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ABSTRACT

The objective of this work is to define, implement and
illustrate a portable serialization technique for CORBA
objects. We propose an approach based on reflection: through
open compilers facilities the internal state of CORBA objects
is obtained and transformed into a language independent
format using CORBA mechanisms. This state can be restored
and used by objects developed using different languages and
running on different software platforms. A tool was developed
and applied to a Chat application as a case study. The
proposed technique is used to exchange state information
between a C++ and a Java incarnation of this CORBA service.
An observer tool enables the object state to be displayed and
analyzed by the user. The applicability of this technique to
various domains is discussed. Beyond the interest of language
reflection, we finally advocate that operating system and
middleware reflection would also be powerful concepts to
extend the work presented in this paper.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented Programming;
E.2 [Data storage representations]: Object representation; H.3.4
[Systems and Software]: Distributed Systems

General Terms
Algorithms, Design, Languages, Reliability, Portability.

Keywords
CORBA, Serialization, Reflection, Open compilers

1. INTRODUCTION

Handling the state of CORBA objects is a crucial issue in many
application domains: migration, persistence, object
replication, etc. For interoperability reasons, obtaining and
restoring the state of individual CORBA objects should be
done in a language independent way so that the state can be
exchanged between different incarnations of the same object,
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resulting from different programming languages. We use in
this paper the terms portable and language (and platform)
independent interchangeably.

Serialization in a homogeneous environment has been studied
quite extensively, e.g. in [1] [2]. This is not the case of
serialization in heterogeneous environments where works like
[3] [4] focus on platform interoperability but not on language
portability. Our objective in this work is to provide facilities
to serialize and de-serialize CORBA objects in a portable
format. We introduce an abstract model of object state so that a
serialized state is interoperable and portable.

The state of a CORBA object is quite complex and comprises
several facets, such as the attribute facet, the platform facet and
the communication facet. The attribute facet includes mostly
all internal object state variables structured using object-
oriented programming features (data types, inheritance,
composition, etc.). The platform facet includes all internal data
of the underlying software platform (middleware and operating
system layers), some of which is application object dependent.
The communication facet relates to all the messages in transit,
the state of the protocol stack, etc.

This paper concentrates on the serialization of the attribute
facet of a CORBA object. The other facets have been handled in
the past using conventional facilities (e.g. trap of system calls,
message logging, end-to-end protocols, etc.) or require other
reflective facilities that are out of the scope of this paper. We
will back to these facets in Section 5.3.

The approach that we propose for handling CORBA object
serialization is CORBA-compliant, transparent to application
programmers and portable. These requirements are met by
using both open compilers and the generic runtime support
supplied by CORBA. Open compilers apply the notion of
reflection [5] at compile-time in order to provide facilities for
customizing the compilation process of a program. These
facilities are exploited for automating the analysis of object
definitions and generating (according to the results of that
analysis) adequate mechanisms for serializing and de-
serializing CORBA object states. This solution has three major
benefits. First, it minimizes the effort required for providing
customized implementations of serialization; the analysis and
generation rules supplied to the open compiler are defined
only once and they can be later used on any CORBA object.
Second, these rules are automatically applied; this avoids the
participation of unskilled programmers in the generation of
the serialization mechanisms. Third, the technique only
depends on abstractions supplied by the CORBA support that
are, by definition, both platform and programming language
independent. This makes possible the provision of a language



independent representation of objects state and then the
provision of portable serialization for CORBA objects.
Although this approach could have been implemented using
dedicated compilers, we illustrate in this paper the benefits of
using open-compilers instead.

The next section recalls the basic notions of reflection and
open compilers used all through the rest of the paper. Section
3 first provides a high-level view of the proposed approach.
Then, it addresses the definition of a CORBA object state
model that is later applied on CORBA objects using open
compiler facilities. The resulting technique is then
exemplified, and its benefits illustrated, in the Section 4 using
a C++ and a Java implementation of a CORBA Chat service.
Section 5 discusses the applicability of the approach to
several domains like mobile agents and fault-tolerance.
Section 6 comments related work and discuss the pros and
cons of the solution. Finally, Section 7 presents the
conclusions.

2. Reflection and open compilers

Computational reflection is the activity performed by a system
when doing computation about its own computation [5]. This
notion enables a system to be structured in two layers: the
base-level, executing the application components, and the
meta-level, running components devoted to the
implementation of requirements that are orthogonal to the
application. In most object-oriented reflective systems, a so-
called MetaObject Protocol (MOP) handles interactions
between the base- and the meta-level.
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Open compilers, like [6] [7], apply the notion of reflection at
compile-time in order to open the compilation process of a
program. Essentially, these compilers are macro-systems
providing means to perform source-to-source transformations.
Figure 1 provides a high-level view of the compilation process
proposed by this type of compilers. The base-level of an open
compiler encapsulates the work typically performed by a
conventional compiler. The observation and control facilities
supplied by the open compiler provide the required means to
observe the program structure, reason about it and (eventually)
act on its translation. These facilities correspond to a compile-
time MOP. The meta-program uses these MOP facilities for
defining rules that (1) analyze the structure of the input
program, and (2) transform this structure according to the
needs. From now, these rules will be referred as analysis and

transformation rules. It is worth noting that meta-programs
may also generate error messages. When no error message is
generated by the meta-program, the customized code finally
produced can be compiled using a regular compiler.

As Gregor Kiczales states in [8], "aspect-oriented
programming (AOP) has a deep connection with work in
computational reflection and metaobject protocols".
Conceptually, AOP promotes separation of concerns in modern
programming languages. In practice, reflection is a powerful
mean to reach that goal as shown in [9]. Using the AOP
terminology, an open compiler can be defined as a weaver
tangling the aspect code of a meta-program with the non-
aspect code supplied by a basic program. The join-point model
used in AOP to specify when the aspect code can be activated
is in that context expressed in terms of a MOP. Through this
MOP, meta-programs analyze and customise input programs
according to the needs of the considered aspect. This is how
our approach exploits the open compiler technology, defining
meta-programs implementing a "portable serialization"
aspect for CORBA objects. Since these objects can be
implemented in many different languages, the analysis and
transformation rules specifying the aspect must be also
specialized for each considered target language. The following
Sections focus on how the "portable serialization" aspect can
be defined in general, and mapped to different programming
languages.

3. APPROACH

3.1 Overview

CORBA [10], the acronym for Common Object Request Broker
Architecture, is the Object Management Group (OMG) solution
for distributed object computing. The major benefit of using
CORBA relies on the support that it provides for the
development of third-party applications, which are able to
interoperate despite the programming language used for their
implementation, the operating system on which they run and
the underlying platform they use to communicate.

The object model proposed by CORBA is based on a client-
server paradigm where servers’ interfaces are defined using the
standard Interface Definition Language (IDL). This language
is independent of programming languages, but is mapped to
all the popular languages (Java, C++, etc.). A so-called IDL
compiler automates that mapping. Typically, IDL compilers
generate two types of components: (i) stubs, which are server
proxies used by clients; and (ii) skeletons, which are used by
servers for handling incoming client invocations. Messages
exchanged between clients and servers are formatted using a
platform independent octet stream representation, which is
called Common Data Representation (CDR). In order to
maintain the relationship between each CDR data and its
original IDL data type, CORBA specifies a set of transforming
rules for the formatting of IDL types in CDR. These rules solve
interoperability problems of variable byte addressing and data
alignment among heterogeneous platforms. The marshalling
process is the one enabling mapping from each platform or
language format to the CDR format. The symmetric process is
called un-marshalling.

The separation promoted by the IDL and the CDR format
between interfaces, implementations and platforms, is the
essence of CORBA, i.e., how it enables interoperability. Servers
export to the CORBA world their interfaces through the
Interface Repository (IR) service. This is the component of the



architecture that provides runtime support for the IDL type
system. This runtime type support is essential to ORBs in
order to check the integrity of the CDR-formatted messages
exchanged between clients and servers. On the other hand,
CORBA objects (clients or servers) have also access to the IR.
It is worth noting that this type support is generic and thus
language and platform independent.

Figure 2 shows how C++ and Java interoperate provided the
IDL definition of a ChatService interface. First of all, the IDL is
stored in the IR using the irfeed tool that each ORB supplies.
Then, any CORBA object can discover what is a ChatService.
The clients use stubs in order to communicate with the servers.
The servers’ skeletons interpret clients’ requests and activate
accordingly the adequate server’s method. The IDL compilers
(idl2Java and idI2C++ in our example) produce the stubs and
the skeletons.
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Figure 2. High-level view of a CORBA service
(example of the Chat service)

The approach that we define in this section proposes to
serialize the attribute facet of CORBA objects using a CDR
representation. It introduces the notion of CORBA object state
container that enables object serialization to benefit from the
generic infrastructure defined in CORBA. From a design
viewpoint, this concept can be defined as an IDL container able
to “hold” the complete state of a CORBA object. For the time
being, CORBA does not provide any tool well suited for
automating the generation of CORBA state containers from
object implementations (as discussed in section 6). Hence, we
propose the use of open compiler facilities to that goal.

Our approach uses open compilers for analyzing CORBA
object implementations and generate accordingly (i) the
adequate state containers and (ii) the language-dependent
mechanisms required for saving and restoring object states
to/from these containers. First, this analysis and generation
process is transparent to the application programmers. Second,
the generated state containers can be mapped using IDL
compilers to most common programming languages. This is
how our solution exploits the existing CORBA support for
providing portability.

At the CORBA level, the benefits of this approach are three-
fold: (i) object state containers are automatically generated
from implementations; (ii) through these containers, the
notion of object state becomes typed, which promotes a more
rigorous and type-safe management of object states at the

implementation level; (iii) every CORBA application is able to
dynamically discover and handle the structure and contents of
these containers using the general runtime type support
supplied by the IR.

At the implementation level, the declaration of state containers
in IDL has a major benefit: it enables the use of the CORBA
any variables, anys in short, for handling object states. Anys
are generic IDL variables, defined by the standard, that can
“hold” any IDL data type value without loss of type
information. Basically, an any encapsulates an un-typed data
buffer where the IDL data value is stored with its associated
type-code, which can be used to interpret the contents of the
data buffer. In practice, IDL compilers are responsible for
generating the mechanisms for packing and unpacking anys
to/from IDL variables. In the same way, CORBA also formalizes
the process of marshalling and un-marshalling anys to/from
CDR-formatted buffers. All these mapping mechanisms are
basic in our approach for the provision of portability. Through
them, state containers can be manipulated using any CORBA-
compliant programming language or platform. In other words,
multiple implementations (possibly in different languages) of
the same object can exchange their state, making it possible to
migrate an object to an incarnation written in another
language.
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Figure 3. Overview of the approach

Figure 3 exemplifies the approach on the ChatService example
introduced above. The meta-program has two main inputs: the
code associated to the ChatService implementation and its
interface definition, which is retrieved from the IR.
Accordingly, the meta-program drives the open compiler in
order to generate the adequate ChatServiceState container,
which is stored in the IR. This state container is also compiled
and mapped to both C++ and Java. This produces the necessary
mechanisms for (i) packing/unpacking state containers
to/from any variables (ChatServiceState2Any and
Any2ChatServiceState) and (ii) marshalling/un-marshalling
the resulting anys to/from CDR buffers (CDR2A4ny and
Any2CDR). Finally, the meta-program appends to the
implementation the necessary mechanisms for serializing/un-
serializing ChatService instances to/from the portable
ChatServiceState containers. However, it is worth noting that
the user can, before the final compilation step, customize the
“Portable Serializable” code generated in order to introduce
some optimization or any complementary treatment.



3.2 A Structural Model for CORBA Objects
State

In order to provide portable object serialization, we need a
common object state model, valid for any programming
language, so that the representation of the serialized objects
can be interpreted within each programming language
structural model. This section fixes the model that we consider
for CORBA objects state. This model is basically defined in
terms of (i) its type system and (ii) the object-oriented features
that it is able to handle.

An object state, and in particular its attribute facet, can be
defined as a set of internal variables (the object attributes)
each one with a name, a value and a type. Our approach
externalizes this compound of information to CORBA through
state containers defined as IDL structures. These structures
contain one field for each object attribute. The name of the
field is the one of the object attribute. The type of the field is
determined according to a mapping that must be defined
between each programming language and IDL data types. The
type of an attribute (and its mapping to IDL) defines the
technique to be used in order to serialize the value of that
attribute. An integer, for instance, cannot be handled like a
string. The type system considered in our solution is the one
defined by IDL. Data types included in our type system can be
divided into basic types and constructed types.

Basic types are:

®  Built-in types — The IDL built-in types are short, unsigned
short, long, unsigned long, float, double, char, boolean
and octet.

e  String types — IDL defines a specific type for Strings

e  CORBA object reference types — CORBA object references
are identifiers used by clients to access distant CORBA
objects.

= Class types — From a programming language viewpoint,
class types are the basic notions for the provision of class
inheritance and object composition. Handling inheritance
and composition is, in practice, one of the major concerns
tackled in the next section. It is worth noting that we
support multiple interface and simple implementation
inheritance. We elaborate on this issue in section 3.3.2.

Constructed types are data types defined in terms of one or
more of the above basic types. We distinguish: Structures,
Arrays, Sequences and user-defined types. Sequences are
CORBA unbounded array types whose length is dynamically
defined according to the number of elements packed in the
sequence. User-defined types can be viewed as aliases to other
constructed or basic types.

According to the CORBA object model, application
programmers may encapsulate several objects implementing
one or several CORBA interfaces inside a single CORBA
object. Each of these objects is called a servant. For the time
being, we only consider the existence of one servant per
CORBA object. The main motivation for this is that our
serialization approach needs a single root object in the
implementation. Consequently, the state of a CORBA object is
in fact the state of its incarnation: its unique servant. It is
worth noting that this assumption does not prevent the
encapsulation in a CORBA object of other internal objects not
incarnating a CORBA interface. As a result, the serialization of
a CORBA object leads to the serialization of its servant, which

provokes the serialization of each one of the internal objects
associated to the servant.

Encapsulation is another object-oriented feature of great
importance in our model that is enforced by CORBA. The
notion of CORBA object promotes a strong encapsulation of
data variables. For instance, a CORBA attribute can be defined
in the public interface of a CORBA object, but in practice, this
attribute will be private to that object and can be only accessed
through special methods called accessors. This is very useful
as it promotes independency among the states of different
CORBA objects. As a result, state consistency is a problem that
must be locally handled for each CORBA object. In our
solution, class attributes and global variables are simply
considered as attributes at the top of the object state hierarchy.

3.3 The Meta-Program

Open compilers are used to apply our object state model to
particular CORBA object implementations. Concretely, open
compilers are driven by a meta-program reasoning about (and
customizing) object-oriented programs in terms of: the
defined classes, their members (methods and attributes), the
existing associations between the defined classes (established
through inheritance, composition or delegation) and the
manipulations performed on these notions by application
programmers (like the instantiation of a class, the invocation
of a method, the access to an attribute and so on). The use of
open compilers, instead of plain compilers, enables to
concentrate on the specific issues for which the compiler is
used instead of complex issues of compiler development. The
metaobject protocols of the open-compilers are largely
sufficient for the issues we have to deal with and furthermore
are really easy to use.

In our case, the open compiler activates the meta-program each
time that a new class definition is detected in the input
program. Then, the meta-program has three responsibilities:
first, enforcing the conformance rules, i.e. checking the
conformity of the class definition with the object state model;
second, applying the CORBA-mapping rules, i.e. to build
CORBA state containers from the supplied class; and finally,
the language support generation, i.e. extending the class
definition with the methods needed for handling CORBA state
containers at the implementation level.

3.3.1 Conformance rules

These rules implement both structural and type checking.
Their goal is to determine whether or not the classes fit the
object state model specified in the previous section. We rely
on the introspection facilities supplied by the open compiler
in order to analyze class implementations. Type information
supplied by the IR is also valuable for associating language
data types with their respective IDL types.

Type-checking - In order to implement these rules, the meta-
program needs to determine the type of each attribute. Basic
types and strings are directly supported by the open compiler.
On the other hand, in order to differentiate class types from
CORBA object references we need a more sophisticated
approach. From a structural viewpoint, CORBA object
references are class types that (i) inherit (directly or indirectly)
from CORBA::Object; and (ii) supply the methods defined in
the CORBA interface of the server. These structural
requirements can be verified on each class by inspecting its
name, its super-classes, its methods and so on. However, the
code inspection facilities supplied by the open compiler have



a limited granularity. Hence, the type support provided by the
IR is essential in order to complete this analysis. Essentially,
we check for each object reference type whether or not its
associated CORBA interface exists in the IR. If this is not the
case, the associated class type is considered as being a
language type. Constructed type attributes are analyzed in two
steps. First, we differentiate structures, arrays, sequences and
type aliases. Then the data types contained in the constructed
type attribute are recursively analyzed.

Unique IDL mapping— These rules forbid every language type
without (or with more than one) equivalent IDL type. Indeed,
for portable serialization, we need to be able to interpret a state
non-ambiguously while the IDL specification is sometimes
ambiguous. For instance, the “IDL to C++ mapping”
specification [11] states that CORBA::char and
CORBA::octet are the C++ types respectively associated to
the char and octet IDL types. Conversely, a C++ char type can
represent both char and octet IDL types. Then, the use of the
C++ char type is ambiguous and is forbidden. In that case, the
alternative is the use of the (unambiguous) C++ alias types
CORBA::char and CORBA::octet. For the handling of built-
in types and strings, we use a dictionary that contains, for each
programming language, the mapping of the allowed language
types. Typically, strings are directly mapped to languages
built-in types, like in Java the java.lang.string. However,
some other languages, like C++, do not have direct support for
such data type. In C++, strings are usually handled using
pointers to characters. Although this is conventional, it is also
ambiguous and thus must be avoided. Regarding this
particular issue, one can consider two solutions: first, every
pointer to character attribute is considered as being of type
string; or second, we rely on more adapted types, like the
wrapping C++ type CORBA::String_var specified by the IDL
mapping standard. Both solutions are allowed in our approach
although the second is the most suitable.

Inheritance — As stated above, we support multiple interface
inheritance and simple implementation inheritance. Indeed,
multiple implementation inheritance can lead to serious
problems for determining the state of an object. For example,
let a class A inherits from classes B and C. At the same time,
both B and C inherit from a common class D. This “diamond”
inheritance tree leads to the need of serializing the attributes
defined in class D twice when serializing the state of an A
object. This issue concerns only some languages, like C++. In
other languages, like Java, multiple implementation
inheritance is not allowed.

In summary, these rules enforce a common object state model
whatever the programming language used is. Using this
common model, the state of an object can be safely exchanged
between entities written using different OO languages.
Obviously, these conformance rules have to be specialized
according to the programming language considered; this will
be discussed in section 4. When a conformance rule is
violated, then the analyzed class does not conform to the
defined object state model. In this case, the compilation
process is stopped and a message identifying the problem is
generated. This provides a useful feedback to fix the problem
by choosing a more adequate programming alternative.

3.3.2 CORBA-mapping rules

These rules guide the mapping of object states to CORBA state
containers. Attribute data types are mapped to IDL according
to the following rules:

Built-in types and strings — The correspondence between
each data type and its IDL type equivalent is determined
through the data type dictionaries introduced in section 3.3.1.

Object reference types — Object reference types are
mapped to IDL strings. According to the CORBA specification,
every object reference can be stringified, i.e. saved in a string.
On the other side, CORBA also standardizes the process of
restoring object references from strings.

Class types — Classes are mapped to IDL structures. The
name of the IDL structure generated for a class called 4 is
AState. When a class 4 inherits from another one called B, then
the IDL structure generated for class 4 (4State) contains a field
of type BState in which the internal state of the B super-class
is stored. Thus, inheritance is handled recursively. On the
other hand, associations among class types are differently
handled depending on the type of composition considered:

e  Composition by value is handled by recursion. Remember
that composition by value is when an object contains
another object. Hence, the IDL structure of the container
object will include one field for saving the state of the
contained object.

= Composition by reference is when an object A contains
the reference of an external object B. Then, A can use the
service supplied by B, but A does not contain B, as in
composition by value. Composition by reference is much
more difficult to handle since it is a potential source of
cycles in the object state graphs to be serialized.
Consider, for instance, a circular list of objects. The
serialization of such list requires the memorization of the
object references already serialized in order to avoid (i)
the serialization of the same object more than once, and
(ii) an infinite recursion in the serialization process due
to loops in the object graph being serialized.

We propose the IDL support defined in Figure 4, in order to
handle the types of composition described above. The
ReferenceAndState structure is used when an object is
serialized for the first time. In this structure, we save both the
object reference (identifier) and its state. Since it is not
possible to anticipate the format of a state container, the szate
field of the considered structure is defined as an any. On the
other side, the Reference structure is used for saving the
reference of an object already serialized. In summary, the
ReferenceAndState of an object will be saved in a ClassType
only the first time that the object is serialized. Additional
attempts for serializing the same object will result in saving
only the Reference of the object.

struct ReferenceAndState{ struct Reference{
long ref;
any state; %

2

long ref;

union ClassType{
Reference ref;
ReferenceAndState ref_and_st;

}
Figure 4. IDL support for Class types

Constructed types (structures, arrays and sequences) — These
types have a direct mapping to IDL. The basic types of each
structure field and each sequence and array element are
handled according to the CORBA-mapping rules defined in
this section.



To conclude, one must understand the important role of the IR
type support in handling the adequate mapping of object
states to CORBA state containers. Queries to the IR are issued
to determine whenever a type has already been defined in IDL.
When it is not, the meta-program actually does the mapping.
When it is, the IR furnishes the mapping.

3.3.3 Language support generation

The third role of the open compiler is to generate the
mechanisms needed for handling CORBA state containers at
the implementation level. First, the CORBA state containers
generated by the CORBA-mapping rules are mapped to each
considered language using standard IDL compilers. Second,
the meta-program provides implementation for the get_state
and set_state methods. This generated code is added to the
analyzed class, which is also declared as implementing the
PSerializable interface (for Portable Serializable).

The PSerializable interface is given in Figure 5. It defines the
get_state and set_state methods and two additional
operations: get_Anystate and set_Anystate. These
operations are respectively devoted to the serialization
(deserialization) of a CORBA object to (from) an any. Then, the
supplied any is marshaled to a State buffer that is finally
returned by get_state. The set_state operation is responsible
for un-marshalling any variables from State buffers. These
anys are then supplied to set_AnyState, which use anys’
contents for updating object states. Figure 6, shows how the
operations get_state and set_state are implemented. It is
worth noting that thanks to the use of any variables and CDR
buffers, this code is generic and can be used for handling any
CORBA state container.

typedef sequence<octet> State;
interface PSerializable{

State get_state() ;

void set_state(in State st) ;
any get_Anystate() ;

void set_Any state(in any st) ;

h
Figure S. The PSerializable IDL interface

The rest of this section focuses on the problem of providing
implementation of the get_AnyState and set_Anystate
operations. For the former, we focus on the problem of saving
an object state to a CORBA state container. For the latter, we
tackle the opposite problem.

Table 1 specifies the code generated for handling serialization
and de-serialization of built-in attributes, strings and CORBA
object references. This table adopts two conventions: first, the
CORBA state container used is called StateContainer; and
second, the object attribute handled is named a and is accessed
by this.a. As showed in the first row, built-in types are directly
saved to and restored from their respective StateContainer
fields. The second row is about string attributes, which are
saved using the standard CORBA::string_duplicate method.
Obviously, this duplication can be only performed when the
string is not empty. The homologous and symmetric process is
followed for de-serializing strings from state containers.
Finally, the third row tackles CORBA object references.
Remember that our mapping rules associates CORBA object
references to IDL strings. Handling these references is the
responsibility of the ORB that provides two methods:
object_to_string and string_to_object. It must be noted that
the de-serialization of an object reference is made in two steps:

first, the string is transformed by the ORB into a
CORBA::Object, a common super-class for any object
reference; second, that object is down-casted (narrowed) to its
adequate type.

State PSerializable_impl::get_state( ) {

// An any variable containing a CORBA state container
// is retrieved here.
CORBA::Any any = this.get_Anystate( ) ;

/I The any is then marshaled
CDRBuffer buffer ;
buffer.Marshal(any.type()) ;
buffer.Marshal(any.value()) ;

// A CDR buffer is an abstract sequence of octets.
// Hence, it can be saved in a State variable.
State st = buffer;

return st;

void PSerializable_impl::set_state( State st) {
CDRBuffer buffer = st;

/I The any saved in the State variable is un-marshaled
/I from the CDR buffer

CORBA::Any any ;

buffer.UnMarshal(any) ;

// The obtained any contains the type and the value
// of a CORBA state container. This contents is

// interpreted by the set Anystate operation
this.set_Anystate(any) ;

}
Figure 6. Implementation of the PSerializable interface.
Serialization De-serialization
Built-in StateContainer.a = this.a; this.a = StateContainer.a;
type H
if (a.length( ) > 0) then i if (StateContainer.a I= NULL) then
String StateContainer.a = i thisa= ) .
string_duplicate(this.a); string_duplicate(StateContainer.a);
type else Ise
StateContainer.a = NULL; this.a = NULL;
endif : endif
CORBA ! CORBA::Object obj =
Object StateContainer.a = i string_to_object(StateContainer.a);
reference obj_to_string(this.a); ! thisa =
type i CORBAODbjRefType::_narrow( obj );

Table 1. Serialization and De-serialization Generation rules
(Built-in variables, Strings and CORBA Object References)

Table 2 follows the same conventions defined for table 1, but
it concentrates on the serialization of class type attributes. In
the implementation, a class type attribute is a composite
object holding an object reference (identifier) that must be
unique in a given implementation. The way of expressing this
notion of object reference varies from one system to another.
We express this concept in Table 2 using the general notation
“Ref(this.a)”.

In our approach, an object is serialized when its reference is
not NULL and if it has not been already serialized. A table,
called serializedObjects, contains the references of the objects
already serialized. As stated in section 3.3.2, if an object has
been already serialized, then additional attempts to serialize




its state results in saving only its reference (see first row of
Table 2).

The de-serialization process (second row of Table 2) is
performed according to the information supplied by the
considered StateContainer. When a Reference identifies an
object that has already been de-serialized, the current reference
of this object can be retrieved from the deSerializedObjects
hash-table. If this is not the case, this means that the object has
not been already de-serialized. Then the reference is marked as
“waiting for de-serialization” of this object. It must be noted
that an object A having a reference “Refi(A)” in one
implementation will be identified through a different (new)
object reference “Refy(A)” in the context of another
implementation. The deSerializedObjects hash-table
maintains the correspondence between the object reference
supplied by the CORBA state container (the container
reference) and the current reference of the object (the one
obtained when the object is restored). As a result, when an
object is eventually de-serialized, its current reference and its
container reference are stored in the deSerializedObjects hash-
table. Then, every object reference marked as “waiting for de-
serialization” of the container reference can be updated.

Serialization De-serialization

! this.afield1 =
: StateContainer.a.field1;

StateContainer.a.field1 = this.a.field1;
Structure

type StateContainer.a.fieldN =

this.a.fieldN  this.a.fieldN =

i StateContainer.a.fieldN

for (i € [if™ ... i{™] Ffor (i € [if™ ... if™]

i€ ™ i) i€ ™ .. i )

Array StateContainer.a[i]...[i] = this.afif]...[i] =
this.a[i]...[in]; StateContainer. a[i]...[in];

type endfor endfor

this.a.length( 0 );

ifor (i=0 to
: StateContainer.a.length()-1 )

StateContainer.a.length(0);
for (i =0 to this.a.length() -1 )

Sequence StateContainer.a.length(i+1); i .
StateContainer.afi] = this.a.length(i+1);
type this.a(i]; this.al[i] =StateContainer.a[i];

endfor § endfor

ClassType classTypeObject;
if (Ref(this.a) == NULL) then
classTypeObject = Reference(NULL);
else if ( serializedObjects.HasReference( Ref(this.a) ) ) then
classTypeObject = Reference( Ref(this.a) );
else
classTypeObject =
ReferenceAndState( Ref(this.a),this.a.get_Anystate());
serializedObject.PushReference( Ref{(this.a) );
endif
StateContainer.a =classTypeObject;

Serialization

switch (StateContainer.a._discriminator){
case Reference:
if (StateContaner.a.ref == NULL) then
this.a = NULL;
else if (deSerializedObjects. HasReferenceOf(StateContaner.a.ref))) then
this.a = deSerializedObjects.GetReferenceOf(StateContaner.a.ref);
else
deSerializedObjects.WaitingForDeSerialization(StateContainer.a.ref, Ref(this.a));
endif
end;
case ReferenceAndState:
if (this.a != NULL) then release(a); endif
this.a = new ClassType_of_a;
this.a.set_Anystate( StateContainer.a.state );
deSerializedObjects.PushContainerAndCurrentReference(StateContainer.a.ref,
Ref(this.a));
deSerializedObjects.UpdateWaitingForDeSerialization(StateContainer.a.ref);
end;
endswitch

De-serialization

Table 3. Serialization and De-serialization generation rules
(Structures, Arrays and Sequences)

As stated in section 3.3.1, we only enable the use of
implementation simple inheritance, which is handled by
recursion. Hence, the meta-program generates a recursive
invocation to get_Anystate or set_Anystate for the super-
class associated to each considered class type instance. These
generation rules are defined in Table 4.

Serialization De-serialization

StateContainer.super =

super.get_Anystate();

|
1
1

if (this.HasSuperClass()) 1 if (this.HasSuperClass())
! super.set_Anystate(StateContainer.super);
1
1

Table 2. Serialization and De-serialization rules
(Class types)

Constructed types (structures, arrays and sequences) are
handled recursively. Thus, the rules presented in Table 1 and
Table 2 are applied directly to each structure field and to each
array or sequence element. Table 3 exemplifies this recursive
approach for the case of a structure, an array and a sequence. In
the first case, each field of the structure is sequentially saved
and restored. In the second case, a loop is generated for
iterating on array elements. As one can see, the body of the
loop is defined using the mapping defined in table 1 on each
built-in type element of the array. In the third case, sequences
are handled following an incremental approach: each time that
a new element is saved in the sequence, the length of this
sequence is incremented by one. This results in the automatic
allocation of the memory required by the new element.
Conversely, if the length of a sequence is initialized to zero,
then all the memory currently allocated for that sequence is
automatically released.

Table 4. Serialization and De-serialization generation rules
(Inheritance)

One may consider that our approach obviates the handling of
user-defined types. However, these types are essentially aliases
to the types already presented. Thus, the rules defined in tables
1-4 are also valid for handling user-defined types. The meta-
program must only determine the primitive type associated to
a user-defined type and then apply accordingly the adequate
generation rules.

4. CASE STUDY & LANGUAGE MAPPING

In this section, we illustrate the proposed technology using
the example of a Chat server. This server is mapped onto a
single system process, which is considered as an error
confinement area'. The server has been designed in detail and
implemented in both C++ and Java, respectively on top of
Orbacus and JOrbacus 3.3.1. We show that these two
implementations are interoperable at the state level. The
example shows also that the conformance rules enforced by
our approach are not too restrictive as they allow non- trivial
states to be managed. Then, we discuss some language specific
issues related to the mapping of the object state model to both
C++ and Java.

! This implementation requirement is crucial in our context in
order to limit the impact of a server failure over the rest of
the system. Process boundaries provide an isolated address
space ideal to handle this requirement.




IDL

C++ (servant declaration)

class ChatService_impl : public ChatService_skel {
ReceiverSeq receivers_;
StringSeq rlds_;
StringSeq rHosts_ ;
StringSeq rNicks_ ;
/I And the methods defined in the ChatService
interface

in string nick);

out string rNick);

void say(in string text);

typedef sequence<Receiver> ReceiverSeq;
typedef sequence<string> StringSeq;
interface ChatService : PSerializable{
unsigned short register(in Receiver receiver, in string id,
in string host, in string nick);
unsigned short unregister(in Receiver receiver);
unsigned short setNickName( in Receiver receiver,

unsigned short getReceiverByNick(in string nick,
out Receiver rec, out string rld, out string rHost,

StringSeq getReceiverNames();

Java (servant declaration)

public class ChatService_impl extends _ChatServicelmplBase {
private Receiver[] receivers_;
private String|] rlds_;
private String[] rHosts_;
private String[] rNicks_;
/I And the methods defined in the ChatService interface

IDL ChatService state container

OpenC++ and
Meta-Program

struct ChatService_implS {
sequence<string> receivers_;
sequence<string> rlds_;
sequence<string> rHosts_;
sequence<string> rNicks_;

OpenJava and
Meta-Program

L

<

C++ serialization mechanisms

Java serialization mechanisms

CORBA_Any * ChatService_impl:: get_AnyState () {

/ICreating the CORBA state container (ChatService_implS)

Ptrinfo_var ptrinfo = new PtrInfo ( ) ;

PtrAndState_var ptrandstate = new PtrAndState ( ) ;

ChatService_implS * objState = new ChatService implS ( ) ;

hmap . open ( ) ;

long myID = ( hmap [ this ] = hmap . id ( ));

ptrandstate > id = myID;

//Saving servant attributes in the created CORBA state container

objState>receivers_.length(0) ;

for ( int i = 0 ; i<this.receivers_.length ( ) ;i ++) {
objState>receivers_.length (objState->receivers_.length ( ) + 1) ;
objState>receivers_[i] = ORB::_OB_instance( )=>

object_to_string (this.receivers_[ i ]) ;

}

for ( inti=0;i<thisarlds _.length ( );i++) {
objState> rlds_.length (objState->receivers_.length ( ) + 1) ;
objState> rlds_[i] = ORB::OB_instance( ) object_to_string (this.receivers_[i]) ;

}

//The same type of code is generated for handling attribute this.rHosts_ and

this.rNicks_

//Then, pack the CORBA state container in a Any and return

CORBA_Any * returnAny = new CORBA_Any ;

ptrandstate> state <<= (* objState);

ptrinfo-> ptr(* ptrandstate) ;

(*returnAny ) <<= (*ptrinfo);

hmap . close ( ) ;

return returnAny ;

public org.omg.CORBA.Any get_AnyState(){

}

/ICreating the CORBA state container (ChatService_implS)
PtrInfo ptrinfo = new PtrInfo();
PtrAndState ptrandstate = new PtrAndState();
ChatService_implS objState = new ChatService_implS( );
hmap . open () ;
long myID = ( hmap [ this ] = hmap . id ( ) );
ptrandstate.id = myID ;
//Saving servant attributes in the created CORBA state container
objState.receivers_ = new String[recCollection.toArray().length];
for (int i = O;i<this.receivers_.length; i++){

objState.receivers_[i] = ORB._OB_defaultORB().object_to_string(this.receivers_[i]));
}
objState.receivers_ = new String[recCollection.toArray().length];
for (int i = 0 ; i < this.rIds_.length; i++){

objState:rlds_[i] = this.rIds_[i];

//The same type of code is generated for handling attribute this.rHosts_ and this.rNicks
//Then, pack the CORBA state container in a Any and return

org.omg.CORBA.Any returnAny = ORB._OB_defaultORB().create_any();
org.omg.CORBA.Any tempAny = ORB._OB_defaultORB().create_any();
ChatService_implSHelper.insert(tempAny,objState);

ptrandstate.state=tempAny;

ptrinfo.ptr(ptrandstate );

PtrInfoHelper.insert(returnAny,ptrinfo);

hmap . close () ;

return returnAny ;

void Broadcaster_impl::set_AnyState ( const CORBA_Any & inputState ) {

//Extracting the CORBA state container stored in the supplied any

hmap.open () ;

PtrInfo_var ptrinfo = new PtrInfo ( );

Broadcaster_implS * objState ;

inputAny >>= ptrinfo ;

PtrAndState_var ptrandstate = new PtrAndState ( ) ;

* ptrandstate = ptrinfo>ptr ( ) ;

long oldID = ptrandstate 2 id ;

hmap [ oldID ] = this ;

ptrandstate-> state >>= objState ;

//Retoring servant attributes from the supplied CORBA state container

this.receivers_.length(0) ;

for (inti=0 ;i< newState->receivers_.length () ;i ++) {
this.receivers_ . length (this.receivers_.length () + 1) ;
this.receivers_[i] =

Receiv arrow(ORB::OB _instance()>
string_to_object(newState>receivers_[i]));

}

this.rlds_.length(0) ;

for ('int i=0; i<newState>.rlds_.length ( ); i ++){
this.rlds_.length(this.rIds_.length( )+1);
this.rlds_[i] = CORBA_string_dup(newState->rlds_[i]);

}

/IThe same type of code is generated for handling attribute this.rHosts_ and

this.rNicks_
hmap.close () ;

public Voigset_AnySt_ate ( org.or;g.CORBA.Zny inputSt:te){

/[Extracting the CORBA state container stored in the supplied any
hmap.open () ;
PtrInfo ptrinfo = PtrInfoHelper.extract(inputState);
PtrAndState ptrandstate = ptrinfo.ptr();
ChatService_implS objState =ChatService_implSHelper.extract(ptrandstate.state);
long oldID = ptrandstate.id ;
hmap [oldID] = this ;
//Retoring servant attributes from the supplied CORBA state container
this.receivers_ = new Receiver[objState.receivers_.length];
for (int i=0; i<objState.receivers_.length; i++) {
this.receivers_[i] =
ReceiverHelper.narrow(ORB._OB_defaultORB().string_to_object(objState.receivers_[i])));

}
this.rlds_ = new Receiver[objState. rlds _.length];
for (int i=0; i<objState. rIds _.length; i++) {

this. rIds _[i] = objState. rIds _[i];

/IThe same type of code is generated for handling attribute this.rHosts_ and this.rNicks
hmap . close () ;

Figure 7. Chat Service Serialization




4.1 Example

This section refines the example supplied in Section 3: the
ChatService. This server implements a simple chat service
where clients can: connect to, give their nickname, send
messages to every client or to a particular client and obtain the
list of the connected clients. Starting from the same design, we
implemented both a C++ and a Java version of the service, the
clients are written in C++ but could be also ported to Java or
any other language. These two versions were compiled using
our extended compilation facilities, and then have been
extended with the PSerializable interface. Figure 7 shows the
generated IDL ChatService state container and the C++/Java
implementations of the get_AnyState and set_AnyState
methods. One can note that the two implementations are pretty
similar. The reason is simple, we use the same meta-program
(the same analysis and transformation rules) in both cases; the
only difference concerns the language and the open compiler
(OpenC++ [6] and OpenJava [7]) respectively used to describe
and apply the meta-program.

From a practical viewpoint, this example shows how the
ChatService_impl state container is packed to and unpacked
from any variables. In C++, this is done by using the <<= and
>>= operators. In Java, using Helper classes generated by the
IDL compiler. Another practical issue concerns the use of local
ORB instances inside CORBA object implementations. As
stated in section 3.3.3, the stringification of object references
involves the ORB. This justifies why most ORB providers
supply to programmers a set of (proprietary) facilities to
access to the ORB. In practice, there is typically only one ORB
instance in each CORBA object. In Orbacus, this instance may
be accessed by using the static ORB method _ob_instance().
In Jorbacus, the same is performed using the static ORB
method _OB_defaultORB(). It is worth noting that from the
serialization viewpoint, ORB instances are not part of the
attribute facet but rather they belong to the platform facet.

4.1.1 An External State Observer

In order to illustrate the portability of the serialization
provided, we implemented in Java an external state observer.
This state observer is able to obtain the state of any CORBA
object compiled using our technique. Figure 8 shows the
graphic user interface of this observer: the user has to fill the
Object IOR field (Interoperable Object Reference) and when the
Get Object State button is pressed, the right panel shows a
hierarchical view of the object’s state. The state shown figure 8
is the state of the C++ chat server with two clients connected.

This observer can be used to debug an application, by
observing and checking the state for conformance and it is a
first illustration of the portability of the serialization process:
the state of a C++ object is analyzed at runtime and displayed
by a Java application.

4.1.2 Migration between C++ and Java Servers

Since we implemented two versions of the same chat server,
both of them derived from the same detailed design, i.e. the
C++ and Java classes have the same attributes. We set up an
experience where the state of the servers are exchanged
between each other, here is the scenario:

e The C++ server is started; two clients connect and
exchange some greetings.

e  The state of the C++ server is obtained and the server is
crashed.

*  The Java server is started and its state is restored from the
state obtained at the previous step.

*  The clients can continue to chat without any disturbance.

This scenario can be applied the other way around: the state is
obtained from the Java server and applied to the C++ server.
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Figure 8. Interface of the Java External State Observer

4.1.3 Persistence of the Chat Server
Based on the external state observer, we implemented a Java
application that obtains the state of a CORBA object and saves
this state to disk. Later, the state can be read from the disk and
applied to any chat server implementation to restore it (see
figure 9).
8ee PersistentState

f PersistentState T CetlOR ]

Object IOR: I0OR:00000000000000010000000000000¢ [ Get Object State Set Object State

File: ftmp/state_chat_server_L.cdr| Save State Load State

Close

Figure 9. Interface of the Java Persistent State Server

Using this, the servers can be made persistent easily: each time
a client connects or disconnects, the server can save its state to
disk. When a server is started from scratch, it can restore its



state from the disk. Again, this persistence is applicable to
C++ and Java servers interchangeably.

4.2 Language Mapping

It is very important to consider the practical restrictions
resulting from the application of the defined object state
model and its associated conformance rules. This is crucial for
proposing programming alternatives for each defined
restriction. Otherwise, the programming conventions imposed
could be too restrictive.

In Java, there is no programming restriction since the language
is conformant with the object state model we defined. A clear
mapping between Java and IDL is defined in [12]. In C++
however, some restrictions must be obeyed (see Table 6 ).

Issue C+
Multiple inheritance Forbidden
Multi-level pointers’ Forbidden

To be forbidden if it can have side
effects on other CORBA objects, i.e.
if each CORBA object is not in a
separated system process.

Pointer arithmetic

Some data types are ambiguous, like
char types and thus forbidden (see
discussion in section 3.3).

Unique IDL mapping

Table 6. Programming restrictions for C++

It is worth noting that the restrictions are very language
dependent. Pure object oriented languages are clearly
conformant with the state model we have defined. When it is
not the case, then, some limited programming conventions
must be observed. Although this may appear as a limitation, in
particular when dealing with legacy applications, we believe
that this is a way to enforce better object-oriented
programming that is highly needed for dependability reasons.
This is yet common practice in safety critical applications, e.g.
in avionics.

Finally, the proposed approach could be extended relatively
easily to other programming languages, object-oriented or not,
provided that an open-compiler and a mapping are available,
but this is beyond the scope of this paper.

5. APPLICATION AND DISCUSSION

This technology can be applied to a number of
domains/applications: mobile agents, dependable computing,
load balancing, etc. We illustrate here a possible use of this
technique in some of these domains.

5.1 Mobile Agents

Being able to serialize objects in a language independent way
can be very interesting in the context of mobile agents. A
simple definition of what are mobile agents is: small objects
that can travel the network in order to realize one or several
tasks at different locations (hosts). A typical application is the

2 Multi-level pointers are pointers expressing more than one
level of indirection in the access to a variable, as int**,
int***, and so on. Simple-level pointers, like int* or class
pointers are allowed.
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travel-agent: the agent is set up at shome so that it will scan a
list of different car rentals (or airlines, hotels, etc.) on behalf of
the user to search for an offer matching some given criterions
and to minimize (or maximize) a given function, e.g. usually it
will minimize the price. A typical problem with this scenario is
that it requires the different car rental companies to have the
same agent-hosting platform (system/middleware and
language or virtual machine) running on their network. This is
far from being the case currently and we doubt that it will in
the near future.

Hertz
Java Platform

Avig
Ct++and Java Platforms

|

Seattle Rent-a-car
Ci+ Platform

LAAS
C++and Java

Agent control

Figure 10. Example of mobile agent migration.

Using our approach, we can have several implementations of
an agent derived from the same design. The serialized agent
can be used by any implementation and then the above
problem is solved: the agent can be moved from home to Hertz,
incarnated in Java, serialized and traveled to Avis, incarnated
in C++, etc. until it comes back home with the results. This is a
very simple scenario but it illustrates that portable
serialization is a basic support technology for ubiquitous
computing.

It is worth noting that for mobile agents, handling the
attribute facet is sufficient because these objects are aware of
mobility, they thus don’t use platform dependent attributes
and they manage their own communication.

5.2 Checkpointing and dependability

Distributed systems provide a convenient (and natural)
framework for the development of replication-based fault-
tolerant strategies [13]. One of the major issues in the design
and implementation of distributed fault-tolerant systems is
checkpointing. Checkpointing can be simply defined as the
process of saving a program state so that it may be restored
later in time. Checkpointing a distributed application
involves complex algorithms to ensure the consistency of the
distributed recovery state of the application. In particular,
handling global checkpoints requires, among other things,
getting a correct set of local checkpoints for the entities
(objects in object-oriented systems) participating in the
distributed computation.

In addition, basic distributed fault tolerance mechanisms rely
on replication. Checkpoints reflecting the current state of each
individual object are needed for replica synchronization and
for cloning replicas. Hence, a basic brick for the development
of distributed replication mechanisms is obtaining local
object states.



Most available checkpointing techniques rely on memory
snapshots. This approach assumes that replicas are strictly
identical and are de-facto running on the same platform, which
is often the case. In this approach, there is no semantics
attached to the checkpointed information. This raw
information is used as is to update the state of backup replicas.
This approach often assumes a limited fault model, essentially
only crash fault are considered. Triplication and voting
considers more subtle faults. However as replicas are identical
only physical faults can be handled with this technique.

The proposed technique provides more meta-information and a
portable format that enables replicas to be developed in
different programming languages from a same detailed design.
For several decades, it is well known that software faults are
most likely to occur in today’s system [14]. Although this
technique cannot help very much for tolerating design faults
at the object level, since the same detailed design may lead to
common mode failure, it is of high interest when considering
design or implementation faults at the underlying software
platform level. Temporal redundancy and software
rejuvenation [15] are the sort of techniques able to tolerance
this kind of faults. Many of these faults are related to the aging
of systems in operation. Although more work is needed to this
aim, we believe that this technique can be of high interest to
deal with software faults at the system platform level.

Roll-back mechanisms can also take benefit of a portable
serialization technique, in particular in a CORBA context, for
large scale transactional systems.

Another interesting issue is the possibility of implementing,
based on the technique proposed in this paper, tools for
managing the evolution of software. One could easily imagine
a customized version of the deserialization mechanism that
would be able to interpret and to perform some basic
modifications on the serialized state before the proper
deserialization. These modifications could include, for
instance, the translation of a short integer into a float
provided that the corresponding attributes in the old and in
the new version of the object have the same name.

5.3 Discussion

The above sections illustrate the interest of a portable
serialization technique. Many more examples can be found,
e.g. load balancing, GRID computing, supervision of large
applications, distributed debugging, etc. We believe that open
compilation and related techniques, such as AOP, are very
promising techniques to master complexity of application
object-oriented programming and to tune the implementation
according to the system requirements. Understanding better
the state of objects is of high interest to adjust the
implementation according to several objectives. It is worth
noting that being able to trace the state of CORBA objects has
many benefits for testing reasons. From a performance
viewpoint too, this gives interesting insights on the behavior
of the object at runtime. These feedbacks can be use to
optimize the organization of the object attributes, the
inheritance hierarchy, the object decomposition and the like.
The visibility of generated mechanisms by the user enable
checking the implementation details of a CORBA object. In
addition, for optimization reasons for instance, the user is able
to modify the automatically generated methods.

However, it is clear that in many systems the attribute facet is
not sufficient to handle object states. This is mainly due the
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fact that a CORBA system is not a pure object-oriented system.
Rather, it is a hybrid system, grouping both object-oriented
and traditional imperative programming. Any system call
performed by an object to the operating system has two
effects: (i) the call creates or updates internal data structures
within the operating system address space and (ii) returns
local identifiers which are only valid on a single site. This
local value returned to the object is stored in the object
address space in a site-dependent variable. This information is
thus not valid on a different site and thus must not be
checkpointed as is. This means that more meta-information is
needed to handle this type of information. This involves
additional mechanisms (i) to identify this type of variable, (ii)
intercept system calls like this, (iii) journalize all system calls
performed by an object and (iv) perform the system calls at the
destination site to re-create or update the system platform and
get the correct value of the site-dependent variables on the
remote site. This kind of mechanisms is quite conventional in
fault tolerant computing and transactional systems. As far as
hybrid systems are considered, then, they are means to handle
part of the platform facet, related to explicit system calls.

However, in particular in middleware systems such as CORBA,
many actions performed by the middleware are not related to
explicit calls from the application object. The interface of a
middleware such as CORBA is rather implicit (ORB and POA).
Few ORB services belong to an explicit APl (some
initialization and declaration routines). This is why the
internal state of a middleware such as CORBA cannot be
handled in a way as described above.

The most promising approach relies on using other reflective
layers like reflective middleware [16] and reflective operating
systems [17] to externalize useful state information. This
means that reflective components can be setup to make some
part of their internal state visible or even adjustable on a case-
by-case basis, depending on the aims of the system designers.
This approach has many merits since, beyond solving in an
elegant way the problem of the platform facet, it enables
tuning the tradeoff between usefulness and runtime overheads.
Such a multi-level reflective approach has also many merits
regarding the communication facet since it can externalize the
state of protocol stacks. Interception facilities at
communication level enable message logging and end-to-end
protocols to be implemented easily.

Clearly, reflective component technology, including
middleware and operating system components is a very
attractive field of investigation and a real challenge for future
research. As far as state information is concerned, the
identification of the components persistent state (e.g. open file
descriptors) and the component volatile state (unnecessary
information for recovery/restart) is something that must be
looked at carefully. This has a direct impact of the definition
of the needed reflective features, i.e. the definition of the
minimal metainterface required to strictly access the necessary
and sufficient component state information. Such technology
is very promising to checkpoint threading, ORB internal
variables and message queues.

6. RELATED WORK

6.1 Memory management approaches

Object serialization is nowadays a problem with particular
relevance to fault-tolerance but also to mobile computing,
object migration, adaptive computing and load balancing.



Memory management approaches are based on memory
snapshots and control of memory allocation [18]. Processes
own persistent memory regions and thus all objects allocated
in these regions are persistent. However, these solutions do
not provide the required granularity for serializing individual
object states.

For instance, in the GUARDS System [2] developed for a wide
range of application domains (e.g. railways, aerospace, etc.)
state variables are declared a priori and mapped onto specific
memory regions. Memory regions are in turn divided into
blocks. Blocks may hold several state variables and are
transferred to restore the state of the computation on a
companion processor. A quite interesting algorithm enables a
block to be transferred as soon as a state variable has been
updated within this block. In this solution no semantic and
type information is attached to the transferred information,
since replication is performed on identical processors loaded
with the same executive software.

This is why this type of solution cannot be used in a language
heterogeneous environment.

6.2 VM and compiler-assisted solutions

We address in this section two sorts of approaches: those
based on virtual machines (VMs) and those assisted by
compilers. Solutions based on VMs [19] [20] benefit from an
integrated runtime type support for object serialization that
minimizes the required contribution from programmers.
Indeed, the runtime of a language hold all the necessary
information to get and restore object state information. This is
why object persistence can be achieved with this approach in a
transparent way. In Java for instance, the Java Reflection API
enables the complete type /class information to be accessed at
runtime. This information has however only meaning on the
same virtual machine elsewhere.

Compiler-assisted solutions, and particularly those based on
open compilers, have also shown their interest for providing
transparent object checkpointing in systems without runtime
support for serialization, like those based on C++ [21] [22].
The approach in this case is also based on open compilers but
resulting state information is language dependent.

Another technique relies on source-to-source compilation to
produce instrumented programs that are able to save state
information in a binary-compatible format [23]. In Preaches [3]
a portable checkpointing solution for single process
applications is proposed. Instead of using an architecture-
independent format, this approach generates machine-
dependent checkpoints for each one of the considered
architectures. A compiler-assisted solution very closely
related to our work, is the one presented in [24]. This solution
proposes a tool based on the JavaCC preprocessor in order to
automatically generate state transfer code for CORBA
applications. However, the approach only supports state
transfers between object replicas written in the same language
(C++ or Java).

Both types of solutions follow the same principle: they
provide serialization of individual objects by analyzing and
interpreting their structure dynamically (in the case of VMs),
or statically (in the case of compilers). Despite their benefits,
the application of these solutions to CORBA, DCOM [25] or
Java/RMI [26] systems can be criticized since they impose the
use of particular platforms and programming languages.
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The solutions proposed by DirectToSOM (DTS) [30] and the
Common Language Runtime of NET (CLR) [31] are hybrid of
the two types described above. They rely on the use of specific
compiler on dedicated platforms to support the sharing of in-
memory representation of an object at runtime. Although the
goal is not exactly the same, these solutions seem quite
interesting and we look forward reading more about them.

6.3 FT-CORBA

FT-CORBA extends CORBA with a set of IDL interfaces for the
management of consistently replicated fault-tolerant objects.
One of the major goals of this infrastructure is the provision of
strong replica consistency when using active, warm and cold
passive replication mechanisms. This requirement depends on
the capacity of the fault-tolerance support for serializing
object replicas. For active replication, each server replica
computes and responds to every operation. When an active
replica is recovered from a failure, its state must be
synchronized with the state of the active replicas. For passive
replication, one of the replicas, the primary replica, responds
to every operation. With warm passive replication, the state of
the remaining replicas, known as backups, is periodically
synchronized with the primary replica’s state. With cold
replication, a backup replica is loaded into memory and its
state is initialized from a log only when the existing primary
replica fails.

This need of object serialization leads to the notion of CORBA
Checkpointable object (a notion similar to the one of Portable
Serializable object used in this paper). FT-CORBA states that
every replicated CORBA object must inherit from the IDL
Checkpointable interface. This interface provides two basic
operations used for serializing (get_state) and deserializing
(set_state) the state of an object. Because it is not possible to
anticipate the format of the state of every object, the State of
an object is defined as a sequence (stream) of octets. The
implementation of these operations is left open to the
application programmer.

DOORS [27] and Eternal [28] provide (partial)
implementations of the FT-CORBA infrastructure. DOORS
focusses on the definition of an architectural solution for an
efficient implementation of FT-CORBA. Eternal provides a
complete framework for the implementation of fault tolerant
applications on top of CORBA. The merits of Eternal are two-
fold: (i) the proposed infrastructure enables off-the-shelf ORB
to be used thanks to the notion of interceptors, and (ii) the
framework is consistent with the development of crash-fault
tolerant systems. In this context, the implementation of get-
state and set-state operation can rely on simple raw
information checkpointing since replicas are running on
identical software/hardware support.

6.4 Other OMG efforts

The OMG has recently adopted the definition of a new generic
CORBA service called the Persistent State service [29]. The
basic idea is to introduce a new language in CORBA, called
PSDL (Persistent State Description Language), for the
declaration of object states. Among other features, this
language will provide built-in support for declaring object
states and the resulting PSDL definitions will map to the most
common programming language. We think that this approach
is quite promising, especially for the provision of language
and platform independent object state repositories.
Unfortunately, programmers are responsible for providing



such PSDL declarations. The technique we proposed in this
paper should enable PSDL declaration to be automatically
generated from object implementations. This is a track for
future work.

7. CONCLUSION

We have shown in this paper the interest of reflection and open
compilers to the handling of object state internal information.
We applied this type of technique to CORBA objects and took
advantage of CORBA features to define a portable format of
state information. We have shown that many application fields
and techniques can benefit very much from this approach.
Among other fields, mobile computing over CORBA platforms
and fault tolerant computing through portable checkpointing
facilities can be improved very much.

Our contribution is two-fold. We have developed a state
generator tool that enables state information (attribute facet)
and save/restore methods. This tool was applied to a case
study showing the interest of the technique to exchange state
information between CORBA servers developed with different
object-oriented programming languages. In addition, a state
observer tool was also developed and used to visualize the
state of these CORBA servers in operation.

This work is consistent and complementary with OMG efforts,
including FT-CORBA and PSS. The latest developments on
these topics (e.g. PSDL) are driving forces promoting the
notion of portable state information. In addition, they provide
new inputs to extend the work presented in this paper.

Reflection is a very attractive concept as it supports the notion
of separation of concerns. This concept will enable other facets
of the object state in a hybrid system to be handled. More work
is needed to tackle all the facets of the problem. However,
recent initiatives in both reflective middleware and operating
systems are really promising. A clever combination of
conventional interception techniques and reflective
component technology should enable both platform and
communication facets to be addressed in a very elegant way.
More experimental work is needed to assess this type of
technique in several fields and to evaluate the necessary
tradeoffs between efficiency and performance.

8. Acknowledgements

This work was partially supported by the European
Community (project IST-1999-11585: DSOS — Dependable
Systems Of Systems).

9. REFERENCES

[1] Plank, J.S., M. Beck, and G. Kingsley, "Compiler-
Assisted Memory Exclusion for Fast Checkpointing”, in
IEEE Technical Committee on Operating Systems and

Application Environments, Special Issue on Fault-
Tolerance. 1995.

[2] Powell, D., 4 Generic Fault Tolerant Architecture for
Real-Time Dependable Systems. 2001: Kluwer Academic

Publishers. 242 pages, ISBN: 0-7923-7295-6.

Ssu, K.-F. and W.K. Fuchs. "PREACHES - Portable
Recovery and Checkpointing in Heterogeneous
Systems" in 28th [EEE Fault-Tolerant Computing
Symposium. 1998. Munich (Germany). pp. 38-47.

(3]

[4] Strumpen, V. and B. Ramkumar, "Portable Checkpointing

for Heterogeneous Architectures". Fault-Tolerant

13

Parallel and Distributed Systems, Avresky and Keli Eds.
Kluwer Academic Press, 1998: p. 73-92.

[5] Maes, P. "Concepts and Experiments in Computational
Reflection" in Conference on  Object-Oriented
Programming Systems, Languages and Applications

(OOPSLA'87). 1987. pp. 147-155.

[6] Chiba, S. "Macro processing in object-oriented
languages" in Technology of Object-Oriented
Languages and Systems (TOOLS'98). November 1998.
Australia. pp. 113-126.

Tatsubori, M., et al., OpenJava: A Class-based Macro
System for Java, in Reflection and Software
Engineering, Springer Verlag, Editor. 2000, LNCS 1826.
pp. 119-135.

Kiczales, G., et al. "Aspect-Oriented Programming" in
European Conference on Object-Oriented Programming
(ECOOP'97). 1997. Jyviskyld, Finland. pp. 220--242.

Kiczales, G., J.d. Riviéres, and D.G. Bobrow, The Art of
the MetaObject Protocol. 1992, Cambridge: The MIT
Press. 335 pages, ISBN: 0-262-61074-4.

[10] Object Management Group, CORBA 2.5 specification,
http://www.omg.org/cgi-bin/doc?formal/01-09-01,
2001.

(7]

(8]

(9]

[11] Object Management Group, C++ Language Mapping
Specification, http://www.omg.org/cgi-bin/doc?formal/
99-07-41, 1999.

[12] Object Management Group, Java Language Mapping to
OMG IDL, http://www.omg.org/technology/documents/
formal/java language mapping to omg_ idl.htm, 2001.

[13]Powell, D. "Distributed Fault-Tolerance: A Short
Tutorial" in [FIP International Workshop on
Dependable Computing and its Applications (DCIA'9S).
1998. Johannesburg (South Africa). pp. 1-12.

[14] Gray, J. "Why do computers fail and what can be don
about it?" in [International Symposium on Reliable
Distributed Systems. 1986. Los Angeles, CA (USA). pp.

3-12.

[15] Huang, Y., et al. "Software rejuvenation: Analysis,
Module and Applications" in 25th Int. Symposium on
Fault Tolerant Computing. 1995. Pasadena, CA (USA).
pp. 381-390.

Costa, F.M., G.S. Blair, and G. Coulson, "Experiments
with an architecture for reflective middleware", in
Integrated Computer-Aided Engineering, 10S Press.
2000.

[16]

[17] Yokote, Y. "The Apertos Reflective Operating System:
The Concept and Its Implementation" in Object-Oriented
Programming Systems, Languages and Applications

(OOPSLA'92). 1992. pp. 414-434.

[18] Singhal, V., S. Kakkad, and P. Wilson. "Texas: An
Efficient, Portable Persistent Store" in 5th International
Workshop on Persistent Object Systems.1992. S. Miniato
(Italy) pp.11-33.

[19] Lutz, M. and D. Ascher, Learning Python. 1999. 382
pages, ISBN: 1-56592-464-9.



[20] Sun, Java Object Serialization Specification - Release
1.2, ftp://ftp.java.sun.com/docs/j2sel.3/serial-spec.ps,
1996.

Ruiz, J.C., et al. "Optimized Object State Checkpointing
using Compile-Time Reflection" in [EEE Workshop on
Embedded Fault Tolerant Systems (EFTS'98). 1998.
Boston, USA. pp. 46-48.

(21]

[22] Kasbekar, M., et al. "Issues in the design of a reflective
library for checkpointing C++ objects" in /8th IEEE
Symposium on Reliable Distributed Systems (SRDS'99).

1999. Lausanne, Switzerland. pp. 224-233.

[23] Strumpen, V., "Portable and fault-tolerant software
systems", in I[EEE Micro. Septembre/Octobre, 1998. pp.
22-32.

[24] Tewksbury, L.A., L.E. Moser, and P.M. Melliar-Smith.
"Automatically-Generated State Transfer and Conversion
Code to Facilitate Software Upgrades" in International
Conference on Software Maintenance, 2001.

[25]Thai, T.L., Learning DCOM, ed. A. Oram.1999,
Sebastopol, CA 95472 O'Reilly & Associates, pages,
ISBN 1-56592-581-5.

14

[26]Sun, JavaTM Remote Method Invocation
http://java.sun.com/j2se/1.3/docs/guide/rmi, 1999.

[27] Natarajan, B., et al. "DOORS: Towards High-performance
Fault-Tolerant CORBA" in 2nd International Symposium
on Distributed Objects and Applications (DOA 2000).
2000. Antwerp, Belgium. pp. 196-204.

[28] Narasimhan, P., L.E. Moser, and P.M. Melliar-Smith.
"State Synchronization and Recovery for Strongly
Consistent Replicated CORBA Objects" in International
Conference on Dependable Systems and Networks
(DSN'01). 2001. Goteborg (Sweden). pp. 261-270.

Object Management Group, Persistent State Service 2.0,
http://www.omg.org/cgi-bin/doc?orbos/99-07-07, 1999.
Formally adopted in October 2001.

(RMI),

[29]

[30] J. Hamilton, Programming with DirectToSOM C++, John
Wiley & Sons, 1996.
[31] E. Meijer and J. Gough, 4 Technical Overview of the

Commmon Language Infrastructure, Microsoft Research.
http://research.microsoft.com/~emeijer/Papers/CLR.pdf



