| mplementing a Reflective Fault-Tolerant CORBA System

Marc-Olivier Killijian and Jean Charles Fabre
LAAS-CNRS, 7, Avenue du Colonel Roche, 31077 Toulouse cedex 04, France

{killijian, fabre} @laas.fr

Abstract

The use of reflection becomes today popular for the
implementation of non-functional mechanisms such as for
fault-tolerance. The main benefits of reflection are
separation of concerns between the application and the
mechanisms and transparency from the application
programmer point of view. Unfortunately, metaobject
protocols available today are not satisfactory with
respect to necessary features needed for implementing
fault tolerance mechanisms. In previous papers, we
proposed a specialised MOP, based on Corba, well
adapted for such mechanisms. We deliberately focus in
this paper on the implementation of this metaobject
protocol using compile-time reflection and its use for
implementing distributed fault tolerance. We present the
design and the implementation of a fault-tolerant Corba
system using this metaobject together with some
preliminary experimental results. From the lessons learnt
from this work, we briefly address the benefits of
reflection in other layers of a system for dependability
issues.

1. Introduction and Related Work

Reflection is the property of a system by which its
structure and operation can be controlled and updated
from outside itself [12]. This definition introduces the
notion of metainformation that correspond to a self-
representation of a component that is visible and
manageable from outside the component. This information
can be used to model the component operation at an
upper layer, called metalevel. A reflective component also
provides external means to act upon the component
operation (the metalevel activate actions at the so-called
baselevel, i.e. the application level). Reflection
encompasses two different processes. reification
provides the needed information to the metalevel and
intercession provides control over baselevel actions.
Defining a reflective component involves defining
precisely these two processes: (i) what is the information
needed to observe the internal structure and operation of

the component? (ii) what are the actions that can be
applied to control the component operation? Answering
these questions depends very much on the application
context. Clearly, these processes lead to interactions
between baselevel objects and metalevel objects (i.e
metaobjects), called MetaObject Protocol (MOP). The
specification of a MOP may vary considerably depending
on the complexity of the model that is required at the
metalevel for implementing the desired mechanisms. A
reflective approach offers, in principle, very interesting
properties (transparency, adaptation, composition of
mechanisms) for implementing non-functional
mechanisms.

In many research projects advocating the use of

reflection for fault-tolerance, very simple reflective
mechanisms have been used, only interception
mechanisms (redirection of messages by renaming

destinations as in Maud [1], tricky use of exception
handling of Smalltalk asin Garf [7]). The Friends[5] project
was based on a metaobject protocol provided by Open
C++ vl [4]. Although this MOP offers limited reflective
capabilities, it provides not only interception, but also
intercession in the form of access to baselevel methods
and object attributes. Friends showed that a runtime MOP
isvery appealing for the design and the implementation of
fault tolerant systems.

The need for reflective features is currently finding its
way into industrial products and standards. For instance,
the reflective APl provided by the Java Virtua Machine
(JVM) adlows introspection into the language runtime
support to get access to the state of Java objects (object
serialization [18]). While this mechanism was provided
primarily for transmitting objects as remote call parameters,
it can be used in fault tolerance protocols to checkpoint
object replicas or to clone a new object when necessary.
Limited reflective features have also been specified in
CORBA in theform of interceptors[16] that provide means
to control object interactions, and object-by-value
facilities [15] that provide object serialization. The
MetaObject Facility (MOF) [14] is rather different from the
notion of MOP but provides an external description of the

structure of CORBA objects (structural metainformation).
All these features, when implemented, will be useful for
the implementation of non-functional mechanisms.

Today, many papers have explained the benefits of
reflection for fault-tolerant computing. It is worth noting,
however, that few information is given about
implementation issues. The specification and the design of
areflective Corba fault tolerant system have already been
described in [10]. We focus in this paper on
implementation issues of such a system, on top of Corba
considered asa COTS.

The remainder of this paper is organised as follows.
First, Section 2 presents an overview of the metaobject
protocol we designed, reviewing the key interfaces and
interactions of the various components. Section 3
describes how this metaobject protocol has been
implemented using compile-time reflection. Section 4 then
describes the implementation of a reflective Corba fault
tolerant system based on the use of this protocol,
presents some services necessary for fault tolerance,
illustrates the use of the metaobject protocol on a primary-
backup mechanism and gives an overview of some
preliminary results. Section 5 draws the lessons learnt from
thiswork and Section 6 concludes this paper.

2. Definition of a Metaobject Protocol for
Fault Tolerance

2.1. Overview of the MOP

In object-oriented systems, method invocation
corresponds to the emission and the reception of
messages. |n fault tolerant systems, the implementation of
replication strategies rely on intercepting both the
emission and the reception invocation requests between
CORBA objects. The second important aspect to be
controlled is the creation and destruction of replicated
entities. Control over the creation of an object is needed to
control the creation of multiple replicas. This aspect
covers both the creation of new objects (installation of a
CORBA object) but also the cloning of a new replicawhen
one has failed (reconfiguration of the service provided by
a CORBA object). Reification and intercession of object
destruction is also necessary, for shutting down a given
CORBA object, i.e. the various replicas are deleted by the
metalevel mechanisms. The above aspects correspond to
behavioural reflection.

In traditional fault-tolerant systems, including current
fault tolerant object oriented systems, the state
management functions are usually user-defined. This is
obviously a major drawback since a wrong definition of
these checkpoint functions makes the fault tolerance

mechanisms ineffective. In contrast, runtime reflection can
provide basic functions for state capture and restoration.
In our work, compile-time reflection is used to implement
object seridization in C++ [11]. This approach is similar to
compiler based checkpointing as in Porch [17], but the
object model considerably simplifies the analysis of
application source code. Compile-time reflection is also
used in companion work [9] for obtaining a complete state
image of C++ objects but this work concentrates on
specific language issues whereas, we focus here on the
notion of a CORBA object.

Using an object-oriented model, the complete internal
state of an object can be defined as the set of its
attributes. We consider local checkpoints as the whole set
of object attributes values. Nevertheless, in practice, it can
be useful to identify the part of the object state that has
been modified since the last checkpoint. Clearly, between
two successive checkpoints, only a subset of the
attributes is subject to change. This subset of modified
attributes is called the partial internal state of the object.
Structural reflection is thus interesting to automate the
object state capture.

The last kind of information that must be reified is the
link between objects and metaobjects. We aim here at
providing a mechanism for changing this connection when
necessary, for example to change the fault tolerance
strategy by replacing the metaobject at runtime. The
metaobject protocol must therefore provide a way of
controlling the link between objects and metaobjects, i.e.
the references that these entities own on each other. The
M OP must enable replacing both objects (on-line updates)
and metaobjects (configuration, e.g. new fault tolerance
strategy) at each end of thislink.

2.2. Definition and Design of the MOP

The metaobject protocol is defined as a set of
interfaces belonging to the various entities involved in
this protocol. On CORBA, the protocol entities (see Fig. 1)
and their corresponding role are the following:

- the client uses the server’s services through a stub
that isreified;

- the metastub controls the behaviour and information of
the stub and forwards invocations to the metaobject;

- the metaobj ect receives invocations from the metastub,
controls the behaviour and monitors the state of its
server;

- the server implements services via a standard IDL
interface;

- the metaobject factory is responsible for the creation of
the metaobjects and metastubs on demand from the
stubs and the objects.

Client/Server messages

Metaobject

Metaobject
Factory

ReifiedObject

Server

. invocation
Service

Fig. 1. Entities co-operating using the MOP

MetaObject
creation

MetaStub
creation

The ReifiedObject interface (see Fig. 2) implemented by
the server object, is used by the metaobject to control the
execution of baselevel methods and to obtain or restore
the state of the object. Using this interface, the metaobject
can activate the service methods, or the
constructor/destructor of the baselevel object. This
interface is composed of the following methods:

Base StartUp/Base _CleanUp is used to activate the
constructor/destructor of the base object and

Base_MethodCall is used to activate service methods.

Base SaveState and Base RestoreState are used,
respectively, to obtain or to restore the state of the
base object.

Base GetMetaobject and Base SetMetaobject are
used to obtain and change the metaobject reference of
the base object.

interface ReifiedObject {

/1l State handling nethods
any Base_SaveState();
voi d Base_RestoreState(in any newState);
/1 Intercession methods
voi d Base_StartUp (in long constructorlD,
i nout any argunments);
voi d Base_MethodCal |l (in | ong methodl D,
i nout any argunents);
voi d Base_Cl eanUp();
/1 Link handling methods
Met aobj ect Base_Get Met aobj ect () ;
voi d Base_Set Met aobj ect

(in Metaobject newMetaobjet);

Fig. 2. The ReifiedObject IDL interface

The Metaobject interface (see Fig. 3.), implemented by
the metaobject, is used by the server to reflect actions and
aso to handle the object-metaobject link. This interface is
composed of the following methods:

Meta StartUp/Meta_CleanUp reifiesa
constructor/destructor invocation,

Meta_MethodCall reifies method invocation,

Meta_GetObject and Meta_SetObject, respectively,
return or update the reference of the baselevel object
controlled by the metaobject.

interface Metaobject {

/1 Reification methods
void Meta_StartUp (in Iong constuctorl D,
i nout any arguments);
void Meta_MethodCall (in | ong nethodl D,
i nout any

argunents) ;

void Meta_Cl eanUp();

/1 Link handling methods

Obj ect Meta_Get Obj ect ();
void Meta_Set Object(in Object newObject);
b

Fig. 3. The Metaobject IDL interface

The stub is a proxy of the server in the client’ s address
space. The client invokes stub methods that are forwarded
to the real server. Controlling invocation requests at the
source is necessary in some replication mechanisms, thus
the stub’s behaviour must be reified. We thus introduce
the notion of ReifiedStub interface, which is similar to the
ReifiedObject interface. However, the state of a stub
corresponds only to the reference of the server, and thus
the stub can be considered as a stateless entity. The last
entity in this MOP isthe metastub. Its interface, Metastub
(quite similar to MetaObject), defines methods for the
reification of the stub behaviour and two other methods
for handling the stub-metastub link.

It isworth noting that the arguments and return values
of the methods as well as the state of objects are all
encapsulated into the IDL type Any. The main reason for
thisis, of course, genericity so as to be able to apply this
MOP to any CORBA object. The IDL compilers provide
the marshalling and unmarshalling functions from/to real
language types. Thisisareal benefit of the combination of
the open language approach and the features provided by
the underlying runtime support, in fact from the tools
available with the middleware.

Asillustrated in Section 4, this MOP is very suitable for
the implementation of various fault tolerance strategies in
a very adaptable way. However, its use is not limited to
fault tolerant computing but this aspect is beyond the
scope of this paper.

3. Implementation of the M etaobject Protocol

The proposed implementation of this metaobject
protocol is based on the use of two open-compilers,
namely OpenC++ v2 [3] and OpenJava[19]. In this section,
we first give a brief overview of compile-time reflection
and open compilers and, then, describe the main aspects
of theimplementation.

3.1. Introduction to Open Compilers

When reflection is applied to compilers, it is possible to
observe and control the behaviour of the compiler, i.e. of
the compilation process. This means that it is possible to
customise the compile-time analysis and the code
generation. Figure 4 illustrates the compilation process
proposed by an open-compiler. The open compiler
associates a metaclass to each input class during the
compilation process. This metaclass is responsible for the
customisation of the compiler, hence the name “open-
compiler”. A metaobject protocol thus takes place at
compile-time between the open-compiler and the
metaclass. The latter has the following role: {) provide
structural information about the input class C and (ii)
enable modifications of the translation, thus resulting in a
transformed classC'.

icompile time MOP

coag

Fig. 4. Open compilation process

The role of the open compilation process is to
implement the reification and intercession processes of the
MOP, so that, the objects can be controlled from outside
by their attached metaobjects. This customised
compilation process consistsin :

renaming and wrapping methods for behavioural
control,

structural analysis and creation of new methods for
object serialization (state capture), and

enforcement of a strong encapsulation paradigm (code
filtering).

3.2. Behaviour control

Reification of the object behaviour, i.e. method
invocation, has been done using method wrapping [2].
This technique has been preferred to class wrapping
because the latter has many drawbacks. Class wrapping
(i.e. encapsulation of the original class) can be done either
using inheritance or delegation; both approaches lead to

serious drawbacks. The most important drawback is that
the wrapper cannot access private members of the original
class.

With method wrapping, each original method foo of the
classisrenamed asreal_foo and a new method using the
same signature, i.e. foo(parameters), which traps the
invocation. This method also reifies the invocation to the
metalevel by calling Meta_MethodCall belonging to the
metaobject interface. This technique involves more
modifications within the original class but the new
methods are identical to the original ones from a
behavioural viewpoint. This approach is also used for
reifying object constructors and destructors (by calling
Meta StartUp, and Meta_CleanUp, respectively). It is
worth noting that the approach for method wrapping is
identical with OpenC++ or OpenJava.

The result of these transformations is that object
creation, object deletion and all method invocations are
reified to the metalevel. The metaobject can then activate
the object methods using Base HandleCall. The later
unmarshalls the invocation parameters and calls the
corresponding object method using its real name (e.g.
real_foo). The control of the constructors and destructors
using Base StartUp and Base_CleanUp, respectively, is
performed in the same way.

3.3. Statecapture

One key feature of the proposed metaobject protocol is
the ability to automatically provide methods to obtain and
restore the internal state of CORBA objects, i.e. the set of
classes corresponding to the implementation of the
application. Two checkpointing techniques are proposed:
complete state or partial state techniques. It is worth
noting that in Java, the complete state of objects can be
obtained using the object serialization feature of the VM.
Nevertheless, Base SaveState and Base RestoreState
methods are also generated for Java classes. Their goal is
simply to obtain (or restore) the state of the object using
seridlization and to marshal (or unmarshal) that state
information into (from) an Any typed variable. The
proposed technique for obtaining and restoring partial
state is however very useful for Java objects.

During the compilation process, the metaclass defines
two new methods added to the input class:
Base SaveState and Base RestoreState. These methods
use an intermediate data structure to store the object state,
and the IDL compiler generates methods for marshalling
this structure into an Any typed variable. These structures
contain a slot for each attribute and for each first level
parent class in the inheritance hierarchy. The type of each
slot depends on the type of the attribute: for basic types,

the corresponding type is defined by the IDL-to-C++
mapping, for objects, the Any typeis used.

The Base_SaveState method calls recursively each
Base SaveState method of any first level parent class.
The resulting values are stored into the corresponding
slot of the structure. When the attribute is an object, the
value is obtained by calling the Base_SaveState method
of that object. However, when objects can be accessed
through several pointers, each object must be saved only
once and re-created at restoration time. To tackle this
problem we use a referencing technique: each saved
object is assigned a reference. When the object state is
saved for the first time, both the reference and the object
state is saved. When the object state has already been
saved, only the reference must be saved in the checkpoint.
For efficiency, the information about references and
pointersis saved in a hashtable indexed by pointers.

For restoration, the Base_RestoreState unmarshalls the
received Any typed information and recursively calls each
Base RestoreState method of the first level parent
classes. The value of each attribute is restored using the
value in the corresponding slot of the received data
structure. When the attribute is an object,
Base RestoreStateis called on that object. For pointed (or
referenced) objects, the checkpointed references are used
to re-construct the same object hierarchy asin the original
object. For restoration, the hashtable is indexed by
references.

The optimisation of the state capture, i.e. obtaining a
partial state for incremental checkpointing, relies on the
notion of accessors. Accessors provide a simple means to
detect which attribute has been modified since the last
checkpoint. They maintain a flag for each attribute,
indicating whether this attribute has been modified or not.
When an attribute ischeckpointed, its flag is reset. A new
data structure is defined for holding partial states and
handling them dynamically. In practice, it is a list of
attribute slots holding the attribute identifier and its
corresponding value. Concerning arrays, accessors
maintain alist of modified elementsinstead of asimple flag
(i.e. alist of indexes). Only array elements that have been
modified are saved. The algorithms for saving (restoring)
the partial states are similar to those for the compl ete state,
except that only those attributes whose flag is set are
saved (restored).

It is worth noting that accessors are defined using the
same visibility as the original attribute (public, protected
and private, Java defines also default). In the source code
of the class, attribute access is replaced by accessors
invocations. This is also the case for attributes used as
method invocation parameters. Thanks to this simple
notion, every type of attribute access can successfully be

controlled. Three different types of accessors are
provided:

aread accessor that returns the current value of the
attribute,

a postfixed write accessor that updates the value and
returns the previous val ue,

aprefixed write accessor that updates the attribute and
returns the new value.

3.4. CodeFiltering

During the analysis of the source code of the input
class, the metaclass can return errors to the user. These
errors can either correspond to a wrong usage of the
standard programming language, or new errors identified
by the metaclass. These new errors are related to the
analysis and to the properties the metaclass wants to
enforce in the input class. As far as dependability is
concerned, this technique enables some additional
verification to be peformed such as enforcing
programming conventions.

Some object-oriented programming languages are
designed as a compromise between a strong object model
and programming flexibility, these are hybrid languages.
The C++ language, for instance, provides a weak object-
model and a very lazy access to attributes. Violating
encapsulation in C++ is not very difficult. Java, in
contrast, proposes a stronger object-model. However,
neither of these languages ensures a strong encapsul ation
of object attributes. Enforcing encapsulation has many
benefitsin our context: the state of an object must only be
modified in a controlled manner, i.e. though accessors.
This is a very important issue, especially to tackle the
problem of identifying the partial state of an object.

For the above reasons, in C++, the use of the following
features cannot be accepted:

- Direct access to attributes using public or protected
attributes, or with friend classes or functions.

- Use of global or class variables because such variables
are shared among several C++ objects; it is not possible
to correctly determine the state of objects that use such
variables.

- Pointer arithmetic that enables uncontrolled access to
any memory location isvery error-prone.

- Pointers as method parameters because the entity which
is given the pointer can save and reuse it later; this
feature also breaks the encapsulation principle.

Since Java provides blind references instead of
pointers, only direct access to attributes and class
variables must be excluded from Java applications.

Compile-time reflection is used here for codefiltering, in
order to forbid the use of these features. Global and class
variables, pointer arithmetic and pointers as parameters are
simply forbidden by the metaclass. This illustrates a first
benefit of compile-time reflection: enforcing programming
conventions that are mandatory for the implementation of
fault tolerance strategies. When such features are used in
application classes, the compilation process stops and
throws an error to the user. Control over direct access to
attributes is done by accessors.

4. Implementation of a Reflective Fault
Tolerant System

The objective of this section is to illustrate the use of
this metaobject protocol in the design and the
implementation of a fault tolerant CORBA system. The
MOP is the corner stone of the architecture in which fault-
tolerance mechanisms are developed as metaobjects.

4.1. Host Architecture

The basic elements of this architecture are thus the
following: an operating system, an ORB, a group
communication system and the runtime support for
programming languages. In this architecture, the CORBA
middleware, the underlying operating system and group
communication system can be changed easily, without
requiring any modification of either in the application or in
the mechanisms. For this purpose, on top of this platform
various services are provided: object and metaobject
factories and a group communication service. These
services are used by the fault tolerance metaobjects. The
MORP links the application and the metalevel objects. In
this section, we describe these various layers (Fig. 8).

Metalevel MOP

Services Application

Group

Protocol ORB Language Runtime
Operating System

Fig. 8: Block overview of the Architecture

Object Factory: This service is responsible for the
creation of object replicas on any node of the system,
either during the initialisation or during recovery. The
CORBA objects are created as hew Unix processes, firstly
for fault-containment between the objects themselves and
secondly, for separation of concerns between the factory

and the created objects. The links between the objects
classes and the executable files to be launched by the
factory are expressed into aconfiguration file.

M etaobject Factory: This service is responsible for the
management of metaobjects and the dynamic handling of
the link between objects and metaobjects. The metaobject
factory manages the whole runtime life-cycle of
metaobjects. creation, replacement and destruction. The
metaobject factory selects the appropriate metaobject for
each CORBA object according to the fault-tolerance
strategy specified in a configuration file. Depending on
the fault assumptions, the fault tolerance strategy may
impose some fault-containment requirements. The
metaobject factory can first create metaobjects as separate
runtime entities. Clearly, improving fault-containment
introduces performance overheads due to the creation and
interactions between distinct processes. When only crash
faults are considered, the metaobject factory can create
metaobjects into its own address space for performance
reasons.

Group Communication Service: This service provides an
abstraction of the underlying group communication
system. It is designed as OGS [6] but is implemented with
the xAMp package [20] providing multicast
communication protocols and group membership.
Changing the group communication system does not
require any modification of the clients.

@ Group communication
package (xAMp)

Fig. 9: Group Service Entities

Figure 9 shows the various entities implementing this
servicee The GroupMembers (GM) maintain the
relationship between a group member and the group
service. Clients only interact with GroupMembers and
thus are totally independent from implementation issues of
this service. This has a very positive effect on portability.
The GroupAdmins (GA) are responsible for the
management of a group on a node, i.e of all
GroupMembers located on this node. The
GroupAdminFactory (GAF) creates new groups and the
corresponding GroupAdminson demand.

4.2. Fault-Tolerance Mechanisms
as M etaobjects

A metaobject implementing a primary-backup strategy
has been developed to illustrate the use of the metaobject
protocol. Metaobjects were designed using Statecharts
and UML tools. We give in Fig. 10 an example of a

statechart for the primary metaobject. A statechart is like a
simple finite state machine, excepted that states can be
nested and concurrent (this later point is represented by
dotted lines).

In the modelling of the primary behaviour, we identified
three main roles, represented here as three different states:

the Replication state for
computation of the strategy,

performing the main

the Crash Handler state for handling view changes
and crash detection,

the Deliver state for handling messages reception.

To simplify the handling of the various eventsinto this
mechanism, these three states are running concurrently
and communi cate through a FIFO message queue.

The Replication state performs the replication strategy:
when an invocation is received (from state Deliver), it
invokes the method (state Invoke), build a checkpoint
(state SaveState), send the checkpoint to backups (state
Update) and then reply to the client (state Reply). When a
crash occurs (received by the state Crash Handler), it
creates anew clone using the ObjectFactory (state Clone),
get the state of its base object (state SaveState) and send
this state to the new backup (state Recover).

Primary
2
Filter Invoke]

Replication
5

SaveState

6

Reply ;I[Update
1
11 SaveState

Crash Handler I Deliver
13 ! 15
I
L

| J
Fig 10. Statechart of the primary metaobject

Recover

Clearly, our objective here is not to describe the
mechanism in detail but to illustrate that the metaobject
protocol is appropriate for the design of such mechanisms.
The metaobject protocol activates the mechanism at the
metalevel, i.e. provides the input messages received (that
trigger transitions) and activates the base-level actions,
i.e. corresponding to output messages produced.

Reification of the object methods invocations
(Meta_MethodCall) and inter replica protocol
messages are received by the Deliver state. These

messages are filtered and passed to the Replication
state through the message queue.

The Replication state handles these messages
according to the replication strategy. It uses
intercession for invoking methods on the base object
(Base_MethodCall) and also uses introspection for
obtaining its state (Base_SaveState).

The backup, not shown here, also uses intercession for
applying checkpoints to the base object
(Base_Restoretate).

It is worth noting that the activation of the crash
handler is not performed by the MOP, but by the error
signal coming from the group communication service.

The tools we used for the design of the statecharts are
able to animate the model: running step-by-step the
various communicating automatons, enabling to produce
events, messages, or to look to internal variables and
states, as a real debugger. Actually, this helped us to
firstly debug the design of the mechanisms and secondly,
to incrementally improve the design of the fault-tolerance
mechanism: handling multiple clients and nested calls, for
instance.

This detailed analysis using Statecharts, not only
facilitates the design of the mechanisms, but greatly
reduced the cost of their implementation. Indeed, it was
relatively easy to implement these mechanisms, although
the trandation from statecharts to real-code is not
straightforward. Actually statecharts communicates using
messages and not method invocation, and an automaton
was used to simulate the MOP, as well as group
communications. Furthermore, the state machine is
currently used in the implementation and the statechart
model can then be used for debugging.

It is worth noting that the separation of concerns
between objects and metaobjects greatly simplified the
implementation of the inter-replica protocol. The clear
interface provided by the MOP plus the development of
metaobjects using UML and statecharts greatly facilitates
the reuse of the software produced for implementing other
strategies.

4.3. Preéliminary Results

The CORBA architecture and the fault-tolerant
mechanisms have been recently implemented on top of the
Orbacus ORB running on Solaris. Preliminary results are
thus provided.

Figure 11 shows some behaviour-related results : object
and metaobject creation, replica creation and remote
method invocations. Three methods have been used:

Method_1 is very simple and just increments an
attribute,

Method_2 is more complex and writes 1 kilobyte into a
file, and

Method_3 has many complex parameters and thus
requires heavy marshalling and unmarshalling of the
arguments.

The figures have been obtained using two kind of
metaobject factories, Factory_ 1 which creates
metaobjects in its own address space, Factory 2 which
uses the object factory service for creating independent
metaobj ects.

Not Factory 1 Factory 2
Reified
Object and metaobject | 4ms 11 ms 1s
crestion
Replicacreation 09s 1s 2s
Method_1invocation |05ms 25ms 51ms
Method_2 invocation |43ms 6.3ms Ims
Method_3invocation |31ms 57ms 9.4 ms

Fig. 11: Creation and invocation performance

Indeed, the cost of reflection can appear to be
excessively high for an empty method (10 times higher for
Method_1/Factory_2), however, for regular methods it is
more suitable (2 times for Method_2/Factory 2). It is
worth noting however that, as shown in [5], this cost
(approximately 5 ms.) must be compared to the runtime
cost of fault tolerance protocols, which is actually very
high (approx. 100 ms. for a primary-backup strategy).

Class1 Class2 Class3 Class 4
Full 0.02/0.01 0.08/0.03 1.4/0.4 1359/390
Partial 0% 0.02/0.17 0.25/1.9 1.6/34 20/509
Partial 20% |0.02/0.17 0.8/1.9 16.7/34 75/532
Partial 40% |0.05/0.17 1.5/1.9 32/34 230/543
Partial 60% |0.05/0.17 2.3/1.9 40/34 499/576
Partial 80% |0.2/0.17 2.7/1.9 62/34 838/625
Partial 100% |0.2/0.17 4/1.9 70/34 1370/673
Java 2/1 3/4 4/20 157/204

Fig. 12: Full and partial state (preliminary) performance

Figure 12 provides preliminary results for the state
management of CORBA objects. Four different examples
have been wused: Class_1 contains only simple
attributes (int, float, string), Class_2 contains arrays of
small simple typed elements, Class_3 also contains
arrays but each array has hundreds of elements, and
finaly Class_4 is a linked list of hundreds Class_1
objects. It is worth noting that the latter implies recursive
calls to the state handling methods. For each example, we
give the average time (in ms) for saving/restoring the full
state of the corresponding CORBA object, but also for the

partial state assuming that a given percentage of the state
was modified during a method execution. The provided
figures are also to be compared with related services
provided by Java Seriaization.

These results clearly indicate that partial state
techniques are interesting for complex data structures that
involve dynamic creation or destruction of objects. For
simple objects, the full state technique is more efficient.
For complex objects (i.e. Class_4), the partial state
technique is very useful, especially when the state of the
object is dlightly modified. This is aso true when
comparing with Java Seridization, the latter being more
efficient to get/restore the full state of complex objects (i.e.
Class_4). This is an indication that reflection at
underlying layers can improve the performance of these
techniques. Performance measures of the fault tolerance
mechanisms are currently performed.

5. Lessonslearnt

The implementation of behavioural and state
management using compile time reflection has many
merits. Clearly, the first benefit is to be able to control and
filter programming conventions in order to guarantee a
satisfactory object model, i.e. enforcing the encapsulation
principle, mandatory for dependability. The programming
conventions obviously reduce some of the features of the
language but they must be obeyed to improve
dependability. It is worth noting also that these
conventions enforce the basic model required for the fault
tolerance strategies. Because the compilation process can
be mastered, the necessary hooks can be easily inserted to
control the behaviour of CORBA objects. This feature is
essential to design and implement a runtime metaobject
protocol on a “black-box” runtime layer. The design
philosophy can be thus summarised as follows: (i) identify
the necessary information that must be observed and
controlled, (ii) design the compile time metaclasses
responsible for the corresponding code transformation.

Clearly, all necessary features cannot be handled at the
language level, and some openness of the underlying
layers is required. Handling context switches is more
difficult, and reflection at the lower layers of the systemis
highly recommended. However, scheduling decisions can
be handled at the metalevel asin [13] but this may not be
consistent with the concurrency models provided by
CORBA. However, it is clear that some information can
only be obtained at the language level. Open languages
thus provide an appropriate technique to adjust the
program structure and behaviour according to the
requirements of the non-functional mechanisms. It is a
good approach on top of a COTS middleware.

Unfortunately, an object’ s state may also be composed
of site-dependent information, such as file descriptor
identifiers in Unix environment. We call such information
local variables because their semantics and value is local
to a given site. Since local variables are not within the
application objects but are, nevertheless, part of their
state, this information is called the external state of the
object. Clearly, our serialization technique does not
presently tackle this problem. Local variables could be
handled at compile time, provided the user declares the
corresponding system calls; these calls can be intercepted
and reified to the metalevel. Declarative reflection is thus
helpful inthiscase, asin[8] .

In practice, our technique requires access to the source
code of each class used in the application. This
assumption cannot always be met for class libraries. It is
thus difficult in this case to implement the partia state
technique because we cannot know whether an attribute
(or object) passed as parameter has been modified. To
tackle this problem, we assume it is modified by default,
and thus partial state information is not minimal. Also,
when a library class is used or derived (a class inherits
from alibrary class), the MOP cannot get the state of the
library class. This can be avoided and filtered by the
metaclass or we can let the user do the job.

Finally, the system architecture developed in this paper
is aframework providing interesting properties for system
designers in many application fields. Fault tolerance
strategies are implemented as independent CORBA
objects. They can thus be reused and customised
according to the needs. The approach also provides
means to adapt the strategies at runtime, with respect to
the evolution of the system configuration and its
surrounding environment. In the next future, various
implementation strategies and extensions could be applied
to this generic MOP. Interceptors could be used instead of
method wrapping, state serialization instead of compile
time reflection, the external state could aso be included in
state data structures. The openness of the runtime layers
could also provide new reified information and hooks
(context information, thread switching, etc.) for fine grain
synchronisation of the fault tolerance metaobjects.

6. Concluson

Although reflection has been recognised as a powerful
concept for the implementation of non-functional
mechanisms, very few work address the real challenge of
implementing areflective fault tolerant system. This paper,
which focuses on implementation issues, shows that
implementing fault tolerance ideally requires extensive
reflective features. Considering the underlying support as
a black box involves using reflective features at the upper

layer. Runtime reflection implemented with a metaobject
protocol enables distributed fault tolerance to be
implemented with attractive properties (adaptation and
reuse). Building a runtime MOP is thus the difficult issue
to be solved. Compile time reflection provides means to
this aim, although all aspects cannot be controlled and
some programming convention must be obeyed. It is
worth noting however that this solution enables a
reflective approach to be implemented on top of standard
middleware, such as CORBA, enabling fault tolerance
strategies to be developed as CORBA software. Thisis a
first positive aspect of the work reported in this paper. In
addition, the specifications of this MOP are now stable
and their implementation can be optimised very much
using reflective features of the underlying layers, now
appearing in many executive supports and standards.
Controlling some fine grain aspects of the underlying
layers, i.e. extending the current specifications, will also be
possible for the same reason, in particular using Open
ORBs. Thisisthe main track for our futureinvestigations.

7. References

[1] G. Agha, S. Frolund, R. Panwar, and D. Sturman, “A
Linguistic Framework for Dynamic Composition of
Dependability Protocols,” presented at DCCA-3, pp. 197-207,
1993.

[2] J. Brant, B. Foote, R. E. Johnson, and D. Roberts,
“Wrappers to the Rescue,” presented at ECOOP'98, Brussels,
Belgium, pp. 396-417, 1998.

[3] S. Chiba, “A Metaobject Protocol for C++,” presented at
ACM OOPSLA'95, Austin, Texas, USA, pp. 285-299, 1995.

[4 S Chiba and T. Masuda , “Designing an Extensible
Distributed Language with a Meta-Level Architecture”
presented at ECOOP'93, pp. 482-501, 1993.

[5] J.-C. Fabreand T. Pérennou, “A Metaobject Architecture for
Fault-Tolerant Distributed Systems : the FRIENDS Approach,”
IEEE Transactions on Computers, Special issue on
Dependability of Computing Systems, vol. 47, pp. 78-95, 1998.

[6] P. Felber, B. Garbinato, and R. Guerraoui, “The Design of a
CORBA Group Communication Service,” presented at |IEEE
Symposium on Reliable Distributed Systems, pp. 150-159,
1996.

[71 B. Garbinato, R. Guerraoui, and K. Mazouni,
“Implementation of the GARF Replicated Objects Platform,”
Distibuted Systems Engineering Journal, vol. 2, pp. 14-27, 1995.

[8] Y. Honda and M. Tokoro, “Soft Real-Time Programming
through Reflection,” presented at Intl. Workshop on New
Models for Software Architecture: Reflection and Meta-Level
Architecture, Tokyo, Japan, pp. 12-23, 1992.

[9] M. Kashekar, C. R. Das, S. Ygnik, R. Klemm, and Y. Huang,
“Issues in the Design of a Reflective Library for Checkpointing
C++ Objects,” presented at IEEE SRDS99, 1999.

[10] M.-O. Killijian, J-C. Fabre, J-C. Ruiz-Garcia, and S.
Chiba, “A Metaobject Protocol for Fault-Tolerant CORBA
Applications,” presented at |IEEE SRDS' 98, West Lafayette,
Indiana, USA, pp. 127-134, 1998.

[11] M.-O. Killijian, J.-C. Ruiz-Garcia, and J.-C. Fabre, “Using
Compile Time Reflection for Object State Capture,” presented at
Reflection'99, Saint-Malo, France, pp. 150-152, 1999.

[12] P. Maes and D. Nardi, “Meta-Level Architectures and
Reflection,” , Elsevier Science Pub., 1988.

[13] L. E. Moser, P. M. Mdlliar-Smith, and P. Narasimhan, “A
Fault Tolerant Framework for CORBA,” presented at FTCS 29,
Madison, Wisconsin, USA, 1999.

[14] OMG, “Meta Object Factory (MOF) Specification” OMG,
ad/97-08-14, 1997.

[15] OMG, “CORBA/IIOP 2.2 Specification” , 98-07-01, 1998.

[16] OMG, “Portable Interceptors’ Eterna Systems Inc.,
Expersoft Corporation , Sun Microsystems Inc., Initiadl RFP
Submission, orbos/99-04-07, April, 26 1999.

[17] V. Strumpen and B. Ramkumar , “Portable Checkpointing
for Heterogeneous Architectures,” in Fault-Tolerant Parallel and
Distributed Systems, D. Avresky, R. and D. Kédi, R., Eds:
Kluwer Academic Press, pp. 73-92, 1998.

[18] Sun, “Java Object Seridization Specification” Sun
Microsystems, Technical Report November 1998.

[19] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano,
“OpenJava: A Class-based Macro System for Java” in
Reflection and Software Engineering, Lecture Notes in Computer
Science 1826, W. Cazzola, R. J. Stroud, and F. Tisato, Eds.
Heidelberg, Germany, pp. 119-135, 2000.

[20] P. Verissmo and J. Marques, “Reliable Broadcast for Fault-
Tolerance on Local Computer Networks,” presented at |EEE
SRDS-9, pp. 54-63, 1990.

