Testing the Input Timing Robustness of Real-time
Control Software for Autonomous Systems

David Powell!"2, Jean Arlat!?, Hoang Nam Chu'2, Félix Ingrandl’z, Marc-Olivier KillijianL2
LCNRS ; LAAS ; 7 avenue du Colonel Roche, F-31077 Toulouse, France
2Université de Toulouse ; UPS , INSA , INP, ISAE ; LAAS :; F-31077 Toulouse, France
{david.powell, jean.arlat, hoang-nam.chu, felix.ingrand, marc-olivier.killijian @laas.fr

Abstract—The functional layer of an autonomous system such
as a robot is required to carry out multiple real-time control ac-
tivities in parallel. These activities are launched by asynchronous
calls from clients situated at higher layers, so there is a need for
the functional layer to provide built-in protection to ensure that it
is robust with respect to requests that are issued at instants that
are incompatible with its current state and could therefore cause
catastrophic system failure. This paper addresses the testing of
the robustness provided by such protection mechanisms. A hybrid
black-box robustness testing approach is considered by which test
cases are generated by random mutation of a valid sequence of
requests and test verdicts are obtained by a set of property-
based robustness oracles applied to a logged trace of requests
and responses. An application of the proposed framework to an
experimental planetary explorer robot is described.

Index Terms—software; robustness; testing; fault injection;
robotics; dependability

I. INTRODUCTION

Autonomous systems cover a broad spectrum of appli-
cations, from robot pets and vacuum cleaners, to museum
tour guides, planetary exploration rovers, deep space probes
and, in the not-too-distant future, domestic service robots. As
autonomous systems are deployed for increasingly critical and
complex tasks, there is a need to demonstrate that they are
sufficiently reliable and will operate safely in all situations
that they may encounter.

By reliable, we mean that the autonomous system is able to
fulfill its assigned goals or tasks with high probability, despite
unfavorable endogenous and exogenous conditions, such as
internal faults and adverse environmental situations. Reliability
in the face of adverse environmental situations (sometimes
referred to as (system-level) robustness) is a particularly
important requirement for autonomous systems, which are
intended to be capable of operating in partially unknown,
unpredictable and possibly dynamic environments.

By safe, we mean that the autonomous system should
neither cause harm to other agents (especially humans) in its
environment nor cause irreversible damage to its own critical
resources. Protection of its own integrity is in fact a pre-
requisite for an autonomous system to be reliable: if critical
resources are no longer usable, then no amount of automated
reasoning will be able to find a course of actions enabling the
system to fulfill its goals.

This paper addresses the assessment of a particular type
of safety mechanism for an autonomous robot, implemented

within its control software. The safety mechanism aims to
enforce a set of safety constraints that specify inconsistent or
dangerous behaviors that must be avoided. Examples of safety
constraints are, for instance, that a mobile manipulator robot
should not move at high speed if its arm is deployed, or that
a robot planet observation satellite should not fire its thrusters
unless its camera lens is protected.

The safety constraint enforcement mechanisms are imple-
mented within the lowest layer of robot control software
(called here the functional layer), which interfaces directly
with the robot hardware. Typically, such a software layer con-
tains built-in system functions that control the robot hardware
and provides a programming interface to the next upper layer.
Specifically, clients of the functional layer can issue requests
to initialize modules, update their internal data structures, or
start and stop various primitive behaviors or activities, such
as: rotate the robot wheels at a given speed, move the robot
to given coordinates whilst avoiding obstacles, etc.

Upper-layer clients can build more complex behaviors by
issuing asynchronous requests to start and stop activities at
the functional layer. We consider that the high-level safety
constraints are expressed in terms of safety properties that
place restrictions on when given functional layer activities can
be executed. For example, a property might require mutual
exclusion between activities x and y. Thus, if a client issues a
request for x while y is executing, enforcement of the property
would require, for example, the request for x to be rejected.

In this paper, we define a method for assessing the effective-
ness of such property enforcement mechanisms. We address
the problem from the perspective of robustness testing, where
robustness if defined as the “degree to which a system or a
component can function correctly in the presence of invalid
inputs or stressful environmental conditions” [1]. From our
perspective, an invalid input is an application-layer request
that, if executed in the current state of the functional layer,
would cause a safety property to be violated. We specifically
address invalidity in the time domain (i.e., requests issued at
the “wrong” moment), although our approach could easily be
extended to embrace the more classic notion of invalidity in
the value domain (i.e., incorrect request parameters).

We adopt a random testing approach based on fault injec-
tion, through which a large number of test cases are generated
automatically by mutating a sequence of valid inputs. Our test
approach thus allows robustness evaluation in the sense that

we can provide descriptive statistics of the robustness behavior
of the system under test (SUT) (in our case, a functional layer
implementation) with respect to the population of test cases.
Moreover, we follow a black-box testing approach, which
does not consider internal details of the SUT. Thus, a set of
test cases generated using our approach can be applied as a
robustness benchmark to compare different functional layer
implementations.

The paper is structured as follows. In Section II, we dis-
cuss related work on robustness testing before describing, in
Section IIT our system under test, which has several speci-
ficities that require us to adopt a new approach. Our testing
framework is described in Section IV. In Section V, we apply
our approach to a case study: the Dala experimental robot
configured as a planet exploration rover. Section VI concludes
the paper and suggests directions for future work.

II. RELATED WORK

Based on the already-mentioned IEEEStd. 610-12 definition
of robustness [1], robustness testing can be considered from
two viewpoints: testing with respect to invalid inputs and
testing with respect to environmental stress. The latter form
of robustness testing may be concerned with either physical
aspects of the environment (temperature, pressure, radiation,
power fluctuations, etc.) or informational aspects such as the
load placed on the system or the difficulties of the problems
that the system needs to solve. Here, we focus on the former
viewpoint: testing system robustness with respect to invalid
inputs, which we refer to as input robustness testing. We can
distinguish two sorts of invalid inputs:

o inputs that are invalid in the value domain, which are
inputs that are not described in the system specification,
or specified inputs that have one or more parameters
taking out-of-range or otherwise incorrect values;

o inputs that are invalid in the time domain, which are
specified inputs but whose occurrence is not expected or
is inappropriate in the current state of the system.

There has been a considerable amount of work on input
robustness testing, which can be roughly divided into two
categories, according to whether test generation is guided by
an input-domain model or a behavioral model.

Methods based on input domain models generate invalid
inputs based on an analysis of the system input specification
or by mutating valid inputs. These methods are often based on
random injection of faults or errors, and directed more towards
robustness evaluation rather than robustness verification (dis-
covery of robustness defects), which is nevertheless achieved
as a side effect. This category of methods includes: fuzz testing
(e.g., [2], [3]), which submits random data inputs to a program
and thus blindly tests both value and time domains robustness;
syntax testing [4], which is a value domain technique aimed
at testing the robustness of string lexing and parsing systems;
domain testing [4], which is a heuristic method for testing
extreme values of inputs; and parameter corruption, in which
correct input parameters are selectively replaced by either out-

of-range values or in-range but incorrect values, as used in
Ballista [5], [6], Mafalda [7], [8] and DBench [9].

We briefly present the latter DBench approach as an ex-
ample of this category of methods. The goal of dependability
benchmarking is to a provide generic and reproducible way
of characterizing the behavior of a computer system in the
presence of faults. Kanoun et al. [9] define a dependability
benchmark for general-purpose operating systems and apply
it to six versions of Windows OS and four versions of Linux
OS. This study aimed to measure the robustness of Windows
and Linux in the presence of faults by injecting erroneous
inputs to the OS via its APL. The benchmark execution
profile consisted of a PostMark workload together with fault
injection into parameters of system calls. PostMark creates
a large pool of continually changing files and measures the
transaction rates (a workload approximating a large Internet
electronic mail server). Fault injection was carried out using
the parameter corruption technique relying on analysis of
system call parameters to define substitution values to be
applied to these parameters. During runtime, the workload
system calls are intercepted, corrupted and re-inserted.

Test results are classified according to the following obser-
vation categories:

e SEr: An error code is returned.

o SXp: An exception is raised.

e SPc: The system is in panic state, and is no longer

servicing the application.

« SHg: Hang state, from which it is necessary to do a hard

reboot.

¢ SNS: No-signaling state.

The robustness of the various operating systems is evalu-
ated and compared based on statistics on the proportions of
test results in each of these categories. Such a system-level
characterization of test results is typical of robustness testing
approaches based on input domain models.

Methods based on behavioral models use a formal model of
the SUT to define both the test cases and an oracle enabling
a decision to be made regarding system robustness. These
methods generally concentrate on robustness verification rather
than evaluation. If the available behavior model covers both
nominal behavior (reaction to valid inputs) and robust behavior
(reaction to invalid inputs), robustness testing can be expressed
in the same way as conformance testing. If, on the contrary, the
available behavior model only includes the nominal behavior,
the model must be extended in some way to include a
specification of the expected robust behavior [10], [11].

We briefly present the approach of Saad-Khorchef er al.
[11], [12] as an example of this category of methods. The
proposed method is aimed at testing the robustness of commu-
nication protocols and is one of few works that we know of that
takes explicitly into account input invalidity in both the value
and time domains. Starting from a nominal specification given
in the form of an IOLTS (Input Output Labelled Transition
System) model, which describes the system by a set of states,
a set of transition relations between states and an alphabet of
transition actions, the test method comprises two phases: (i) the

construction of an augmented specification, which describes
the acceptable behaviors in the presence of invalid inputs, by
integrating so-called “hazards” (events that are not expected in
the nominal specification); (ii) the generation of conformance
tests based on the latter augmented specification. To the best
of our knowledge, these model-based methods have only been
applied to a few toy examples of limited size.

A third category of method, called hybrid robustness testing
has been proposed by Cavalli et al. [13], that contains aspects
of both input-domain model-based methods and behavior
model-based methods. The proposed method combines fault-
injection and passive testing [14]. It is aimed at characterizing
the robustness of communication protocol implementations in
the presence of communication faults, which are categorized
as either omission faults (lost messages), so called “arbitrary”
faults (corrupted messages) and performance faults (delayed
messages). Robust behavior is expressed as a set of invariant
properties, which specify the allowable input and output se-
quences that a system can produce. The proposed approach
consists of the following main steps: (i) build a formal model
of the system behavior; (ii) define the invariant properties and
check them against the formal behavior model; (iii) define
the fault model and the faults to inject; (iv) instrument the
SUT for fault injection and monitoring purposes; (v) execute
the tests by activating the SUT while injecting the faults and
monitoring the SUT interactions; (vi) analyze the results based
on the defined invariants and produce a robustness verdict.

The method proposed in this paper can also be considered
a hybrid robustness testing approach that combines random
fault-injection and passive testing. Our focus is on injecting
system inputs that are invalid in the time domain in order
to assess the effectiveness of a SUT’s built-in capabilities
to defend itself against asynchronous inputs that cannot be
processed in its current state. We follow a passive testing
approach in that we define property-based robustness oracles
that allow the analysis of system traces obtained in the
presence of invalidly-timed inputs. We also categorize system
traces according to two simple DBench-like categories: no-
hang and hang.

III. SYSTEM UNDER TEST

The control software for many practical autonomous sys-
tems [15]-[19] is structured as a hierarchy, typically with
3 layers [20]: a functional layer, an executive layer, and a
decisional layer.

We present here the LAAS architecture [16], [17] as a
typical example of a hierarchical architecture for autonomous
systems (Figure 1).

1) The decisional layer: At the top of the hierarchy, this
layer is responsible for the deliberative aspects of the
autonomous system. It is in charge of generating task
plans from goals given by the operator and supervising
their execution via the executive layer, while taking into
account reports and errors notified by the lower layers.
In the LAAS 3-layer architecture, the decisional layer
uses the IxTeT planner [21] to produce the task plan.

Decisional layer

Planner

Modules suT

—— —— ——
v v v
Robot physical devices
——> request <+--- final reply
Fig. 1. 3-layer autonomous system software architecture

IxTeT is a temporal constraint planner, combining high
level actions to build plans, and capable of carrying out
temporal execution control, plan repair and re-planning.

2) The executive layer: This layer carries out the task
plans (provided by the decisional layer) by choosing the
elementary activities that the functional layer must carry
out, and supervises their execution. In the LAAS archi-
tecture, OpenPRS (Open Procedural Reasoning System)
[22] is used to execute the task plan sent from the
decisional layer, while being at the same time reactive
to events from the functional layer. The procedural
executive OpenPRS is in charge of decomposing and
refining plan actions into lower-level actions executable
by functional components, and executing them. During
execution, OpenPRS reports any action failures to the
planner, in order to re-plan or repair the plan.

3) The functional layer: This is the layer that controls the
basic hardware and provides the functional interface for
higher-level components. It includes the basic built-in
system functions and perception capabilities (obstacle
avoidance, trajectory calculation, communication, etc.).
In the LAAS architecture, these functions are encapsu-
lated into G"oM modules [23]. Each module can be
in charge of controlling a hardware component (e.g., a
camera, a laser sensor, etc.) or accomplishing a particular
functionality (e.g., navigation). Modules provide ser-
vices that can be activated by requests from the executive
layer. Services can return data to the caller and export
data for use by other modules.

It is this latter layer that is of particular concern to us in
this paper.

Clients situated at the executive layer can issue requests to
modules of the functional layer to initialize them, to control
them (e.g., to make changes to their internal data structures,
and to start and stop activities). Execution requests are non-
blocking. For each request, the called module will return a
final reply that indicates the outcome of the activity whose
execution was requested'. Two cases can be distinguished:

1) The request is accepted by the called module, and

'In some cases, and intermediate reply is also returned, to indicate to the
client that the request is being processed.

the final reply indicates the outcome of the requested
activity, as specified by the module code. Nominally, the
final reply returns ok, but the programmer can specify
other, application-specific reasons for termination (e.g.,
interruption due to the reception of a request of higher
priority).

2) The request is rejected by the called module, and the
final reply indicates the cause of the rejection (e.g.,
incorrect call parameters).

Clients can issue executions requests at any time. This
allows them to use abstract representations of robot behavior
and operate in different timeframes to that of the functional
layer, thus favoring tractability of the computations to be
carried out at the upper layer. The downside to this higher
level of abstraction is that it is possible for the functional
layer to receive execution requests that are inconsistent with
its current state and that, if executed, could cause the robot to
fail catastrophically, causing harm to itself or to other agents
in its vicinity. We say that such requests are untimely. The
functional layer should protect itself against untimely requests
by either rejecting them, or queueing them until an appropriate
state has been reached, or forcing a state change to one in
which they can be accepted.

The specification of what constitutes a timely request and
what reaction there should be in the face of an untimely request
is given a by a set of safety properties. We have identified
five basic types of safety property [24], which we summarize
below.

« Precondition property PC[z, Cpgrg]: an activity of type
x may only be started if a specified precondition Cprg
is true at the instant that x is requested.’

The precondition itself may correspond to, for example,
the SUT being in a specified state, or having successfully
executed a specific set of activities.

Property PC[z, Cprg] can be enforced:

— by rejecting or queuing® requests for z while Cprp
is false, or

— by forcing Cprg to be true (if that is possible) in
order to serve requests for z.

o Excluded start property FS|[x,y: an activity of type
x may only be started if there is no ongoing activity of
type y at the instant that x is requested.

Property ES[z,y] can be enforced by rejecting or queu-
ing requests for an activity of type x while there is an
ongoing activity of type y.

o Excluded execution property EE[z,y]: an activity of
type « may only execute in the absence of requests for
activities of type y.

Property EE|x,y] can (only) be enforced by interrupting
any ongoing activity of type x in the event of a request
for an activity of type y.

’In the following, we will often refer simply to “z” rather than saying
“activity of type x”

3Queueing is not considered to be viable mechanism in practice due it its
potentially negative impact on real-time performance.

o Exclusion property EX|[z,y|: an activity of type x is
excluded by an activity of type y.
Property EX [z, y] can be enforced by rejecting or queu-
ing requests for an activity of type x while there is an
ongoing activity of type y, and interrupting any ongoing
activity of type z in the event of a request for an activity
of type y. We note that EX [z, y] = ES[z,y| A EE[z,y].
We also observe that EX|[z,y| defines an asymmetric
exclusion between activities x and y, giving priority to
Y.

o Mutual exclusion property M X [z, y]: activities of types
x and y cannot be executed at the same time.
Property M X [z, y] can be enforced by rejecting or queu-
ing requests for an activity of type = (respectively ¥)
while there is an ongoing activity of type y (respectively
x), or by interrupting execution of an activity of type x
(respectively y) in the event of a request for an activity
of type y (respectively z).
We consider two enforcement policies for M X[z, y]:

— mutual rejection, noted M X g[z,y], which favours
the currently executing activity by rejecting the latest
request;

— mutual interruption, noted M X;[z,y], which
favours the Ilatest request by interrupting the
currently executing activity.

IV. TESTING FRAMEWORK

To assess the robustness of the system under test, we adopt
a passive testing approach similar to that employed by Cavalli
et al. [13] in the context of communication protocols (cf.
Section II). Testing is passive in that the system under test
is observed and assessed in a way that is totally independent
of system activation and test generation, at the level of the
trace of requests and replies crossing its API. Given a trace of
requests and responses, our aim is to define a set of oracles
that can classify the behaviour of the SUT with respect to
a set of safety properties. Each property oracle characterizes
the robustness behaviour of the SUT for each request that is
relevant to a given property P, where P is any of the properties
defined in Section III.

A. Notation

We define the following notation for requests and responses
to the functional layer:
o (i) (respectively y(i), q(i)): a request for activity x
(respectively y, ¢g), with request identifier ¢;
o F,: set of final reply values defined for request x
with F, = {R,, Z,,T,}, such that:

— R,: set of final reply values indicating request rejec-
tion;

— Z,: set of final reply values indicating activity inter-
ruption;

— T,: set of final reply values indicating activity ter-
mination other than by interruption (in particular, 7,
contains the final reply value ok, which indicates
correct termination of the activity);

o fz(i) € Fy: the final reply to z(7);

e 7p € R, : value of f,(i) signaling rejection of request
x(%) to enforce property P;

o zp € Z, : value of f,(i) signaling interruption* of
request x(i) to enforce property P.

B. Behaviour categories

For a given property P, we can classify the system be-
haviour for each relevant request according to the following
basic outcomes:

« true negative (TN): execution of the requested activity is
authorized since it does not endanger the property P; no
invocation of property-enforcement (correct behaviour);

« true positive (TP): execution of the requested activity is
forbidden since it endangers the property P; property-
enforcement is invoked (correct behaviour);

« false negative (FN): execution of the requested activity
is forbidden since it endangers the property P; however,
there is no invocation of property-enforcement (incorrect
behaviour);

« false positive (FP): execution of the requested activity
is authorized since it does not endanger the property
P; however, property-enforcement is invoked (incorrect
behaviour);

In addition, we consider the following specific outcomes to
cover special cases:

« other positive (op): the considered request was rejected
to enforce some other property P’ # P;

« not applicable (na): P is no longer applicable to the
requested activity since apparently conflicting requests
were rejected to enforce some other property P’ # P;

o truncated trace (w): the end of the trace is reached
before any conclusion can be reached.

C. Property oracles

Figure 2 illustrates the ideal true positive and true negative
behaviors with respect to the five basic property types defined
in Section III. The arrows represent pertinent events observable
at the SUT interface, with downwards arrows representing
requests, and upwards arrows representing final replies. The
identifiers of requests are omitted to avoid cluttering the figure.

Due to space restrictions, we illustrate our approach by
discussing only the simple precondition property PC'. The
illustration at the top of Figure 2 considers a very simple
precondition: successful prior execution of an activity of type
q. The oracle can test for satisfaction of the precondition by
evaluating the formula:

Crre(x(i)) = 3k, (fq(k) = ok) A (t(fq(k)) < t(x(3))) (1)

where Cprpg(x(7)) denotes the truth value of the precondition
for the request x(7) and t(event) is the time of occurrence of
event, with event € {f,(k), (i)}

4We use “interruption of request x(7)” as shorthand for “interruption of the
activity corresponding to request x(i)”

When the precondition is true (left-hand figure), the request
for = should be accepted. When the precondition is false (right-
hand figure), the request for x must be rejected.

Note that when Cpgrg(x(i)) = true, the property
PC[z,Cpgrg| is respected for x(i) without any need for
explicit enforcement. Enforcement (in this case, by rejection)
is only needed when Cprp(x(i)) = false. Formally, we can
express this as follows:

PC[I’,CPRE}): behavioursyr |m(1) = CPRE(LL‘(Z)) \
rejecty(q
which reads: the behaviour of the SUT with respect to request
x(4) satisfies the property PClx, Cpgrg| if and only if either
Cpre(x(i)) is true or the request x(7) is rejected.

Of course, the property PC[z, Cprg] is trivially satisfied
(for any x(i)) if all requests of type = are systematically
rejected. However, from a robustness evaluation viewpoint, it
is important to distinguish whether x(4) is accepted or rejected
for the right reason. This can be determined by examining the
value of the final reply f, (7). A request z(¢) is judged to be:

o accepted, if its final reply f,(¢) indicates that the activity
has been executed, either completely (f,(i) € T,) or
partially (f,(i) € Z.);

e rejected by the property enforcement mechanism, if its
final reply f.(i) is equal to rp, the specific rejection
message defined for the considered property (here, we
have 7p = Tpcir,Cprp))s

o rejected for some other reason, if its final reply f,(7) is in
the set R, \rp (i.e., an “other positive” outcome, due to
the enforcement of a property other than the considered
property).

If no final reply is received before the end of the analyzed
trace then no conclusion can be drawn as to whether x(i) was
accepted or rejected. We refer to this case as a truncated trace.

Considering now both the correct behaviours of the SUT
(as depicted on Figure 2) and possible incorrect behaviours
(i.e., incorrect acceptance and incorrect rejection), Table I
enumerates all the possible observable behaviours of the SUT
for a request x(¢) with respect to the precondition property
PClz,Cpgrg| and indicates the corresponding robustness test
verdict, including the “truncated trace” case (no final reply
fx(@) is ever received) for which the test verdict is classified
as w.

TABLE I
TEST VERDICTS FOR PC[z,CprE]

o (4)
[Crre@() | €1Zs,1x} [rp | € Ra\rp | @
[true [TN [FP | op [w]
[false [FN [TP | op [w]

The oracles for the other basic property types can be found
in [24]. For each property type, there is a “P-condition”
Cp(z(i)), where P € {PC,ES,ES,EE,EX, M X, M X7)
such that, when true for request x (%), indicates that no property
enforcement is necessary, and that, when false, indicates

True negative behaviors

True positive behaviors

|
A A I
|
PC q ok X x executed : X || x rejected
|
Y I
a3+ [;
T Cppe true ! T Cppe false KEY
I
* ! % request
| .
ES X x executed I x rejected
I * final reply
I
I
T no y executing |
: |:| activity
< no y request] ! :
EE X yreq x executed | X lex interrupted
|
|
I \v4
X ! | x| y >
|
|
A |
< noyrequest =) | i nterrupted
EX X x executed I y x || x rejected X y || xi up
I
! i v
X I s | | x| y ——
Tno y executing :
I
A |
|
MXg X x executed | y x || x rejected X y || v rejected
|
x__}—s
T no y executing :
I
l< noy request | : .
MX X x executed | y X ||y interrupted X Yy || x interrupted
[|
| v Vv
X — { x| y b
I
|
|
|

Fig. 2.

that property enforcement (by rejection or by interruption,
according to the considered property) is required.

V. CASE STUDY

Our input timing robustness testing framework has been
applied to a case study: the functional layer of the Dala
rover, a robot that is currently used in LAAS for navigation
experiments. The functional layer is required to respect a
number of safety properties to protect the Dala rover from
combinations of activities that could lead to inconsistent
or dangerous behaviour. Our robustness testing framework
exercises the property-enforcing mechanisms of the Dala rover
functional layer by means of mutated exploration mission
scripts containing potentially temporally invalid test inputs
that may endanger the safety properties. The execution traces,
consisting of the requests and responses intercepted at the
functional layer interface, are then processed by a trace
analyzer tool to assess the robustness of the functional layer.

We first describe the functional layer of Dala rover (our
“system under test”), and the safety properties that it must
enforce. Then we present our robustness testing environment
and the characteristics of the test campaign that has been
carried out. Finally, we present and analyze the results of the
case study.

Tllustration of correct behaviors for the various timing robustness properties

A. System under test

The system under test is a functional layer comprising five
modules, some of which communicate directly with the robot
hardware (cf. Figure 3):

o Rflex: odometry and wheel control;

« Sick: laser range finder;

e Aspect: 2D environment map;

o Ndd: navigation and obstacle avoidance;

o Antenna: communication (to/from overhead orbiter) (sim-
ulated).

With the exception of Antenna, each module maintains a
“poster” (a shared data area) that can be read by the other
modules:

e Robot: current position of the robot as computed using
the Rflex odometric function;

o Ref: reference velocity of the rover computed by Ndd;

o CartA: 2D environment map computed by Aspect;

o SCart: orientation and range of obstacles currently within
view of the Sick laser range finder.

The functional layer receives requests from, and returns
replies to, clients at the executive layer, which is here im-
plemented in Open-PRS [22]). There are three varieties of
requests: initialization requests (to set up a module), control
requests (to make changes to a module’s internal data struc-
tures) and execution requests (to start or stop activities).

Open-PRS executive layer

\, | 4 /

replies

T
SUT interface requests

SUT : Dala functional layer

NDD Ref

Aspect CartA

Antenna —

Dala robot

Fig. 3. System under test: Dala robot functional layer

A total of 21 safety properties are defined for this configu-
ration of the Dala Robot [24]. They can be grouped into four
families:

o PEX(module) - Precondition for EXec request: For each
module, there must be at least one successfully executed
initialization request before the module can process an
execution request.

Property oracle: Pre-condition PC[z, Cprg]

o AIB(z) - Activity x Interrupted By: Activities of type x
must be inactive or be interrupted if any request of a type
“dominating” x is received. Domination relationships
between requests are statically defined in the module
description code.

Property oracle: Exclusive execution EFE[z,]

o PRE(z, Q) - activity x PREceded by: An activity of type
x cannot be executed until a specified set of activities)
has been successfully terminated (in any order).
Property oracle: Pre-condition PC[z, CprEg]

e EXC(z,y) - mutual EXClusion between activites x and
y: Activities of type x and y cannot be executed at the
same time; priority to the most recent request.

Property oracle: Mutual exclusion by interruption
MX I [$) y]

The proposed robustness testing approach has been applied
to three implementations of the Dala functional layer, which

we designate as follows:

e G°"oM: a well-established implementation using the stan-
dard G"oM environment [23], which provides built-in
protection to ensure properties of the families PE X and
AIB only;

e BIP-A: a preliminary implementation using the BIP
formal development framework [25]-[27], with a large
proportion of BIP code generated automatically from
the GenoM module descriptions, together with addi-
tional protection mechanisms generated from BIP inter-
component connectors;

e BIP-B: a more mature implementation using the BIP
framework with, in particular, several corrections result-
ing from the experiments carried out on BIP-A.

B. Test environment

Testing is carried out with a simulated robot instead of the
real Dala robot since (a) testing needs to be automated in order
to allow a large number of tests to be carried out, and (b)
robustness testing implies the system under test be subjected
to aggressive test sequences, which could cause a real robot
to behave very dangerously.

The test sequences are obtained by mutating a valid se-
quence of requests so as to cause some requests to be invalid
in the time domain. Of course, there is a high risk that
the mutated sequence of requests does not correspond to a
meaningful mission at the application level, so it is not of
much interest to observe whether the robot achieves its original
goals or not. However, it is of concern to us whether the safety
properties of the functional layer (the system under test) are
satisfied.

Figure 4 illustrates our test environment, which results from
an application of the FARM framework [28]. The main steps
of the testing process are:

1) Create manually a golden script that defines a typical
mission of a planetary explorer (the Activity set).

2) Generate a database of mutated scripts by applying a
mutation procedure to the golden script (the Fault set).

3) Submit the set of mutated scripts to OpenPRS for exe-
cution in order to exercise the SUT robustness features.

4) Save the resulting execution traces, each consisting of
the sequence of requests sent to and replies received
from the SUT, in a Trace Database (the raw Readout
set).

5) Use the Trace Analyzer tool to parse and process the
execution trace database to obtain SUT robustness ver-
dicts for each property X request combination and for
each trace (an extension of the Readout set).

6) Evaluate the robustness statistics (the Measure set).

C. Results

Our golden script defines a typical exploration mission of
the Dala rover, involving navigation to predefined coordinates
to take science photos and communicating with a planetary
orbiter. A semi-automated mutation procedure was applied

—
Test 1 |TestScript |4 Mutation | _ Golden
Script Database Generator Script
—
i
1
‘ OpenPRS ’ [TTTTTTTTTTTTTT ey
' 1
1T — P
ot (|
oprs-gom race > |
B Database Result
Database

~——

SuT: Functional Level
(BIP / GenoM)

D\EE
£42

Simulated Robot
(Pocosim + Gazebo)

Safety
Property
Database

Robustness
statistics

Description of robot
and initial
environment

<t

Fig. 4. Robustness testing environment

to the golden script to generate a total 300 mutated scripts.
Mutations were applied randomly and consisted of: deletion
of a module request; insertion of an additional request; re-
ordering of a pair of module requests. 7 mutated scripts could
not be used as test scripts since they were systematically
rejected as manifestly faulty by the Open-PRS execution
environment. The remaining 293 test scripts were applied to
all three SUT implementations.

The results of the executions of the test scripts were logged
and analyzed after execution by a trace analyzer written as a
set of SQL requests. Tables II through IV summarize the main
results (see [24] for the detailed results).

Table II summarizes the results obtained per trace for each
of the considered implementations. In addition to the number
of hung traces, the table reports the number of traces con-
taining at least one falsenegative or at least one false positive
(for any property). The column “total bad traces” indicates the
number of traces that either hung, or contained a false negative
or positive. The final column gives the corresponding measure
of trace robustness (Trop), which we define as the proportion
of good traces.

We note that the BIP-B implementation exhibits an appre-
ciable higher degree of robustness than the reference G"oM
implementation. There was, however, 1 trace that was cate-
gorized as hung, and 11 traces in which false negatives were
identified. These traces were thus analyzed manually.

We concluded that the hung trace was due to an uncorrected
defect in code generator used for the BIP-B implementation.
Thus, the actual implementation was not a faithful translation
of the formally-proven BIP model. We note, however, that
there was a considerable improvement in this respect compared
to the immature BIP-A implementation, which exhibited 42
hung traces.

Our analysis regarding the observed false negatives led us
to the conclusion that these were in fact incorrect verdicts
due to an observability problem that is inherent to our black-
box testing approach. Indeed, we deduce the internal behavior
of the SUT from an observation of the trace of requests

and responses visible at its call interface. Since there is an
inevitable delay between events observable at the interface and
corresponding internal events, it is possible to observe events
in a different order on the external (observable) timeline to that
in which they occur on the internal (unobservable) timeline.
Due to this, it is possible for the values of P-conditions to
be inverted, thus leading to incorrect robustness verdicts. We
note, however, that this can only occur for near-coincident
events, i.e., those that occur in an interval of time of the same
order of magnitude as the event propagation delay between
the internal and external timelines.

Tables III and IV give the true and false positive rates at the
level of the four Dala property families and globally, with all
properties considered simultaneously. The true positive rate
is the proportion of correct reactions of the system under
test when the P-condition evaluates to false, i.e., when it is
necessary to enforce the considered property. Conversely, the
false positive rate is the proportion of incorrect reactions of
the system under test when the P-condition evaluates to true,
i.e., when no enforcement is necessary.

On Table III, we observe a growth in the true positive
rate over the successive implementations, due to the face
that the BIP technology allows additional protections to be
implemented over and above the limited protections included
within the reference GoM implementation. Indeed, this im-
plementation had no built-in protection to enforce the PRE
and £ X C property families, thus leading to a null true positive
rate in the corresponding cells of Table III. Surprisingly,
however, there is also a null true positive rate for the PRE
property family in the BIP-A implementation, which was
supposed to offer the corresponding protection. However, the
corresponding connector had been accidentally omitted from
the corresponding BIP model. This omission was uncovered
by our robustness tests. The true positive rates in the BIP-
B column are not quite 100%. In fact, we concluded that
this column would read 100% after manual correction of the
already-mentioned incorrect false negative verdicts due to the
false observation problem.

Table IV presents a surprising singularity for the AIB
property family in the supposedly mature G**oM implemen-
tation. After analysis, we discovered that this implementation
possesses a non-documented feature: all initialization requests
dominate all activities. Since our property oracle was based
on the G“oM documentation, this feature was not included.
Thus, behaviors corresponding to activities interrupted by an
initialization request were declared to be false positives. Note
that, if we were to correct the corresponding property oracle,
the would be a corresponding decrease in the true positive rates
for AIB in the BIP-A and BIP-B implementations, since the
implementors had, quite naturally, ignored this undocumented
feature.

VI. CONCLUSION

We have proposed a method and a platform for testing
the robustness of the safety-property enforcing mechanisms of
the functional layer of a hierarchically-structured autonomous

TABLE I
SUMMARY OF PER TRACE RESULTS

Total Hung Traces with > 1 Traces with > 1 Total bad Trace robustness
traces traces FN FpP traces (TroB)
G"oM 293 74 5 76 74.1%
BIP-A 293 42 40 80 72.7%
BIP-B 293 1 11 12 95.9%
TABLE III TABLE IV
TRUE POSITIVE RATES (%) FALSE POSITIVE RATES (%)
G“"oM | BIP-A | BIP-B G“"oM | BIP-A | BIP-B
PEX 100.0 95.7 99. 7 PEX 0 0 0
AIB 99.7 99.8 99.7 AIB 0.3 0 0
PRE 0 0 99.4 PRE 0 0 0
EXC 0 100.0 100.0 EXC 0 0 0
[All [93.1 [96.3 [99.7] [All [0.1 [0 [0]

system. The application to the Dala rover shows several
advantages of our method. The adoption of a black-box
testing approach allowed us to carry out the testing campaign
without any formal behavior specification of the system under
test (SUT). With little or no information about the internal
activities or states of the SUT, we were still able to compare
the effectiveness of the safety enforcement mechanisms of two
different implementations of the functional layer based on a
behavior categorisation with respect to 21 safety properties,
grouped into 4 families. We think that this approach is ap-
propriate for testing off-the-shelf software, for which a formal
behavior specification is usually not available.

Using the passive testing technique enabled us to evaluate
the robustness of the SUT based on offline observation of
logged test execution traces. In our case study, the whole
testing process is composed of two phases: exercising the
SUT with 293 test cases (which takes around 25 hours) and
examining the execution results with the trace analyzer (which
takes about 30 minutes). The passive testing technique applied
to logged execution traces separates the observation process
from the system activation process, and thus avoids us having
to re-run the whole test set (25 hours) each time we want to
refine the definition of the trace analyzer, for example, to add
an additional property.

We have attempted to define properties that are as generic as
possible. To this end, we defined five basic safety properties,
along with their enforcement policies, that can be instantiated
as timing robustness requirements of the functional layer of
an autonomous system: pre-condition, excluded start, excluded
execution, (asymmetric) exclusion, and (symmetric) mutual
exclusion. We believe that they are sufficiently general to allow
their application to other systems. For each property type, we
have defined the corresponding input timing robustness testing
oracle.

We also developed and presented a testing environment
that allowed us to evaluate the timing robustness of the
functional layer of the Dala planetary exploration rover by
subjecting it to invalid inputs in the time domain. Starting
from a workload (a typical mission of a planetary explorer)

described in a golden script, we stress the SUT by creating
mutated scripts containing inputs submitted at the “wrong
time”. Simulation of the physical hardware of the robot and
its environment facilitated our intensive testing process and
ensured that injected faults could only cause “virtual” damage.
However, we note that simulation cannot totally replace testing
(albeit without injected faults) on the real platform, which can
reveal phenomena that are hard to simulate faithfully (e.g.,
due to real-time issues, or hard-to-model sensor and actuator
inaccuracies).

The implementation of property-based oracles as a sets of
SQL queries proved to be very flexible and easy to maintain.
The evaluation environment showed its efficacy in comparing
and evaluating different systems. Indeed, thanks to the ability
to explore thoroughly the SUT’s reaction to untimely inputs,
our approach to robustness testing allows both fault removal
(debugging) by studying the consequences of fault injection,
and fault forecasting (evaluation) through statistical measures
of system behavior with respect to fault occurrence.

However, our approach does present certain limitations.

The absence of a formal behavior specification of the SUT
may lead to an inaccurate oracle, and testers thus have to
progressively improve it manually. The question is how? In
the hybrid robustness testing approach proposed in [13], the
authors verified the correctness of their invariant properties
by checking them against a formal model of the system
behavior before using them as a robustness testing oracle. This
approach could not be applied in our context since we did
not have any document that could serve as an authoritative
specification of the implementations being tested. We thus
had to manually analyse the results produced by the oracle
to identify singularities (e.g., too many False Positives or
False Negatives), and then examine the execution trace to
diagnose the source of the problem (oracle inaccuracy or SUT
misbehavior). In effect, the oracle and the SUT are tested back-
to-back and iteratively corrected. We were aided in this respect
by the fact that we had several SUTs, one of which (G*"oM)
was a mature implementation (at least with respect to a subset
of the required safety properties).

Another limitation is the possibility of incorrect test verdicts
due to false observations of P-conditions, which are inevitable
due to the fact that we cannot control the propagation time of
events in the SUT. In the Dala rover case study, our analysis
concluded that all false negatives observed on the BIP-C
implementation in fact corresponded to incorrect verdicts, i.e.,
true negative situations that were declared erroneously to be
false negatives. In each case there was a plausible explanation
of how correct behavior of the SUT (i.e., true positive or true
negative behavior) could be wrongly interpreted as incorrect
behavior due to uncertain propagation delays.

The inverse is also possible, i.e., misinterpretation of incor-
rect behavior as correct behavior. Unfortunately, such misinter-
pretations cannot, by essence, be identified since the observed
behavior presents no singularities (it is the expected behavior),
so there is no reason to bring it into doubt. This is especially
problematic in the case of misinterpreting a false negative as
a true negative, as that would be optimistic from a safety
viewpoint. Thus, some finer degree of SUT observation is
likely to be necessary for testing the robustness of extremely
critical systems.

Several directions for future research can be considered.

One area for improvement would be to reduce the num-
ber of incorrect test verdicts raised by black-box robustness
testing, and the associated observability issues. At least two
complementary directions can be considered:

1) Include explicit consideration of real-time in the prop-
erty oracles to flag verdicts on closely-separated events
as “suspicious”. In our case study, only in the BIP-B
implementation were there sufficiently few false nega-
tives in order to justify a tedious manual inspection of
execution traces.

2) Study possible modifications or extensions to the in-
terface protocol to facilitate robustness testing (for ex-
ample, by requiring “intermediate replies” to be sent
systematically).

Another area for improvement is in test generation. In
particular, the generation of test inputs could definitely be
improved in order to make it more automatic. For example, it
should be possible to adapt an automatic program mutation
tool, such as SESAME [29], to automatically inject faults
into a golden test script written in the Open-PRS format.
Alternatively, a more deterministic generation of test scripts
could be envisaged, focussing on the falsification of the
considered P-conditions.

It would also be interesting (and relatively straightforward)
to extend the proposed hybrid input timing robustness testing
approach to include classic value domain robustness proper-
ties.

ACKNOWLEDGMENT

This work was partially financed by the Fondation Nationale
de Recherche pour [’Aéronautique et I’Espace (FNRAE)
through project MARAE (Méthode et Architecture Robuste
pour I’Autonomie dans I’Espace), which was carried out by a

consortium consisting of LAAS-CNRS, Vérimag and EADS
Astrium.

REFERENCES

[1] IEEE729, “Standard glossary of software engineering terminology,”
IEEE Standard, 1982.

[2] B. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability
of UNIX utilities,” Comm. ACM, vol. 31, no. 10, 1990.

[3] B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of
the robustness of macOS applications using random testing,” in /st
International Workshop on Random Testing (RT ’06). Portland, Maine
New York, NY, USA: ACM, 2006, pp. 46-54.

[4] B. Beizer, Black-box Testing : Techniques for Functional Testing of
Software and Systems. Wiley, 1995.

[5] P. Koopman, “Toward a scalable method for quantifying aspects of
fault tolerance, software assurance, and computer security,” in Computer
Security, Dependability and Assurance: From Needs to Solutions, 1998,
pp. 103 —-1131.

[6] N. Kropp, P. Koopman, and D. Siewiorek, “Automated robustness
testing of off-the-shelf software components,” in 28th IEEE International
Symposium on Fault-Tolerant Computing (FTCS-28), 1998, pp. 230 —
22309.

[7]1 J. Arlat, J.-C. Fabre, and M. Rodriguez, “Dependability of COTS
microkernel-based systems,” Transactions on Computers, vol. 51, no. 2,
pp. 138-163, 2002.

[8] J. Arlat, J.-C. Fabre, M. Rodriguez, and F. Salles, “MAFALDA: a series
of prototype tools for the assessment of real time COTS microkernel-
based systems,” in Fault Injection Techniques and Tools for Embedded
Systems Reliability Evaluation. Kluwer Academic Publishers, 2003.

[9] K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and P. Rumeau,

“Benchmarking the dependability of windows and linux using postmark

workloads,” 16th IEEE International Symposium on Software Reliability

Engineering (ISSRE05), pp. 11-20, 2005.

A. Tarhini, A. Rollet, and H. Fouchal, “A pragmatic approach for testing

robustness on real-time component based systems,” in 3rd ACS/IEEE

International Conference on Computer Systems and Applications, 2005,

pp. 143-.

F. Saad-Khorchef, A. Rollet, and R. Castanet, “A framework and a

tool for robustness testing of communicating software,” in SAC ’07,

vol. Proceedings of the 2007 ACM symposium on Applied computing.

Seoul, Korea New York, NY, USA: ACM, 2007, pp. 1461-1466.

F. Saad Khorchef, I. Berrada, A. Rollet, and R. Castanet, “Cadre formel

pour le test de robustesse - application au protocole SSL,” in Collogue

Francophone sur I’Ingnierie des Protocoles - CFIP 2006, Tunisie, 2006.

A. Cavalli, E. Martins, and A. Morais, “Use of invariant properties to

evaluate the results of fault-injection-based robustness testing of protocol

implementations,” in 2008 IEEE International Conference on Software

Testing Verification and Validation Workshop (ICSTW’08), 2008, pp. 21—

30.

B. T. Ladani, B. Alcalde, and A. Cavalli, “Passive testing - a constrained

invariant checking approach,” Testing of Communicating Systems, pp. 9—

22, 2005.

D. Musliner, E. Durfee, and K. Shine, “CIRCA: a cooperative intelligent

real-time control architecture,” IEEE Transactions on Systems, Man, and

Cybernetics, vol. 23, no. 6, pp. 1561-1574, 1993.

R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An

architecture for autonomy,” International Journal of Robotic Research,

vol. 17, no. 4, pp. 315-337, 1998.

[17] F. Ingrand, R. Chatila, and R. Alami, “An architecture for dependable

autonomous robots,” in Ist IARP - IEEE/RAS Joint Workshop on

Technical Challenge for Dependable Robots in Human Environments,

Seoul, Korea, 2001.

T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and

S. Chien, “Decision-making in a robotic architecture for autonomy,” in

6th Int. Symp. on Artificial Intelligence, Robotics and Automation for

Space (i-SAIRAS 2001), Montreal, CA, USA, 2001.

R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,

“The CLARALty architecture for robotic autonomy,” in IEEE Aerospace

Conference, Big Sky, Montana, USA, 2001.

[20] E. Gat, “On three-layer architectures,” in Artificial Intelligence and

Mobile Robots, D. Kortenkamp, R. Bonnasso, and R. Murphy, Eds.
MIT/AAAI Press, 1997, pp. 195-210.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(18]

[19]

[21]

[22]

(23]

[24]

[25]

M. Ghallab and H. Laruelle, “Representation and control in IxTeT, a
temporal planner,” in 2nd Int. Conf. on Artificial Intelligence Planning
Systems (AIPS-94). Chicago, IL, USA: AIAA Press, 1994, pp. 61-67.
F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A high level
supervision and control language for autonomous mobile robots,” in
IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, USA,
1996, pp. 43-49.

S. Fleury, M. Herrb, and R. Chatila, “Genom: a tool for the specification
and the implementation of operating modules in a distributed robot
architecture,” in /EEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’97), vol. 2, Grenoble, France, 1997, pp. 842-848.

H. Chu, “Test and evaluation of the robustness of the functional layer
of an autonomous robot,” Ph.D. dissertation, Institut Polytechnique de
Toulouse, Univerity of Toulouse, 2011.

A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in BIP,” in 4th IEEE Int’l Conf. on Software Engineering
and Formal Methods (SEFM’06). Washington, DC, USA: IEEE
Computer Society, 2006, pp. 3—12.

[26]

[27]

(28]

[29]

S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and T.-H. Nguyen,
“Designing autonomous robots: Toward a more dependable software
architecture,” Robotics & Automation Magazine, IEEE, vol. 16, no. 1,
pp. 67-77, 20009.

S. Bensalem, L. de Silva, M. Gallien, F. Ingrand, and R. Yan, “’Rock
Solid’ software: A verifiable and correct-by-construction controller for
rover and spacecraft functional level,” in i-SAIRAS 2010, The 10th Inter-
national Symposium on Artificial Intelligence, Robotics and Automation
in Space, Sapporo, Japan, 2010.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation
- a methodology and some applications,” IEEE Trans. on Software
Engineering, vol. 16, no. 2, pp. 166-182, 1990.

Y. Crouzet, H. Waeselynck, B. Lussier, and D. Powell, “The SESAME
experience: from assembly languages to declarative models,” in Mutation
2006 - The Second Workshop on Mutation Analysis, 17th IEEE Int.
Symp. on Software Reliability Engineering (ISSRE 2006). Raleigh,
NC, USA: IEEE, 2006.

