2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

Principles of Multi-Level Reflection for Fault Tolerant Architectures

Francois Taiani, Jean-Charles Fabre, Marc-Olivier Killijian
LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
{francois taiani, jean-charles fabre, marco killijian}@Ilaas fr

Copyright Notice

© 2002 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

This article was presented at the 2002 Pacific Rim International Symposium on
Dependable Computing (PRDC 2002) held in Tsukuba (Japan) in December 2002. It
has been published in the proceedings of the aforementioned conference under the
following reference:

Taiani, F., J.-C. Fabre, and M.-O. Killijian, Principles of Multi-Level Reflection for

Fault-Tolerant Architectures, Proceedings of the 2002 Pacific Rim International
Symposium on Dependable Computing (PRDC 2002), 2002, Tsukuba (Japan). p. 59-66.

(Saved: Friday 3 January 2003 19:01) 1

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

Principles of Multi-Level Reflection for Fault Tolerant Architectures

Francois Taiani, Jean-Charles Fabre, Marc-Olivier Killijian
LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
{francois.taiani, jean-charles fabre, marco killijian}@Ilaas fr

Abstract1

This paper presents the principles of multi-level
reflection as an enabling technology for the design and
implementation of adaptive fault tolerant systems. By
exhibiting the structural and behavioral aspects of a
software component, the reflection paradigm enables the
design and implementation of appropriate non-functional
mechanisms at a meta-level. The separation of concerns
provided by reflective architectures makes reflection a
perfect match for fault tolerance mechanisms. However,
in order to provide the necessary and sufficient
information for error detection and recovery, reflection
must be applied to all system layers in an orthogonal
manner. This is the main motivation behind the notion of
multi-level reflection that is introduced in this paper. We
describe the basic concepts of this new architectural
paradigm, and illustrate them with concrete examples.
We also discuss some practical work that has recently
been carried out to start implementing the proposed
framework.

1. Introduction

Reflection has established itself as a very powerful
concept to realize separation of concerns in computing
systems. First introduced in functional languages [1],
reflection was successfully applied to computing
architectures as a structuring paradigm [2]. Since then, this
paradigm has given rise to a very attractive research field
for the handling of non-functional requirements of
computer systems. This encompasses distribution,
mobility, tracing, debugging, security, fault tolerance, etc.
Reflection was shown relevant to a wide range of objects:
processes, middleware, kernels, protocols but also
compilers, and virtual machines, and is now considered a
major step towards the disciplined management of system
evolution.

Today, the increased deployment of reusable software
components even in systems with high fault-tolerance

' This work has been partially supported by the European IST Project
“Dependable Systems of Systems” n°1999-11585.

(Saved: Friday 3 January 2003 19:01)

requirements® raises new challenges, and reflection
appears as one of the most promising technologies to
tackle them. The design and the validation of modern
systems must now take into account the possible use of
off-the-shelf software components, while still ensuring the
overall system’s dependability, and respecting industry’s
traditional constraints in terms of time-to-market,
adaptation and evolution. Because of the separation of
concerns it provides, and its genericity, reflection seems
particularly suited to help solve these problems.

So far however, most of the work related to reflection
in dependable computing — including security — has
addressed a single type of component: application entities
(a process or a task, an actor, an object, etc.), an executive
layer (a kernel, a middleware, a virtual machine) or a tool
(e.g. a compiler). Our prior work has convinced us that the
use of reflection on only one component is insufficient to
insure the dependability of a complex system. Indeed,
fault tolerance spans all the layers of a system, and
requires the ability to observe and control objects in the
large (network localization, transaction state, system
configuration, etc.) and in the small (state information,
context switches, memory mappings, etc.).

We advocate in this paper the notion of multi-level
reflection as a consistent concept for the implementation
of fault tolerance in multi-layered systems, in particular
based on COTS. The core idea of multi-level reflection is
to provide a meta-model based on a consistent view of
individual meta-models that can be exhibited at each
abstraction level. Fault tolerance meta-level software can
then be defined and implemented according to a holistic
understanding of the recursive representation of the system
entities and their various interaction levels.

The paper describes in detail the principles of this
approach and illustrates the notion with some concrete
examples. We also address implementation issues. The
paper is organized as follows. Section 2 briefly recalls the
state of the art regarding reflection applied to fault tolerant
systems, and discusses the limits identified by previous
work. Section 3 introduces the key concepts of multi-level
reflection such as meta-models, meta-interfaces, mapping,
projection, and meta-filters. Section 4 describes a

2 See for instance [Stolper 1999] for a report on the use of COTS in
the Mars Pathfinder NASA spacecraft.

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

conceptual framework of multi-level reflection based
systems. In Section 5 we present some implementation
issues, in particular the establishment of meta-models
from reverse engineering open source middleware. Section
6 concludes the paper.

2. Reflective Fault Tolerant Systems
2.1. What is Computational Reflection?

Reflection is the ability of a computing system to
observe and modify its own structure and behavior as part
of its own computation [2]. A reflective system is
basically structured around a representation of itself — its
self-representation or meta-model — that is causally
connected to the real system. Any change in the system
meta-model is reflected on the system’s behavior, and
conversely any evolution of the real system is reflected in
its meta-model. Reflection introduces two distinct parts in
a computing system: a base level where normal
computation of the system takes place, and a meta-level
where the system does the computation using its meta-
model (meta-computation or meta-level software), this
computation being related to some non-functional
mechanisms. The meta-model can thus be regarded as a
kind of “glue” that insures the connection between the
base- (normal computation) and the meta- (“self”
computation) levels. From an implementation viewpoint,
the meta-model is usually established through some
specific interfaces, called meta-interfaces of the system,
that provide practical means to observe and control the
interaction between the base and the meta-level (Fig. 1).

Meta-Level

P
Meta-Mode

Functional
Interfaces

S Base Level

Fig. 1: Architecture of a Reflective System

Classically, meta-models and their corresponding meta-
interfaces are defined in terms of computational entities
that are specific to the base level, i.e. a particular language
or a programming model, these entities being common to
all systems that use the same programming framework.
For instance, the meta-model of a component-based
system developed using an object-oriented language could
rely on notions such as “Attribute”, “Method”,
“Class”, “MethodCall”, “InheritanceRelation-
ship”, etc. Indeed, as entities appearing in a meta-model
are rather generic, the meta-computation that takes place at

(Saved: Friday 3 January 2003 19:01)

the meta-level can be specified in very generic terms,
independently of the actual function performed by the base
level. This feature is a corner stone of the separation of
concerns provided by reflective systems and is of very
high interest for various non-functional mechanisms, e.g.
fault-tolerance strategies, as illustrated in the next section.

In practice, the meta-model is established first through
reification mechanisms that expose structural and
behavioral aspects (data structures and events) of the base
level. The meta-model can be updated on the fly by the
meta-level using introspection facilities that enable base-
level information to be obtained on-demand by the meta-
level. The meta-level software interprets this (meta-)
information and triggers actions, including some affecting
the base-level entities through intercession facilities.

2.2. Reflective Fault-Tolerant Systems

Several dependable system architectures based on
reflection have been proposed during the last decade.
Notable efforts have particularly been made to integrate
reflection with object-oriented principles and distributed
infrastructures. Platforms such as GARF [3], MAUD [4],
and FRIENDS [5] are representative of this trend. A similar
approach is used in all these systems. They are all based
on reflective capabilities of some specific languages.
Interacting application objects populate the base level. The
meta-level software is responsible for the handling of fault
tolerance strategies (or security strategies or both). These
three projects differ mainly in the language-based
reflective capabilities they use, and consequently in their
meta-model, i.e. the detailed view of the base level
provided to the meta-level. GARF is based on the exception
handling of the Smalltalk language, and exhibits object
interactions to the meta-level. MAUD is based on the HAL
language and renames message destinations to redirect
actor interactions to other objects. FRIENDS uses an open
C++ compiler to intercept object interactions and to access
the attributes of base-level objects. In each of these
examples, the meta-computation is transparent to the
application programmer, and implements some replication
strategies using additional services, such as group
communication.

Reflection has also been applied to the hardening of
lower executive layers, such as real-time micro-kernels
[6]. The base-level computation is in this case a real-time
kernel. In [6], a very detailed meta-model is defined
through temporal logic specifications of generic operating
system primitives (scheduling, synchronization, memory
management, timers, etc.). The formal expressions are
then compiled (translated to C) to generate, among others,
error confinement wrappers. The meta-computation occurs
within several runtime wrappers controlling the correct
execution of an executive layer. To perform the
verification at runtime, the internal and external behavior

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

of the kernel are partially exposed to the meta-level (called
here meta-kernel). In practice, any deviation of the real
behavior (as it is perceived by the meta-level) from the
specification is detected. Accordingly, the meta-level
software can halt the base-level computation and trigger
error detection signals (error confinement) and possibly
start some corrective actions (error recovery) to enhance
the original kernel’s dependability.

2.3.Lessons Learnt and Limitations

The reflective architectures we have just mentioned
share a common feature. They all use reflective
capabilities at a single abstraction level: the Smalltalk and
C++ languages respectively for GARF, and FRIENDS, the
actor and communication concepts of the HAL actor
language for MAUD, and kernel abstractions (events,
signals, queues, locks, timers...) for reflective real-time
micro-kernels. Of course, these approaches are not tied to
any languages or OS, and may be ported to any other
environment that provides the same abstractions.
Nevertheless, the fact that they are mono-level make these
approaches blind to any information or behavior that is not
contained within the target abstraction level. Because the
range of dependability mechanisms that can be
implemented using a reflective approach depends greatly
on the meta-model available to the meta-level, this
limitation strongly hinders the deployment of extensive
fault-tolerance strategies.

For instance, the fault tolerance of multi-threaded
servers is very difficult to achieve using only high level
abstractions, such as language-level reflection. Indeed,
neither context switches, nor critical sections, or lock
allocation (semaphores, mutexes) are visible within usual
languages [7]. These are needed to replicate multi-
threaded processes. More generally, high level reflective
platforms miss information about low level hidden states,
events and implementation policies.

Implementing replication at a lower layer with low
level abstractions do not solve the problem either. Indeed,
if we consider for instance the checkpointing problem,
approaches that rely on binary core dumps of processes
cannot work without some minimal knowledge of the
semantics of the captured state. Raw core dumps contain
data that only have a meaning on the computer system
running the application (e.g. file descriptors). When a new
incarnation of a checkpointed process is launched,
corrective measures must be taken on the captured
process-state to update those platform-dependent data.
This includes for example process and file identifiers [8]
but also kernel- and library-tables that contain the
executive entities belonging to the checkpointed process.
The performance of fault-tolerance mechanisms may
further profit greatly from application semantics, which is
not available at the executive layer.

(Saved: Friday 3 January 2003 19:01)

To remove the limitations inherent to any mono-level
approach, we propose a multi-level reflective architecture,
which we describe in the following section. The basic idea
is to use reflection at each layer of the system architecture
to expose the meta-information which is necessary and
sufficient to implement a given fault tolerance strategy,
and to expose this in a consistent and unified way.

3. Multi-Level Reflection: Basic Concepts

As explained in the previous sections, although
reflection is a very attractive technology for fault-tolerance
mechanisms due to the separation of concerns it provides,
this concept should ideally be applied to all layers of a
system architecture. In this section, we first present a
simple example that introduces the basic concepts of
multi-level reflection (§3.1). These concepts are then
further discussed and detailed in paragraph 3.2.

3.1. Example: Synchronizing Threads

lock! [process P]
queued
grant! [process P]

critical

lock
. o available
unlock! [process P]
Fig. 2: A Simple Mutex Model

Figure 2 presents a simple model of synchronization by
mutex in a multi tasking operating system. We used
colored Petri-Nets, a well-known state / transition
formalism. Let’s consider a reflective operating system.
We assume that, at runtime, kernel-calls and internal
kernel events corresponding to the transitions of the model
presented on Figure 2 are intercepted and dispatched to the
meta-level. Using this reified information the meta-level
animates a meta-model, and may modify the default
behavior of the operating system through intercession
facilities.

mutex m ;

task Tl is
lock(m) ;
doWorkl() ;
unlock(m) ; unlock(m)

end Tl ; end T2 ;

Fig. 3: Two Competing Threads

task T2 is
lock(m) ;
doWork2 () ;
7

Consider two tasks t; and t, that respectively execute
the code T1 and T2 shown on Figure 3, on top of such a
reflective operating system.

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

At runtime, the kernel-calls lock! [T1] and lock! [T2]
are reified to the meta-level. At this point the meta-level
can decide to call the original lock code of the kernel,
depending on the current state of the computation,
reflected in the meta-model. If it does so for each thread,
the internal kernel event grant! [T;] is intercepted some
time later and redirected to the meta-level, with i=1 or 2
depending of the kernel scheduler. Here again, the meta-
level can call the real grant call to trigger the lock
allocation to the selected thread.

Because the meta-level controls when and how the
actual mutex code is activated, it can modify the
scheduling policy of the kernel. For instance, it may delay
the call to the original lock function for some set of
threads until some given condition is met.

The model on Figure 2 exhibits low-level activities
such as context switches, and lock allocation. Combined
with reflective capabilities obtained from higher levels, for
instance a state-capture algorithm based on language-level
reflection [9], this meta-model allows the implementation
of fault-tolerance mechanisms such as the active
replication of multi-threaded servers [10, 11], in a very
efficient, scalable, and flexible way. Synchronizing
replicas requires information both from the application
level (object-attributes, high-level information about the
application configuration and remote connections), and
from the kernel level (thread synchronization, site-
dependent variables, tables entries, etc.).

More generally, the explicit identification of the
reflective capabilities that are required by a given family
of fault-tolerance mechanisms happens to be crucial to the
adaptation of a software component. Indeed, adding fault-
tolerance to a component almost always requires some
form of intrusion, and that at different levels of the system.
The meta-information required by a family of fault-
tolerance mechanisms explicitly formalizes the nature and
the degree of that intrusion. It can be used as a
specification for the instrumentation of the considered
component. It allows the definition of the appropriate
meta-model, and the selection the most appropriate levels
for its implementation. One crucial issue in finding this
meta-model regards the conceptual means required to
encompass the multi-level nature of such systems, as
discussed in the following sections.

3.2. Basic Concepts

We’ve seen in paragraphs §2.3, and §3.1 why fault-
tolerant systems can benefit from the coordinated use of
meta-models implemented at different abstraction levels.
This suggests the construction of a single multi-level
model that aggregates those heterogeneous meta-models.
However, such a construction requires a precise
understanding of the interactions between a system’s

(Saved: Friday 3 January 2003 19:01)

layers. In this section we try to get more insight in this
question.

In component-based systems, a component often
recursively relies on the availability of other components
to work correctly. This recursive “reuse chain” generally
materializes itself in the final system in a layered
architecture delimited by standardized interfaces such as
CORBA [12] for the middleware, POSIX [13] for the
operating system, or the Intel IA32 architecture for the
CPU. Each standard offers a programming model that
provides concepts, and primitive operations, constrained
by a set of rules.

For instance, on Figure 4, layer L, ,, implements the
Interface I,,, while using the programming model of
interface I, which is provided by layer L, .

System’s
Functional
Interface

W Y e .

Application Layer L M

Executive Layer L ., O/Q\

Executive Layer L,
A/KA\iA

Fig. 4: Programming Models, Layers, and Interfaces

Interface I,

Interface I,

Each layer L; contains a set of implementation entities
(the rectangle, ellipses and triangles on Figure 4). Those
entities are built out of the programming primitives
offered by the interface(s) I, underneath L;, and give life
to the new programming model PM; that is implemented
by L;. However, they are not directly visible from outside
the layer L;. The interface I; of L; acts as a “paradigm
firewall” that shields the user from the actual layer
implementation, and protects the system from uncontrolled
dependencies. (This is a well-known application of the
general Information Hiding principle [14].)

Based on those considerations, we have identified the
following five basic concepts to construct a multi-level
meta-model of a layered system:

Meta-models: model the abstractions governing the
structure and the behavior of a part of the system. The
respective meta-models of individual layers should be
combined into an integrated meta-model of the whole
system, orthogonal to all levels.

Meta-filters: specify how to obtain a more specialized
partial view of a meta-model. This partial view contains
the necessary and sufficient meta-information required by
a given fault-tolerance mechanism.

Mappings: describe the various possible representa-
tions of a given entity at abstraction level i by entities
available at abstraction level i-/. Reverse mappings link

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

entities at abstraction level i-/ with the entities they
implement at level i.

Projections: transitive closure of mapping relations
that map a top-level entity to lower level entities (useful
for state handling). Conversely reverse projections help
trace top level entities related to a given low level entity
(useful for error confinement).

Meta-interfaces: provide meta-information on a given
subsystem. A meta-interface may be associated with a
specific individual component, with a layer, or with the
whole system.

These concepts are further discussed in the next section.

4. Multi-level Reflective Framework

In the multi-layer reflective architecture introduced in
the previous section, there are in fact several meta-models,
which can be classified along two orthogonal axis. The
first axis relates to the scope of the considered meta-model
(Does it encompass the whole system or only one level?),
and the second one to its specialization or genericity (Is
that a general-purpose meta-model, or an optimized,
narrowly targeted one?).

This 2-dimensional conceptual space is represented in
Figure 5. Traditional reflective approaches can be located
on the X-axis, since they are mono-level. The multi-level
meta-models we advocate are located in the upper region
of the space.

Integrated Fault Tolerance

“Universal” Meta-Model

4
L

Meta-Filters 7
| Multi-Level Specialized
Meta-Model Aggregation — Metamodel
(Inter-Level Mapping) o
O >
. Specialization
Mono-Level Generic
Meta-Model

Fig. 5: A Multi-Level Meta-Model Space

Our motivation for introducing a “Specialization”
dimension is that in most concrete cases the
implementation of an all-encompassing meta-model is not
needed for fault-tolerance. Too much genericity may even
be counter-productive for the systems we’re interested in.
The implementation cost of meta-interfaces into non-
instrumented COTS, and Open Source Software, depends
directly on the needed degree of intrusion. Moreover, a too
fine-grained runtime control can unnecessarily burden the
overall system performance and render an ill-designed
reflective architecture untractable.

(Saved: Friday 3 January 2003 19:01)

As discussed previously, individual mono-level meta-
models can be mapped onto one another according to the
different level implementations. These inter-level
mappings cement together the individual meta-models and
permit their incremental aggregation (represented as
vertical arrows) into a generic, all encompassing, universal
meta-model.

The two goals we set in the introduction — integration
of all system levels, and specialization to fault-tolerance
— define a region on Figure 5, which is denoted with a
shaded area. The corresponding specific meta-models can
be obtained by filtering unneeded reflective capabilities
from the universal meta-model we’ve just mentioned. This
filtering occurs by means of meta-filters (represented as
horizontal arrows) specific to the targeted crosscutting

mechanisms.
D L) Q0 e,

Interface I,
2 O OO0 O weL

Hidden
Entity

Translation Aggregation Multiplexing

Fig. 6: A Basic Mapping Taxonomy

Now, what are the mappings between levels actually
made of? A mapping taxonomy should at least be able to
identify relationships such as translation (1:1), aggregation
(n:1), and multiplexing (1:n) between the relevant entities
of the considered system (Figure 6). These relationships
may be refined, depending on the needs, into relationships
with richer semantics such as creation, referencing, state
dependency, etc. For instance, a semaphore is usually
implemented as the aggregation of a counter and a process
queue. A CORBA request in a multi-threaded server is
often mapped to a composite entity made of a thread
associated with a connection-oriented socket. Several
CORBA objects can be mapped onto either a single or
several UNIX processes, which makes a big difference
regarding error propagation and confinement areas.

Another important part of the mapping description
regards all implementation entities that do not explicitly
appear in higher levels. These entities account for the
hidden state (§2.3) and the non-deterministic behavior of a
layer. For example, in the Linux implementation of the
POSIX Thread Standard, a task known as the thread
manager is responsible for the thread bookkeeping and
inter-thread communication. This task is totally transpa-
rent to the application programmer.

The aggregation of several mono-level meta-models
through mappings, and the subsequent filtering according
to the targeted reflection capabilities yields a specialized
multi-level meta-model. This meta-model is made
accessible at runtime to the meta-level through a set of
meta-interfaces, one for each level (Figure 7). These meta-

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

interfaces are extended with aggregation and navigation
capabilities, to help navigate through the different levels of
the system, and offer a homogenous meta-programming
model to the meta-level programmer.

N e e

Meta-Interface L,

Structural model
Behavioral model

Meta-Interface L,

Structural model
Behavioral model

Meta-Interface L, ,

[PPOWRIDA] [PAIT-I[NJA]

Fig. 7: A Multi-Level Reflective Architecture

At runtime, the meta-interfaces reify the structure and
behavior of each layer to the meta-level (see Figure 1 on
page 3) and enable both introspection and intercession
facilities to observe and control the entities and
interactions in a given layer. For each entity E of any
layer, it’s then possible recursively to track through
several layers the set S; of lower entities that are “related”
to this particular higher instance (Figure 8). We call this
set Sy the top-down projection of E with respect to the
considered type of relationship/mapping.

System’s
Functional
Interface

I T/ OO 7/ ETE Y

7

oﬁgﬁ Layer L,

7 A Interface I,

Fig. 8: Top-Down Projection

Interface I, ,

What “related” means depends on the kind of mapping
relationships we want to consider. For instance, in order to
partially checkpoint the system as proposed in [15], we’ll
track inter-level state dependencies. Such state-
dependencies projection can also be very interesting to
finely track causality between the nodes of a middleware
based distributed system and implement some major
families of checkpointing protocols [16].

Bottom-up or reverse projections are possible as well.
Figure 9 illustrates how the impact of a fault in a lower
layer could be tracked up the system level hierarchy.

(Saved: Friday 3 January 2003 19:01)

This precise tracking would allow, for example, the
generalization of the reflective wrapping technology
proposed for micro-kernels in [6], and provide fined
grained error containment possibly within the same
machine.

System’s
, i Functional
. W % W == Interface
\ / Interface I,,, ,
% Layer Ln+l
\ / Interface I,
Layer L,

Fault

Fig. 9: Error Detection across the Layers of a System
5. Implementation Issues

The development of a multi-level reflective architecture
founded on the principles described previously first
requires a thorough understanding of existing system
architectures. In particular, we’re interested in the
underlying meta-models of common system layers. A
simple approach we considered in practice consisted in
reverse engineering broadly available components (in
particular open source components).

For instance, we obtained Figure 10 by intercepting
syscalls on the kernel network API, during the processing
of a remote request by a multi-threaded CORBA server.
The graph represents the stack traces of the server threads
for each syscall invocation, observed within a debugger. It
was obtained under Linux (version 2.4.18), with the
commercial ORBacus® CORBA implementation (version
4.1.1, in thread_per_client mode), with gdb 5.1-1.
The graph only gives a partial view of the complex actions
a remote invocation triggers within the middleware, and
reached this form after various intermediate classes were
abstracted away. The figure shows the different system
layers (Network, OS, Middleware, Application), and their
interactions.

Based on further similar observations, it is possible to
build behavioral and structural models for each layer.
Figure 11 for instance synthesize the observations of
Figure 10 in a Petri-Net model that stresses the thread
management in ORBacus. This figure identifies an
accepting thread (thread ID 3 on the figure) that spawns a
new thread on CORBA request reception (on the figure a
new thread with ID 4 is spawned).

* ORBacus® is a registered trademark of IONA Technologies PLC.

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

!SERVER START

Hello_impl

Legend: Application
middleware class 4:say_hello
socket primitive
application code POA_Hello
— w method invocation 4+ OB_postMarshal
— Object creation
-------- » thread spawning 4_OB_dispatch
I:listen Thread n°_l cx«iculcs
method “listen” v Mlddleware teposiMarshal

GIOPServerStarterThreaded

"- Iinew Thread 3
- run

1:new StarterThread 3:starterRun

1:listen

StarterThread

3:accept

run

Acceptor_impl

GIOPServerWorkerThreaded

" 3:new Thread 4

ReceiverThread

3:new

4:invoke 4:upcallReturn

GIOPServerWorkerThreaded

3:new

ReceiverThread 4:close

4:receiverRun 4:receive_detect 4:send_detect

Transport_impl

I:bind | 1:listen 3:accept 4irecv | 4:send 4:shutdown
bind | | listen | accept | OS Kemel | send I
Network

!CONNECTION REQUEST

!IIOP CONTENT !RESULT

Fig. 10: Activation of the socket syscalls during the processing of a CORBA request in ORBacus

Interestingly, the model of Figure 11, which focuses on
the thread management in the middleware layer, can be
related to the programming model of POSIX sockets
(executive layer). Figure 12 presents such a model,
expressed as a State-Chart, in which transitions refer to the
invocation of socket primitives. The “listening” socket
(state-chart on the left) directly maps onto thread 3 on
Figures 11 and 10. The communication sockets (state-
chart on the right) map onto the threads that are launched
each time a CORBA request is processed (thread 4 on
Figures 11 and 10).

in object “GIOPServerStarterThreaded”

3:new Thread 4
4:GIOPServerWorkerThreaded::receiverRun()

g 3:call to 3: new
g Acceptor_impl::accept() ReceiverThread E
=]
@ N / 3
g AN o
ﬁ 3:return from Acceptor_impl::accept() %
a 3:new GIOPServerWorkerThreaded z

1 coNNECTIt‘JN_ REQUEST 4:Transport_impl::receive_detect() \“

4:Hello_impl::say_hello() N S
— object creation 4:Transport_impl::send_detect() tZ
. K
== =@ thread spawning 4: Transport_impl::close()~ =

—» !NETWORK_EVENT
in object “GIOPServerWorkerThreaded”

Fig. 11: CORBA Request Processing and Thread
Spawning in ORBacus

More generally, once a behavioral or structural model
has been obtained for a given component as in Figure 11,
it is then possible to relate this information to lower layer
models, thus identifying the inter-level mappings we
introduced previously.

(Saved: Friday 3 January 2003 19:01)

The mappings that result from this analysis may not be
the same for all possible implementations of the
component interface. Several implementations must be
analyzed in order to extract a few generic architectural
patterns for the considered abstraction level, and help
identify, at least partially, the generic universal meta-
model introduced earlier.

l closed l
* close ; shutdown
| closed l
r

| idle | e [close ; shutdown
socket
call to accept return from accept ==***"2 nd
idle
accepting
connections

call torecv return from recv

bound
|
socket bind ; listen for reception

Fig. 12: State Machine Model of Berkeley Sockets

As far as ORB implementation are concerned, we
looked at omniORB and ORBacus, and explored
interesting differences in the design choices of both ORBs.
For example, when run in equivalent thread-per-client
modes, both ORBs don’t realize the same garbage
collection of idle connections. In ORBacus, the thread that
processed the request is directly responsible for the closing
of that connection after a given time-out. omniORB, on the
other hand, delegates the time-out closing to some

2002 Pacific Rim International Symposium on Dependable Computing (PRDC) — Tsukuba (Japan), 16-18 Dec. 2002

background thread, which remains invisible to the
middleware programmer. Our approach allowed us to
precisely identify the different points at which those
policies are implemented, and to examine in both cases
which internal ORB objects are involved.

Those analyses, and the models we constructed from
them, only build the first steps towards the universal meta-
model we advocated previously. More work is required in
that direction. Once such a generic meta-model is built, a
concrete meta-model, targeting specific fault-tolerance
capabilities, can be obtained through meta-filtering. We
have not yet reached that objective, but we expect some
formalism for fault-tolerance requirements to be needed
for this task.

6. Conclusion

Reflection is today a well-known paradigm that has
been successfully used to address non-functional concepts
in system architectures. In particular, security and fault
tolerance have benefited from this concept as
demonstrated by several projects and prototypes
worldwide. Our previous research in the field was a
contribution to the development of fault- and intrusion-
tolerant systems using reflective languages. The main
problem we identified was the limited meta-information
available at a given level regarding the above or
underlying layers of the system. This was the main
motivation for the introduction of multi-level reflection.

The basic concepts identified at this stage enable meta-
level software to be based on a clear understanding of the
entities-relations at all levels in a computer system and of
their links through several software layers. We also
advocate in this approach specialized meta-models that
can be defined for targeting a given non-functional
requirement. Several notions such as mapping and
projections provide means to draw error confinement
areas, and identify state information through all system
layers for error recovery.

From a practical viewpoint, we have focused on esta-
blishing meta-models of existing components. In a first
step we have analyzed off-the-shelf CORBA open-source
middleware with reverse engineering techniques. It is
worth noting that this is ongoing work, but we believe that
these concepts and framework are of high interest to
master the adaptation and evolution of future fault tolerant
architectures. The material provided in this paper opens up
a very large field of investigations and is the basis for our
future work.

7. References

[1] Smith, B.C. Reflection and Semantics in Lisp. in Eleventh
Annual ACM Symposium on Principles of Programming

(Saved: Friday 3 January 2003 19:01)

Languages (POPL). 1984. Salt Lake City, Utah: ACM. p.
23-35.

[2] Maes, P. Concepts and Experiments in Computational
Reflection. in Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA). 1987.
Orlando, Florida. p. 147-155.

[3] Garbinato, B., R. Guerraoui, and K.R. Mazouni,
Implementation of the GARF Replicated Objects Platform.
Distributed Systems Engineering Journal, 1995. 2(1): p. 14-
217.

[4] Agha, G., et al. A Linguistic Framework for Dynamic
Composition of Dependability Protocols. in the IFIP
Conference on Dependable Computing for Critical
Applications (DCCA-3). 1992. Palermo (Sicily), Italy:
Elsevier. p. 197-207.

[5] Pérennou, T. and J.-C. Fabre, A Metaobject Architecture for
Fault-Tolerant Distributed Systems : the FRIENDS
Approach. 1IEEE Trans. on Computer, Special Issue on
Dependability of Computing Systems, 1998. 47: p. 78-95.

[6] Rodriguez, M., J.-C. Fabre, and J. Arlat. Formal
Specification for Building Robust Real-time Microkernels. in
21st IEEE Real-Time Systems Symposium. 2000. Orlando,
Florida, USA.

[7] Killijian, M.-O. and J.-C. Fabre. Implementing a Reflective
Fault-Tolerance CORBA System. in 19th IEEE Symposium
on Reliable Distributed Systems (SRDS'2000). 2000.
Niirnberg, Germany. p. 154-163.

[8] Dieter, W.R. and J.E. Lumpp Jr. User-level Checkpointing
for LinuxThreads Programs. in 2001 USENIX Technical
Conference.2001. Boston, Massachusetts, USA.

[9] Killijian, M.O., et al. A metaobject protocol for fault-
tolerant CORBA applications. in 17th IEEE Symposium on
Reliable Distributed Systems (SRDS-17). 1998. West
Lafayette (USA). p. 127-134.

[10] Jiménez-Peris, R., M. Patifio-Martinez, and S. Arévalo.
Deterministic Scheduling for Transactional Multithreaded
Replicas. in 19th IEEE Symposium on Reliable Distributed
Systems (SRDS). 2000. Niirmberg, Germany. p. 164-173.

[11] Narasimhan, P., L.E. Moser, and P.M. Melliar-Smith.
Enforcing Determinism for the consistent replication of
Multithreaded CORBA Applications. in 18th Symposium on
Reliable Distributed Systems. 1999. Lausanne, Switzerland:
IEEE. p. 263-273.

[12] OMG, Common Object Request Broker Architecture
(CORBA/IIOP) (2.6). 2001. [http://www.omg.org/cgi-
bin/doc?formal/01-12-35].

[13]ISO-IEC, [IEEE/ANSI Std 1003.1, 1996 Edition]
Information Technology — Portable Operating System
Interface (POSIX®) — Part 1: System Application:
Program Interface (API) [C Language]. 1996.784.

[14] Parnas, D.L., On the criteria to be used in decomposing
systems into modules. Communications of the ACM, 1972.
15: p. 1053-1058.

[15] Kasbekar, M., C. Narayanan, and C. Das, Selective
Checkpointing and Rollbacks in Multithreaded Object-
Oriented Environment. IEEE Transactions on Reliability,
1999. 48(4): p. 325-337.

[16] Baldoni, R., J.-M. Hélary, and M. Raynal, Rollback-
Dependency Trackability: A Minimal Characterization and
its Protocol, . 1998, IRISA: Rennes (France).

