the actual implementation, FTplan checks every 10ms
if there is a message from OpenPRS or one of the IxTeT
planners. In case of an action request from a planner or
an action report from OpenPRS, FTplan updates its system
representation before transmitting the request. If the request
is a plan execution failure (the system has not been able
to perform the actions of the plan), then FTplan launches
a re-plan using the sequential mechanism. If the request
indicates that the actions are finished, then FTplan checks if
the goals have been reached.

4. Mechanism Validation

We present here the validation process we have followed
to assess the performance and efficacy of the proposed fault
tolerant mechanisms. We discuss first a validation frame-
work that extensively uses simulation and fault injection,
then present experimental results.

4.1. Framework for Validation

Our validation framework relies on simulation and fault
injection. Simulation is used since it is both safer and more
practical to exercise the autonomy software on a simulated
robot than on a real one. Fault injection is used since it is
the only way to test the fault tolerance mechanisms with re-
spect to their specific inputs, i.e., faults in planning knowl-
edge. In the absence of any evidence regarding real faults,
there is no other practical choice than to rely on mutations®,
which have been found to efficiently simulate real faults in
imperative languages [7].

We now introduce successively the targeted software ar-
chitecture, the workload, the faultload, and the readouts and
measurements we obtain from system activity.

4.1.1. Software Architecture. Our simulation environment
is represented in Figure 4. It incorporates three elements:
an open source robot simulator named Gazebo, an interface
library named Pocosim, and the components of the LAAS
architecture already presented in section 3.2.1.

The robot simulator Gazebo* is used to simulate the
physical world and the actions of the autonomous system; it
takes as input a file describing the environment of the simu-
lation (mainly a list of static or dynamic obstacles contain-
ing their position, and the physical description of the robot)
and executes the movement of the robot and dynamic obsta-
cles, and possible interactions between objects.

3 A mutation is a syntactic modification of an existing program.
4“The player/stage project”, http:/playerstage.sourceforge.net

L]

rTTTTmmooeseeeeeeoooooooocienns 5+""Model1

1 Fault tolerant ‘

; planner ;

: “r._ Goals

3 | OpenPRS | : D

‘ i ' Model2

' ’ GENOM Modules ‘ : LAAS

: ' ARCHITECTURE
| ’ Pocosim ‘ i SIMULATION

: I '+ ENVIRONMENT
’ Gazebo S

gy g g g gl 2 Environment
Description

Figure 4. Simulation environment

The Pocosim library [12] is a software bridge between
the simulated robot (executed on Gazebo) and the software
commands generated by the GenoM modules: it transforms
commands to the actuators into movements or actions to
be executed on the simulated robot, and relays the sensor
inputs that Gazebo produces from the simulation.

Our autonomous system is based on an existing ATRV
(A1l Terrain Robotic Vehicle) robot, and employs GenoM
software modules interfaced with the Gazebo simulated
hardware. The upper layer of the LAAS architecture ex-
ecutes as presented in the previous section. Two different
models are used with the IxTeT planners. The first model
was thoroughly tested and used on a real ATRV robot; we
use it as primary model and as target for fault injection. We
specifically developed the second model through forced di-
versification of the first: for example, the robot position is
characterized numerically in the first model and symboli-
cally in the second.

4.1.2. Workload. Our workload mimics the possible activ-
ity of a space rover. The system is required to achieve three
subsets of goals: fake science photos at specific locations
(in any order), communicate with an orbiter during speci-
fied visibility windows, and be back at the initial position at
the end of the mission.

To partially address the fact that the robot must operate
in an open unknown environment, we chose to activate the
system’s functionalities in some representative situations re-
sulting from combinations of sets of missions and worlds.
A mission encompasses the number and location of pho-
tos to be taken, and the number and occurrence of visibility
windows. A world is a set of static obstacles unknown to
the robot (possibly blocking the system from executing one
of its goals), which introduces uncertainties and stresses the
system navigation mechanism.

We implemented four missions and four worlds, thus ap-
plying sixteen execution contexts to each mutation. Mis-

sions are referenced as gradually more difficult M1, M2,
M3 and M4: M1 consists in two communications and three
photos in close locations, whereas M4 consists in four com-
munications and five far apart photos. Environments are ref-
erenced as worlds W1, W2, W3 and W4. W1 is an empty
world, with no obstacles to hinder plan execution. W2 and
W3 contains small cylindrical obstacles, whereas W4 in-
cludes large rectangular obstacles that may pose great dif-
ficulties to the navigation module, and are susceptible to
endlessly block the robot path.

In addition, several equivalent experiments are needed
to address the non-determinacy of the experiments. This is
due to asynchrony in the various subsystems of the robot
and in the underlying operating systems: task scheduling
differences between similar experiments may degrade into
task failures and possibly unsatisfied goals, even in the ab-
sence of faults. We thus execute each basic experiment three
times, leading to a total of 48 experiments per mutation.
More repetition would of course be needed for statistical in-
ference on the basic experiments but this would have led to
a total number of experiments higher than that which could
have been carried out with the ressources available (each
basic experiment lasts about 20 minutes).

4.1.3. Faultload. To assess performance and efficacy of the
proposed fault tolerance mechanisms, we inject faults in a
planning model by random mutation of the model source
code (i.e., in Modell of Figure 3). Five types of possible
mutations were identified from the model syntax:

1. Substitution of numerical values: each numerical value
is exchanged with members of a set of real numbers
that encompasses (a) all numerical variables in all the
tasks of the model, (b) a set of specific values (such as
0, 1 or -1), and (c) a set of randomly-selected values.

2. Substitution of variables: since the scope of a variable
is limited to the task where it is defined, numerical
(resp. temporal) variables are exchanged with all nu-
merical (resp. temporal) variables of the same task.

3. Substitution of attribute values: in the IxTeT formal-
ism, attributes are the different variables that together
describe the system state. Attribute values in the model
are exchanged with other possible values in the range
of the attribute.

4. Substitution of language operators: in addition to clas-
sic numerical operators on temporal and numerical val-
ues, the IxTeT formalism employs specific operators,
such as “nonPreemptive” (that indicates that a task
cannot be interrupted by the executive).

5. Removal of a constraint relation: a randomly selected
constraint on attributes or variables is removed from
the model.

Substitution mutations were automatically generated us-
ing the SESAME tool [6]. Using an off-line compilation,

this tool detects and eliminates binary equivalent or syntac-
tically incorrect mutants. Removal of random constraint re-
lations was carried out through a PERL script and added to
the mutations generated by SESAME. All in all, more than
1000 mutants were generated from the first model.

For better representativeness of injected faults, we con-
sider only mutants that are able to find a plan in at least one
mission (we consider that models that systematically fail
would easily be detected during the development phase). As
a simple optimization, given our limited resources, we also
chose to carry out a simple manual analysis aimed at elim-
inating mutants that evidently could not respect the above
criterion.

4.1.4. Records and Measurements. Numerous log files
are generated by a single experiment: simulated data from
Gazebo (including robot position and hardware module ac-
tivity), output messages from GenoM modules and Open-
PRS, requests and reports sent and received by each plan-
ner, as well as outputs of the planning process.

Problems arise however in trying to condense this
amount of data into significant relevant measures. Contrary
to more classic mutation experiments, the result of an exper-
iment cannot be easily dichomotized as either failed or suc-
cessful. As previously mentioned, an autonomous system is
confronted with partially unknown environments and situa-
tions, and some of its goals may be difficult or even impos-
sible to achieve in some contexts. Thus, assessment of the
results of a mission must be graded into more than just two
levels. Moreover, detection of equivalent mutants is com-
plexified by the non-deterministic context of autonomous
systems

To answer these issues to some extent, we chose to cate-
gorize the quality of the result of an experiment with: (a) the
subset of goals that have been successfully achieved, and (b)
performance results such as the mission execution time and
the distance covered by the robot to achieve its goals. Due
to space constraints, we focus in the rest of this paper on
measurements relative to the mission goals.

4.2. Results

We present in this part several experimental results using
the evaluation framework previously introduced. Experi-
ments were executed on 1386 systems with 3.2 GHz CPU
and the Linux OS. We first study the performance cost of
the proposed mechanisms, then present their efficacy in tol-
erating injected faults.

4.2.1. Fault-free Performance. To determine the overhead
of the proposed fault tolerance mechanisms, we first con-
centrate on supposed fault-free models. Figure 5 presents
the impact of FTplan on the system behavior.

Note that results in W4 must be treated with caution, as

%-=Photos %-Comms %-=Return %Bad Missions #Replan
0 50 100 0 50 1000 50 100 0 50 100 0 5

M1 W1
w2
w3
wa &P B
M2 W1
w2
w3
w4
M3 W1 [SS9 S S
w2 s
w3]
wa S S lrzz72
M4 W1
w2
ws —
wa = =22 2222 EE=E

(a) (b) () (d) (e)
Robot1 Robot2 C—1 Robot1/2

Figure 5. Impact of FTplan (without injected
faults): This figure studies the impact of the FTplan com-
ponent on fault-free system behavior by comparing three
different robots: Robotl uses our first model, Robot2 uses
our second model, and Robotl/2 contains an FTplan com-
ponent that uses successively our first and second models.
For each considered activity (MIWI to M4W4), the figure
shows five different measures: (a) (b) (c) three failure pro-
portions to reach the different types of goals in a mission
(resp. photos, communications, and returns to initial po-
sition), (d) failure proportion of the whole mission (a mis-
sion is considered failed if one or more mission goals were
not achieved), and (e) the mean number of replanning op-
erations observed during one experiment (in the case of
Robotl/2, this number is equivalent to the number of model
switches during the mission).

this world contains large obstacles that may cause naviga-
tional failures and block the robot path forever. As our work
focus on planning model faults rather than limitations of
functional modules, we consider that success in this world
relies more on serendipity in the choice of plan rather than
correctness of the planner model. It is however interesting
to study the system reaction to unforeseen and unforgiving
situations that possibly arise in an open and uncontrolled en-
vironment. Note that these results show that different mod-
els give rise to different failure behaviors: particularly in
W4, the three systems fail differently.

W4 set aside, results are globally very good: Robot1 and
Robot1/2 succeed in all their goals, while Robot2 fails a
few goals in M3, and all its return goals in M4W1. These
failures may be attributed to a larger set of constraints in
this model that may be costly in performance, and under-
estimated distance declarations. The mean activity time of
the systems (that is the time until the system stops all activ-
ity in a mission) is an average of 404 seconds for Robotl,
376 seconds for Robot2, and 405 seconds for Robot1/2.
Time performance-wise, the three systems are thus roughly

%-=Photos %-Comms %-—Return %Bad Missions #Replan
0 50 100 0 50 100 0 50 100 0 50 100 10 20 30

o

o O EEEE EEEE EE B
w2 . — —— A
wi] |] L] =
wa 2L I [71

M2 W1 =
w2 2]
w3]
w4 = = —

M3 W1 zzz
w2 72
w3 |
wa 254 —a

M4 W1 |z
w2 Z2]
w3 = = ==
ws S Bl =3

(a) (b) () (d) (e)
Robot1* [— Robot1/1*

Figure 6. Impact of switching overhead (with-
out injected faults): This figure presents the impact
of numerous model switches on fault-free system behavior
by comparing two different robots: Robotl* uses our first
model, and Robotl/1* contains an FTplan component that
switches between two exact copies of our first model. Con-
sequently, neither of the robots is fault-tolerant. The results
concern only the cost of model switches. To provoke many
model switches, both robots use a version of the IxTeT plan-
ner without the optimizing functionality of plan repair: any
failed action systematically leads to complete replanning,
with an additional model switch for Robotl/1*.

equivalent.

Although the results are mostly positive, showing that
FTplan’s main execution loop does not severely decrease
goal achievement or performance in the chosen scenarios,
they are still insufficient to assess the overhead of planner
switches as very few occurred in these fault-free experi-
ments. This overhead is further studied in experiments pre-
sented in Figure 6.

We effectively see that there are many more replannings
(and thus model switches) than in the previous experiments
(a mean per experiment of 8.3 against 0.3 for Robot1*, and
8.9 against 0.4 for Robot1/1*). M1W2 appears as a singu-
larity for Robot1/1* as after a few minutes of execution, the
IxTeT planner finds no solution in its current situation. We
believe this due to an elusive bug in either the model, FT-
plan, or the IxTeT planner. However, the same experiment
with Robot1/2* (using diversification through the first and
second models) gives successful missions, suggesting that
the bug lies in our modified version of IxTeT.

Apart from this singularity, Robot1/1* only fails more
goals than Robot1* in the over-stressing W4 execution con-
texts, as well as the complex M4W3. Setting aside W4
(and the M1W?2 singularity), the mean activity time of the
systems is 381 seconds for Robotl* and 431 seconds for
Robotl/1*, indicating an overhead of 13%. Including W4,

%-—Photos %-Comms %-Return %Bad Missions
0 50 100 0 50 100 0 50 100 0 50 100

A == T = = B === S
memswiws=[| [] FA 1] P]

(@) (b) (©) (d)
Robot1 [—1 Robot1/2

Figure 7. Impact of planner redundancy (with
injected faults): This figure presents overall results
achieved for all 28 mutations, both with and without the
heavily-constrained world W4.

the time is 456 seconds for Robotl1* and 535 seconds for
Robot1/1%#, indicating an overhead of 17%. We deem these
results as quite acceptable considering the negative impact
of discarding plan repair.

4.2.2. Fault-tolerance efficacy. To test the efficacy of the
proposed mechanisms and the FTplan component, we in-
jected 38 faults in our first model, realizing more than 3500
experiments equivalent to 1200 hours of testing. We dis-
carded 10 mutants that were unable to find a plan for any
of the four missions’. We believe that five of the remaining
mutants are equivalent to the fault-free model. However,
the non-deterministic nature of autonomous systems makes
it delicate to define objective equivalence criteria. We thus
include the results obtained with these five mutants.

The 28 considered mutations are categorized in the fol-
lowing manner: three substitutions of attribute values, six
substitutions of variables, ten substitutions of numerical val-
ues, four substitutions of operators, and six removals of
constraints. The mutants were executed on Robotl and
Robot1/2. The results are presented in Figure 7.

These results give objective evidence that model diver-
sification favorably contributes to fault tolerance of an au-
tonomous system considering the proposed faultload: fail-
ure decreases for photo goals of 62% (respectively, 50% in-
cluding W4), 70% (64%) for communication goals, 80%
(58%) for returns goals, and 41% (29%) for whole missions.
Note, however, that RobotFT in the presence of injected
faults is less successful than a single fault-free model. This
apparent decrease in dependability is explained by the fact
that incorrect plans are only detected when their execution
has failed, possibly rendering one or more goals unachiev-
able, despite recovery. This underlines the importance of
plan analysis procedures to attempt to detect errors in plans
before they are executed.

5. Conclusion

To our knowledge, the work presented in this paper is the
first proposition of fault tolerant mechanisms based on di-

5In this case, Robot1/2 gives the same results as the fault-free Model2:
nearly perfect success rates in W1, W2 and W3.

versified planning models. We proposed a component pro-
viding error detection and recovery appropriate for fault-
tolerant planning, and implemented it in the LAAS archi-
tecture. This component can use four detection mechanisms
(watchdog timer, plan failure detector, on-line goal checker
and plan analyzer), and two recovery policies (sequential
planning and concurrent planning). Our current implemen-
tation is that of sequential planning associated with the first
three error detection mechanisms.

To assess the performance overhead and the efficacy
of the proposed mechanisms, we developed a validation
framework that exercises the software on a simulated robot
platform, and carried out what we believe to be the first ever
mutation experiments on declarative models. These experi-
ments were conclusive in showing that the proposed mech-
anisms do not severely degrade the system performance in
the chosen scenarios, yet usefully improve the system be-
havior in the presence of model faults.

There are many directions for future research. First, im-
plementation of a plan analyzer should allow much better
goal success levels to be achieved in the presence of faults
since it should increase error detection coverage and pro-
vide lower latency. Implementation of the concurrent plan-
ning policy and comparison with the sequential planning
policy are also of interest. Moreover, we would like to eval-
uate diversification on planning heuristics rather than just
models and investigate also the additional detection capa-
bilities of recent additions to the LAAS architecture [21].
Finally, many more experiments are needed to improve the
statistical relevance of the results. The use of a large com-
puter grid would drastically improve the number of experi-
ments that could be executed in reasonable time and elim-
inate the need for manual inspection to remove trivial mu-
tants.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An
Architecture for Autonomy. The International Journal of Robotics
Research, 17(4):315-337, April 1998.

[2] M. Becker and D. R. Smith. Model Validation in Planware. In ICAPS
2005 Workshop on Verification and Validation of Model-Based Plan-
ning and Scheduling Systems, Monterey, California, June 6-7, 2005.

[3] D. E. Bernard, E. B. Gamble, N. F. Rouquette, B. Smith, Y. W.
Tung, N. Muscettola, G. A. Dorias, B. Kanefsky, J. Kurien, W. Mil-
lar, P. Nayal, K. Rajan, and W. Taylor. Remote Agent Experiment
DS1 Technology Validation Report. Ames Research Center and JPL,
2000.

[4] 1. R. Chen. On the Reliability of Al Planning Software in Real-Time
Applications. [EEE Transactions on Reliability, 46(1):81-87, March
1997.

[5] 1. R. Chen, F. B. Bastani, and T. W. Tsao. On the Reliability of Al
Planning Software in Real-Time Applications. IEEE Transactions
on Knowledge and Data Engineering, 7(1):14-25, February 1995.

[6] Y. Crouzet, H. Waeselynck, B. Lussier, and D. Powell. The SESAME
experience: from assembly languages to declarative models. In

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Proceedings of the 2nd Workshop on Mutation Analysis (Muta-
tion’2006), Raleigh, NC, November 7, 2006.

M. Daran and P. Thévenod-Fosse. Software error analysis: a real
case study involving real faults and mutations. In Proceedings of the
1996 ACM SIGSOFT international symposium on Software testing
and analysis, San Diego, California, January 8-10, 1996.

E. Gat. On Three-Layer Architectures. In Artificial Intelligence and
Mobile Robots, D. Kortenkamp, R. P. Bonnasso, and R. Murphy edi-
tors, MIT/AAAI Press, pages 195-210, 1997.

A. E. Howe. Improving the Reliability of Artificial Intelligence Plan-
ning Systems by Analyzing their Failure Recovery. IEEE Trans-
actions on Knowledge and Data Engineering, 7(1):14-25, February
1995.

R. Howey, D. Long, and M. Fox. VAL: Automatic Plan Validation,
Continuous Effects and Mixed Initiative Planning using PDDL. In
16th IEEE International Conference on Tools with Artificial Intelli-
gence, Boca Raton, Florida, November 15-17, 2004.

H. M. Huang, editor. Autonomy Levels for Unmanned Systems (AL-
FUS) Framework. Number NIST Special Publication 1011. 2004.

S. Joyeux, A. Lampe, R. Alami, and S. Lacroix. Simulation in
the LAAS Architecture. In Proceedings of Principles and Practice
of Software Development in Robotics (SDIR2005), ICRA workshop,
Barcelona, Spain, April 18, 2005.

K. H. Kim and H. O. Welch. Distributed Execution of Recovery
Blocks: An Approach for Uniform Treatment of Hardware and Soft-
ware Faults in Real-Time Applications. IEEE Transactions on Com-
puters, C-38:626-636, 1989.

S. Lemai and F. Ingrand. Interleaving Temporal Planning and Ex-
ecution in Robotics Domains. In Proceedings of AAAI-04, pages
617-622, San Jose, California, July 25-29, 2004.

B. Lussier. Fault Tolerance in Autonomous Systems. PhD thesis,
Institut National Polytechnique de Toulouse, 2007 (in French).

B. Lussier, A. Lampe, R. Chatila, F. Ingrand, M. O. Killijian, and
D. Powell. Fault Tolerance in Autonomous Systems: How and How
Much? 1In Proceedings of the 4th IARP/IEEE-RAS/EURON Joint
Workshop on Technical Challenge for Dependable Robots in Human
Environments, Nagoya, Japan, June 16-18, 2005.

M. Monterlo, S. Thrun, H. Dahlkamp, D. Stavens, and S. Strohband.
Winning the DARPA Grand Challenge with an AI Robot. In Amer-
ican Association of Artificial Intelligence 2006 (AAAI06), Boston,
MA, July 17-20, 2006.

N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt.
IDEA: Planning at the Core of Autonomous Reactive Agents. In
AIPS 2002 Workshop on On-line Planning and Scheduling, Toulouse,
France, April 22, 2002. http://citeseer.nj.nec.com/593897.html.

N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote
Agent: To Boldly Go Where No Al System Has Gone Before. Arti-
ficial Intelligence, 103(1-2):5-47, 1998.

J. L. Pearce, B. Powers, C. Hess, P. E. Rybski, S. A. Stoeter, and
N. Papanikolopoulos. Using virtual pheromones and cameras for
dispersing a team of multiple miniature robots. Journal of Intelligent
and Robotic Systems, 45:307-21, 2006.

F. Py and F. Ingrand. Real-Time Execution Control for Autonomous
Systems. In Proceedings of the 2nd European Congress ERTS, Em-
bedded Real Time Software, Toulouse, France, January 21-23, 2004.

B. Randell. System Structure for Software Fault Tolerance. IEEE
Transactions on Software Engineering, SE-1:220-232, 1975.

R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das.
CLARAty: Coupled Layer Architecture for Robotic Autonomy.
Technical Report D-19975, NASA - Jet Propulsion Laboratory, 2000.

