
Robustness of Automotive Applications Using Reflective
Computing: Lessons learnt

Jean-Charles Fabre, Marc-Olivier Killijian
CNRS ; LAAS ; 7 avenue du colonel Roche

F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS

F-31077 Toulouse, France
{Jean-Charles.Fabre, Marco.Killijian}@laas.fr

François Taiani
School of Computing and Communi-
cations, Lancaster University, Info-

lab21, Lancaster, UK
f.taiani@lancaster.ac.uk

ABSTRACT
In this paper, we present our experience and lessons learnt in ap-
plying a multi-level reflective approach to the design and imple-
mentation of an industrial embedded dependable system. We re-
flect in particular on the process by which ideal academic results
and assumptions may be mapped to a concrete industrial context.
More precisely, our reflection is based on our experience in build-
ing an adaptive defense software for a multilayer embedded plat-
form in the automotive industry. This defense software provides a
safety bag and is based on computational reflection, an advanced
architectural mechanism to separate cross-cutting concerns. Our
implementation uses the AUTOSAR middleware, the automotive
standard for modular embedded software, and relies on software
sensors to observe the behavior of the system, executable asser-
tions to check on-line properties, and software actuators to per-
form recovery actions. This leads to defense software that is un-
coupled from the real functional system and can be adjusted and
specialized according to the needs of the system integrator.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]: Real-
time and embedded systems

General Terms
Reliability.

Keywords
fault-tolerance, adaptation, reflection, robust software, automotive
applications.

1. INTRODUCTION AND OBJECTIVES
As computing is increasingly used in a large range of everyday
products, software dependability is emerging as a key issue in

industries (e.g. automotive, home automation) in which it until
recently only played a minor role. This evolution calls for new
approaches to realise dependable software that take into account
the specific standards, organizational needs, perspectives, and
economic constrains of these industries.

For instance, recent efforts in the automotive industry have aimed
to consolidate hardware infrastructures, proposing to execute code
from multiple vendors on a single network of Electronic Control
Units (ECUs). These industry-wide efforts are supported by a
modular approach to software development, embedded in an in-
dustry wide standard, AUTOSAR. In this environment, software
fault-tolerance measures are required to protect cars from mal-
functions, in particular to detect errors and enact recovery actions.
Unfortunately current approaches to these problems are often ad-
hoc, and developed on a case-by-case basis. They are hence par-
ticularly costly to implement, integrate, and maintain. Software
engineering methods are thus called for to offer a clear, systemic
approach to the design, development, and integration of depend-
able software systems, while taking into account the organiza-
tional needs, perspectives, and economic constrains of the auto-
motive industry. Solutions should in particular be highly generic
(to allow the same or similar mechanisms to be applied across
multiple applications, provided by different vendors), with clear
design rules and processes, in order to track needs and impact and
ease integration efforts.

Software engineering approaches to fault-tolerance have been
proposed to tackle issues of reuse, genericity and integration.
Computational reflection is one such approach that proposes to
tackle elegantly these problems, and offer generic, compositional
approaches to implement fault-tolerance mechanisms and harden
software systems. Unfortunately, it is unclear to which extent
reflection can be transposed to an industrial setting such as that of
AUTOSAR, because of the usual reliance of reflective approaches
on specific tools, and the high control they assume of the underly-
ing runtime. To shed light on this question, we discuss in this
paper our experience in applying multi-level reflection, an ap-
proach developed in an ideal-world academic setting, to an indus-
trial context, the automotive industry. Key to our experience was
the absence of any dedicated tool to implement our approach, and
the need to respect a standard not originally developed to allow
the kind of cross cutting composition that reflection allows.
AUTOSAR also presents a number of challenges in that its pro-
gramming model differs substantially from that of “traditional”
computing runtime, with its own terminology (runnables, task
bodies) and concepts, which we had to map onto.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’11, March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00.

In the rest of the paper, we first present some background infor-
mation on multi-level reflection (Section 2). Section 3 explains
the context of application and the overall reflective framework in
automotive applications. Section 4 gives the major development
steps of the defense software and some key elements of the im-
plementation. We observe with satisfaction that the current stan-
dardized software architecture does provide basic mean to imple-
ment a reflective approach and take advantage of the separation of
concerns between application and dependability mechanisms.
Section 5 summarizes the lessons learnt. These lessons are inputs
to the standards and the technologies used today to develop auto-
motive embedded systems. Their integration into the standards
should be seamless and will help automotive systems integrators
better control the robustness and evolution of the systems they
develop.

2. REFLECTIVE COMPUTING TECH-
NOLOGIES
Computational reflection refers to a computing system’s ability to
reason about and act upon itself. Originally proposed in the con-
text of programming languages [1], reflection can be applied to
solve elegantly a range of cross-cutting computational problems,
from tracing, and encryption, through to hardening in real-time
OSs [2], and replication [3,4,5,6]. It can also be credited to have
strongly influenced novel programming practices such as aspect
orientations. In architectural terms, a reflective system typically
distinguishes between a base level, where the system’s primary
functions (guiding a rocket, computing a braking profile, process-
ing a payroll) are implemented, and a meta-level, where computa-
tion about the base level takes place (Figure 1).

Figure 1. The key elements of a reflective system

The structure and behavior of the base level is usually exposed to
the meta-level through a meta-model, which captures the key con-
cepts that are made available to the meta-level to control and ob-
serve the base level. For instance a reflective object oriented lan-
guage might expose the classes, methods, and attributes of the
base level program, and offer interfaces (called meta-interfaces) to
observe and modify these elements1. The elements of the meta-
model might be structural (e.g. which methods does an object
contain?) or behavioral (e.g. when is method m invoked?). The
final set of elements included in a meta-model usually depends on
i) the nature of the base level, and ii) the purpose of the reflective
architecture. For instance, a reflective Real Time OS in which
reflection is used to harden synchronization mechanisms might

1 Many popular programming languages such as Java are in this

respect partially reflective in that they offer interfaces (in
java.lang.reflect for instance) to observe a program’s structure
and execution, but no direct possibility to modify this program
at run-time.

capture locking events (e.g. lock creation, activation, deletion),
scheduling events (e.g. thread creation, blocking, waking, preemp-
tion termination), etc.

Figure 2. Multi-level reflection in layered systems

Multi-level reflection (Figure 2) extends the above principles to
multi-layered systems [7]. It is based on the observation that most
computer systems comprise multiple layers of interacting soft-
ware, and that to efficiently implement fault-tolerance mecha-
nisms, one often needs to combine control and observation infor-
mation obtained from different layers. For instance, multi-
threaded servers are typically not deterministic, which limits their
use in active replication schemes. One approach to remove the
non-determinism caused by multi-threading consists in intercept-
ing and instrumenting all mutex operations to force a consistent
scheduling across all replicas [8]. Doing so however can be ex-
tremely expensive [9]. In this situation, multi-level reflection is
able to determine how mutexes used at the OS level relate to
requests processed at the middleware level. This in turns allows
the meta-level to intercept only those mutexes that do have an
impact of request processing, and considerably lowers the over-
head of this approach [10].

Opening-up all stacks of a system is however fraught with dan-
gers, as it introduces new error propagation channels, and might
render a platform brittle to change. To address this issue, multi-
level reflection prescribes a demand-driven meta-model design,
where developers first identify a family of algorithms they wish to
support at the meta-level (e.g. a family of FT replication algo-
rithms), and derive a reflective footprint, i.e. the set of reflective
capabilities the system needs to support across its layers to im-
plement this family. For instance to control non-determinism in
RPC–style middleware like CORBA, a multi-level meta-model
needs to include mutex, sockets, threads, request, request life cy-
cle events, and notions of application boundaries, and should be
able to integrate these together to detect which mutexes have an
impact on request processing.

3. APPLICATION TO AUTOMOTIVE EM-
BEDDED SYSTEMS
3.1 Industrial Context and Problem statement
Early embedded software found in cars was mainly custom-made,
limited in scope, and tightly linked to its underlying execution
hardware. By contrast, today’s vehicles contain an increasing
number of functions that are controlled by software (up to several
gigabytes of code in a car). To cope with this evolution, modern
automotive systems follow some classical software architecting
principles such as componentization and software layering to
master complexity. By providing more structure to the code, these
techniques aim at improving maintainability, preventing obsoles-
cence, and promoting the use of software components including

COTS (Components Off-The-Shelf). To support these techniques,
the automotive industry has developed a standardized software
framework, AUTOSAR, (AUTomotive Open System ARchitecture
[11]), that provides a standardized architecture for complex auto-
motive systems. In particular, and quite importantly from a de-
pendability viewpoint, AUTOSAR allows several applications
with different criticality levels (notion of Automotive Safety Integ-
rity Level – ASIL) to execute side by side.

Besides the use of architectural frameworks such as AUTOSAR,
the production of robust systems must rely on principled software
engineering techniques and development processes (ISOS26262
[12] for automotive applications) to produce correct components.
These processes must in particular include fault-prevention tech-
niques, and encompass the design of appropriate fault-tolerance
mechanisms to deliver systems that are resilient at runtime. Fi-
nally, they must encourage designs that are lightweight for per-
formance reasons, easy to adapt for the system integrator, and
evolvable to take into account new requirements and evolving
technologies.

In this context, our approach consisted in developing a defense
software to improve the robustness of automotive embedded
systems, while keeping this defense software clearly separated
from the target system.

3.2 The AUTOSAR Software Architecture
AUTOSAR defines a common automotive software development
environment, which promotes reuse and portability across differ-
ent hardware platforms. The AUTOSAR methodology relies on
description, static configuration, and automatic code generation
tools, and favors tool interoperability.

The AUTOSAR reference model is composed of three principal
software layers:

The Application Layer is divided into basic functions (called
runnables) organized in software components. Runnables are the
schedulable entities that the system integrator maps onto tasks
managed by the operating system. During the integration phase,
runnables may be grouped within a task, according to criteria such
as workflow, periodicity, data consistency, etc…

The AUTOSAR RunTime Environment (RTE) is a sort of mid-
dleware for automotive applications. In the AUTOSAR methodol-
ogy, the RTE is automatically generated from the configuration of
software components and basic software. The RTE plays the role
of a glue code, using OS objects such as tasks, resources, and
events to provide its own functionalities to the application layer.

Basic Software Layer provides two main components: AUTO-
SAR OS that manages task processing, alarms, memory and inter-
process communication; and AUTOSAR COM, which deals with
message exchange management.

3.3 Framework for the defense software
We have applied multi-level reflection to the AUTOSAR architec-
ture to develop a defense software that is external to the target
system. The resulting reflective framework enables a defense
software to be defined, specialized and attached to a given opera-
tional component system. The target system and its corresponding
defense software thus form a self-checking component. This idea
is not new and can be found in other safety critical domains, like
the COM/MON approach in avionics [13] and the notion of Safety

Bag for railways signaling systems [14]. This type of wrapping
approach is particularly attractive for automotive applications for
obvious economic reasons.

Our defense software is organized in two parts: Error Detection
(EDMs) and Error Recovery Mechanisms (ERMs). The EDMs are
composed of several executable assertions, each of them corre-
sponding to a given multilevel property to be checked. When er-
rors are detected, EDMs send reports to ERMs (error filtering or
recovery strategies that depend on specified degraded modes of
operation). The interface between functional and non-functional
software, or meta-interface in the reflective terminology, is made
of software sensors and actuators. Their location in the software
architecture depends on the design and the algorithms imple-
mented in EDMs and ERMs. Sensors log information at runtime
and trigger EDMs whenever necessary. Actuators are recovery
functions that are monitored by ERMs.

Figure 3. Overall framework

The set of software sensors and actuators that is necessary and
sufficient to check a given multilevel property at runtime consti-
tute the reflective footprint (cf. Figure 3) of this property [7]. This
reflective footprint is implemented using AUTOSAR hooks, this
notion being essential for us. Initially devoted to debugging pur-
poses in AUTOSAR, the hooks have been used as a con-
trol/command interface of the target system in our work, together
with basic OS services.

4. DEVELOPMENT OF THE DEFENSE
SOFTWARE
4.1 Development Process
The development process of the defense software follows the
steps briefly described below:

1) Analysis of the target system and identification of application
level faults, also called Undesirable Customer Events (UCE).
Such UCE correspond to safety requirements at the applica-
tion level (cf. ISO26262 standard);

2) Selection of the faults impacting both the control flow and the
data flow at various levels of abstraction (within various soft-
ware layers) that could lead to the previously identified UCE.
This step demands a clear understanding of the system design
and to some extent of its implementation (e.g. how runnables
are mapped into tasks);

3) Definition of the dependability assertions that must be verified
on-line from a history of some application state information.
This requires the precise identification and capture of the state
items required for the on-line evaluation of these assertions;

4) Definition of the required error detection and recovery
mechanisms. This implies defining the way error events are
signaled and processed, but also what kind of recovery action
must be performed (re-execution, reset, move to a safety state,
or user-defined degraded mode of operation);

5) Definition and implementation of the corresponding observa-
tion and control mechanisms, using existing hooks, and to
some extent user-defined hooks that do not belong the stan-
dard;

6) Implementation of the fault tolerance mechanisms based on
software sensors and actuators;

7) Evaluation by fault injection of the coverage of such fault
tolerance mechanisms.

In our case study three synthetic applications have been devel-
oped: air conditioning, airbag, and torque transmission control
system.

4.2 Implementation
The three applications run on top of the RTE, which provides
communication variables for the runnables that are mapped onto
OS tasks. In our approach, safety constraints can be associated to
individual applications, even when they all share the same em-
bedded runtime. Just to give some examples extracted from our
case study, a safety requirement for a given application (UCE)
might be related to either a data flow or a control flow error, as
illustrated below.

The operational mode of the air conditioning system can
only be computed when all inputs are available (dashboard
command, filters and sensors values)

Figure 4. Example of Data flow error / Bad input values

The torque control system is blocked (more than 1s) in
mode 1, while the engine status mode is 2 (whereas it
should switch to mode 2 as well)

Figure 5. Example of Control flow error / Incorrect transition

The violation of these properties can lead to customers’ discom-
fort, at least, or even to engine damages in extreme cases.

The key challenge is then to derive assertions from the above
UCEs. An assertion is defined with respect to the implementation
of the applications it is associated with, and implemented using
hooks and OS services (or system calls). These means are used to
i) trace and log the input, output, and behavior relevant to the
assertion, ii) trigger the assertion verification, and finally iii) acti-
vate recovery actions.

For detection, an assertion can be a simple logical expression or a
small program using logged data (runnables inputs, RTE vari-
ables, OS data items like tasks id, priorities, etc.). In practice we
have used standard hooks like PreTaskHook() and OS serv-
ices GetTaskID() of the OS, but also several user-defined
hooks. The latter were necessary to capture runnables execution
within tasks, i.e. what is the runnable running in a given task. The
hooks available in the standard are mostly located at the level of
the RTE and the OS interfaces and were not sufficient to imple-

ment some of our assertions. Some hooks have been modified,
some other added by hand in the generated source code.

Regarding recovery mechanisms, we used RTE kooks and serv-
ices (like Rte_IrvWrite) to update communication variables
but also AUTOSAR OS services like ChainTask() to terminate
a task and trigger another one, TerminateApplication() to
terminate and application, TerminateTask() to suspend a
task.

From a dependability viewpoint, the evaluation of the defense
software was carried out by fault injection, more precisely by
mutation testing. Mutants were developed from the task bodies
description, provoking the corruption of the control flow, the data
flow or both, leading thus to an application level failure of the
application (UCE). Most of the errors were detected, the rest be-
ing not captured by our assertions due to a lack of observability,
or for which our recovery mechanisms were ineffective (lack of
error detection or tolerance coverage).

A full account of the work carried out can be found in [15, 16],
but also in more details in Lu’s PhD thesis [17].

5. Lessons Learnt
First, we report on the problems, constraints, the limitations we
faced in applying a generic reflective framework to an industrial
case study. Second, we analyze the benefits that could be obtained
by relaxing some of the constraints implied by the ideal world
described in Section 2.

Although we could not rely on any advanced reflective technol-
ogy, but had to work with AUTOSAR instead, the separation of
concerns provided by reflection proved to be of high interest to
our industrial partners, both from an integrator’s point of view
(the car manufacturer Renault in our case) and from a system
provider’s perspective (Valeo in our case). The ability to separate
the design and implementation of the error detection and recovery
mechanisms from the functional component architecture provided
a clear advantage in terms of maintainability, understandability,
and code organization. In contrast to more ad-hoc practices, our
partners perceived reflection as providing a clear, disciplined ap-
proach to organize the development of robustness mechanisms in
a systematic way.

Beyond code, concrete tools, and mechanisms, this type of feed-
back shows the importance of conceptual models to drive, com-
municate, and reason about detection and recovery mechanisms in
embedded systems; and that such concepts can be useful even in
the absence of dedicated technology, provided some minimal
capabilities (hooks in our case) are available. This also illustrates
that advanced software engineering techniques, such as multi-
level reflection, can be particularly interesting to practitioners, and
that path-ways exist to transpose existing academic results into
concrete pre-production environments.

As a second clear benefit, our experience shows that reflective
concepts can be applied without relying on any specific language,
tools, or ADL approach. We used reflection at an architectural
level, which made it inherently compatible with the AUTOSAR
software infrastructure and the ISO26262 development process
prescribed by our case study. A key enabler in this strategy was
the possibility to realize software sensors and actuators within
AUTOSAR as means to control the system. Interestingly, the
AUTOSAR hooks we ended up using had not been originally

designed as sensors and actuators, but had been primarily included
for debugging and tracing purposes.

This pragmatic approach came, however, with a number of down-
sides and limitations if compared to an ideal solution. Ideally, in
order to maximize the range of detection and recovery mecha-
nisms that can be implemented, all aspects of the state and behav-
ior of a system should be observable and controllable. The actual
levels of observability and controllability effectively realized
should then be determined by the reflective footprint of the tar-
geted mechanisms (reification of events, introspection of data
structures, intercession features, i.e. activation of actions).
Industrial reality is quite different from this ideal situation. Al-
though there is a clear link between the Undesirable Customer
Events and the reflective footprint of the corresponding assertions,
any implementation is constrained by the capabilities of existing
hooks and OS calls to implement the verification of the property.
This is a particularly limiting constraint, but one that is unavoid-
able to remain consistent with the AUTOSAR standard and the
production tools used during the development process. For in-
stance, user-defined hooks at any level of the system require an
invasive form of instrumentation. Although this is not particularly
difficult to realize since the source code of the RTE is available, it
remains unacceptable for an industrial software production line.
The hooks and other system calls must belong to the standard to
be considered by the tools used to generate the RTE and the final
system.

In other words, the available hooks and system calls provide a
language to implement safety assertions. The capabilities of this
language determine how efficiently the required assertions can be
implement, or even if they can be implemented. The richer this
language is, the easier it becomes to realize powerful and efficient
assertions, but the more demands it sets on the capabilities pre-
scribed by the standard.

In the light of our experience, one can think then of proposing
some extensions to the standard, such as additional hooks (e.g.
Runnable_Start), extended hooks signatures (e.g. extra
parameters), and extra system calls (e.g. Kill_Task). A key
capability to be added, for instance, would be to explicitly expose
the notion of Application_ID/ Runnable_id at all layers of
the system architecture. This extension is motivated as follows. In
AUTOSAR, multiple applications can run on the same platform,
while possessing different criticality levels (ASIL). The verifica-
tion of a given property related to a safety requirement of a highly
critical application typically implies logging data and performing
appropriate checks at well-defined execution points. Capturing the
required data for all applications is possible but particularly
counter-efficient, an acute limitation in an embedded environ-
ment. The availability of Application_ID/ Runnable_id
would allow the data capture to be limited to the highly critical
applicationd, and more generally enables the verification of fine-
grained properties with limited performance penalty.

Interestingly, we only encountered a few multilevel properties in
our prototype. The major reason for this is that most of the system
is included in the RTE, with few system functionalities imple-
mented elsewhere. The AUTOSAR OS for instance is a simple
scheduler. The runnables are treated as macroinstructions.
Multilevel reflection did play a key role, however, in the situation
discussed in the previous paragraph, which consisted in exposing
through manual instrumentation the Application_ID/ Run-
nable_id at all layers to be able to target the behavior of one

particular critical application among several others sharing the
same Electronic Control Unit (ECU).

The metamodel that resulted from our experiment turned out to be
quite simple and tightly linked to both the AUTOSAR program-
ming model (runnables mapped to tasks and communicating
through dedicated variables), and the observation and control
capabilities of the AUTOSAR platform. In this context, our focus
on control flow and data flow errors was a natural choice, as those
may arise from any type of faults (residual software faults within
runnables, integration faults possibly dues to incorrect tools,
hardware faults impacting both data and control flows). In-
terestingly, our industrial partners were more convinced by the
possible occurrence of faults impacting data than control flow.
They naturally thought of data, typically obtained from external
physical captors, as suspicious, but they struggled to envisaged
that control, being internal to the software system, could become
corrupted, because they implicitly assumed that runnables, the
design process and the tools were zero default. Although fault
tolerant computing appears as a necessity to these practitioners for
such a complex software infrastructure, they tend to consider
software as correct by construction, and find it hard to admit that
software faults may occur. This perception goes beyond perform-
ance overheads that could prevent some solution to be used (repli-
cation for instance). Rather, it is a matter of limited background
with complex software architectures running on more sophisti-
cated Electronic Control Units (e.g. Freescale S12XE or even
multi-core processors) for practitioners.

From an academic viewpoint, the use of reflective computing
capabilities to develop external defense software has been limited.
The difficulty for us was first to analyze the target software plat-
form, its accompanying development process and tools. The sec-
ond difficulty was the limitation of the observation and control
features, namely the hooks. Our “manual” approach, i.e. develop-
ing new hooks by hand, was not accepted by our industrial col-
leagues for very sound reasons. However, they did accept that
hooks should be promoted for dependability reasons in the
AUTOSAR standard and, since they contribute to the standard as
company representatives, were ready to argue which additional
hooks and intercession system calls are necessary and why. We
see this as a particularly beneficial result of this work, both from
an industrial and academic viewpoint.

Looking forward, a more detailed metamodel of automotive appli-
cations would ideally be needed, that would more directly take
into account real-time aspects, RTE features and mapping to OS
objects, and the distribution of applications among several ECUs.
We think that multilevel reflection is likely to provide the most
benefit on finer-grained meta-models that more precisely expose
how low-level services are shared between application compo-
nents. These low-level services are usually critical to a system’s
stability, as their misbehavior may impact a large range of appli-
cations, or even the whole system they support. It is important to
ensure in this case that a non-critical application may not be al-
lowed to impair the behavior of a critical one. Considering the
increasing complexity of embedded software systems in the auto-
motive industry, this is certainly a situation for which researchers
and practitioners alike should start preparing themselves.

Another limiting factor is the notion of standard that should be
obeyed by all players. Considering the code generation strategy of
AUTOSAR, the use of compiler-based reflective capabilities dur-
ing the code generation process could in particular be of high

interest to improve observability and controllability. In practice,
the tools should be reflective or, to be more concrete, “aspectiz-
able”. Aspects could then be used on a case-by-case basis to ad-
just the hooks to the needs.

Finally, we would like to stress that the most challenging part of
our experiment consisted in identifying the assertions from the
UCEs, and then in determining the recovery actions to be taken.
These issues are largely independent from the chosen implementa-
tion strategy, whether conventional (i.e. based on ad-hoc instru-
mentation) or reflective. However, even for these problems, we
found the reflective approach to be useful, because it made visible
the problems and the possible solutions. A good knowledge of the
implementation is however mandatory in both cases.

6. CONCLUSION
Adaptation is a crucial issue in today’s computer systems.
Although automotive systems remain largely static, their execu-
tion model relatively simple, and their observability limited by the
AUTOSAR standard, we can say from our experience that the
reflective approach was both useful and well received by our in-
dustrial partners. In particular, the separation of concerns provided
by reflection between functional aspects and dependability mecha-
nisms appealed to our industrial partners. This might seem natural
from an academic point of view, but is far from trivial considering
the many constraints faced by automotive engineers, and we think
is quite encouraging considering the difficulties of knowledge
transfer between academia and industry. Multi-level reflection
was perceived as a new disciplined way of thinking about
dependability mechanisms, that could be applied in practice, and
offered much better levels of maintainability over ad-hoc
instrumentation, which all agreed was unsustainable for complex
component-based systems. The key lesson we learnt is that the
approach should comply with the standards and related tools to be
widely accepted in practice, and we are confident that our indus-
trial colleagues will do their best to promote this work in the rele-
vant standard bodies.

7. ACKNOLEDGMENTS
The authors wish to thank very much Caroline LU for her PHD
work on the subject. She was able to make a bridge between our
academic views and the real automotive world. We would also
like to thank Philippe Quéré (Renault TechnoCentre in Paris), Luc
Fougerousse and Yannick Moreaux (Valeo) for their support and
contributions in this work. We also acknowledge the SCARLET
project and in particular IRCCYN colleagues for the help regard-
ing AUTOSAR OS.

8. REFERENCES
[1] Maes, P.: Concepts and Experiments in Computational Re-

flection. In Proc of Int. Conf. on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), Or-
lando, Florida. pp. 147-155 (1987).

[2] Rodriguez, M., Fabre, J.C., Arlat, J.: Wrapping real-time
systems from temporal logic specifications. European De-
pendable Computing Conference (EDCC-4, 2002), Toulouse
(F), pp. 253-270 (2002).

[3] G. Agha, et al. “A Linguistic Framework for Dynamic Com-
position of Dependability Protocols.”, in the IFIP Conference

on Dependable Computing for Critical Applications (DCCA-
3). 1992. Palermo (Sicily), Italy: Elsevier. p. 197-207.

[4] B. Garbinato, R. Guerraoui, and K.R. Mazouni, “Implemen-
tation of the GARF Replicated Objects Platform.”, Distrib-
uted Systems Engineering Journal, 1995. 2(1): p. 14-27.

[5] T. Pérennou and J.-C. Fabre, “A Metaobject Architecture for
Fault-Tolerant Distributed Systems : the FRIENDS Ap-
proach.”, IEEE Trans. on Computer, Special Issue on De-
pendability of Computing Systems, 1998. 47: p. 78-95.

[6] J. Salas, R. Jimenez-Peris, M. Patino-Martinez, and B.
Kemme. 2006. Lightweight Reflection for Middleware-based
Database Replication. In Proceedings of the 25th IEEE Sym-
posium on Reliable Distributed Systems (SRDS '06). 377-
390.

[7] Taiani, F., Fabre, J.C., Killijian, M.O.: Towards Implement-
ing Multi-Layer Reflection for Fault-Tolerance. IEEE Int.
Conf on Dependable Systems and Networks (DSN’2003),
San Francisco (CA, USA), pp. 435-444 (2003).

[8] Basile C., Kalbarczyk Z., Iyer R. K.: A Preemptive Determi-
nistic Scheduling Algorithm for Multithreaded Replicas.
IEEE Int. Conf on Dependable Systems and Networks
(DSN’2003), San Francisco (CA, USA), pp. 149-158 (2003)

[9] Napper J., Alvisi L., Vin H. M.: A Fault-Tolerant Java Vir-
tual Machine. IEEE Int. Conf on Dependable Systems and
Networks (DSN’2003), San Francisco (CA, USA), pp. 425-
434

[10] Taiani, F., Fabre, J.C., Killijian, M.O.: A Multi-Level Meta-
Object Protocol for Fault-Tolerance in Complex Architec-
tures. IEEE Int. Conf on Dependable Systems and Networks
(DSN'2005), Yokohama, pp.270-279 (2005).

[11] AUTomotive Open System ARchitecture,
http://www.autosar.org

[12] ISO/WD 26262-6: Road vehicles, Functional safety, Part 6:
Product development: software level (2010) :
http://www.iso.org/iso/catalogue_detail.htm?csnumber=5136
2

[13] P. Traverse, I. Lacaze, J. Souyris, “Airbus Fly-by-Wire: A
Total Approach to Dependability”, in Proc. 18h IFIP World
Computer Congress, Toulouse (F), pp.191-212, Kluwer Aca-
demic Publishers, 2004.

[14] Kantz, H., Koza, C.: The ELEKTRA railway Signaling-
System: Field Experience with an Actively Replicated Sys-
tem with Diversity. In Proc of the Int. Conf. on Fault Toler-
ant Systems (FTCS 1995), pp 463-471(1995).

[15] C. Lu, J.-C. Fabre, M.O. Killijian, “Robustness of modular
multilayered software in the automotive domain: a wrapping-
based approach”, in Proc. of the 14th Int. IEEE Conf. on
Emergent Technology and Factory Automation (ETFA’09),
Palma-de-Mallorca, Spain, Sept. 2009.

[16] C. Lu, J.-C. Fabre, M.O. Killijian, “An approach for improv-
ing Fault-Tolerance in Automotive Modular Embedded
Software, in Proc. of the 17th Int. IEEE Conf. on Real-Time
and Network Systems (RTNS’09), Paris, France, Oct. 2009.

[17] C. Lu, “Robustesse du logiciel embarqué multicouche par
une approche réflexive : application à l'automobile (in
French), Dec 2009, National Polytechnic Institute of Tou-
louse (http://ethesis.inp-toulouse.fr/archive/00001060/)

