Practical use of OpenBSD routing domains with redundant firewalls

Matthieu Herrb

EuroBSDCon - 16-17 september 2023

Licence

This document is covered by the

Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) licence.

The full text of the licence is available there:

http://creativecommons.org/licenses/by-sa/4.0/

About the author

Research Engineer at CNRS-LAAS in Toulouse, France.

- PhD in Robotics, 1991
- Support for robotics projects (Linux, Embedded/Realtime systems)
- $lue{}$ Security for the whole lab ightarrow OpenBSD Firewalls

And also

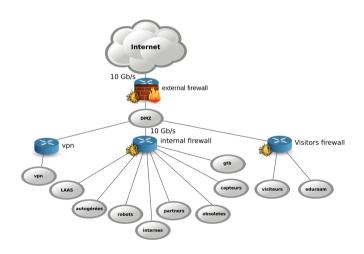
- OpenBSD contributor (Xenocara) since 1997
- Member of Tetaneutral.net, a non-profit ISP + Hosting association

Mastodon:

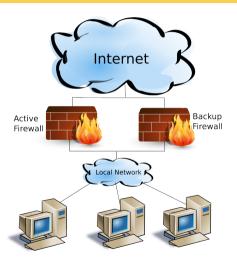
@mherrb@tetaneutral.net

@matthieu@bsd.network

The LAAS network context


LAAS is a CNRS laboratory with:

- around 650 staff members
- around 100 PhD defenses / year
- 6 research departments from Computer Science to Nano Technologies and Robotics
- a set of hosted servers (storage, virtualization, computing cluster, backups,...)
- around 2000 workstations (Windows, Linux, macOS,...) and experimental devices connected to the network
- some security sensitive research projects
- OpenBSD firewalls in production since 2009 (JRES 2011 presentation)
- almost fully IPv6 enabled since 2004


Other uses of OpenBSD at LAAS

- DNS authoritative servers (isc-bind)
- Caching / recursive DNS servers (unbound + carp)
- SMTP servers
- NTP servers
- DHCP servers
- Web proxy (squid)
- arpwatch probe

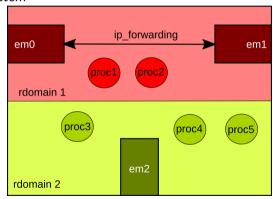
Network architecture

Redundant firewalls with Carp

The backup firewall problem

In the "classic" Carp setup the backup (passive) firewall is hard to manage :

- the egress (WAN) interface can't reach the internet
 - it may not even have an IP address
 - it cannot have a default route through that interface (conflict with the Carp route if it becomes active)
- there may be similar issues with the ingress (LAN) interface
- even if one adds a dedicated management interface, egress is still an issue


OpenBSD solution to this:

ightarrow use routing domains to separate admin and packet filtering / routing.

Routing domains

Several independant routing tables in the system

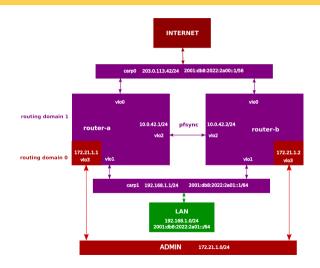
- Each processus is bound to a **routing domain** with several routing tables.
- Network interfaces are bound to a routing domain
- Allows to completely separate network traffics

Important routing domain commands

- in /etc/hostname.if : rdomain n puts the interface in the givent routing domain
- id -R displays the routing domain of the current shell
- route -Tn exec command... executes the given command in the specified routing domain
- ps aux -o rtable shows the routing table used by each process
- rcctl set daemon rtable n tells rc.d to start the given daemon in the specified routing table
- PF can be used to route packets betwen domains.

Routing domains for a Carp firewall

Copying the design of "real" routers using 2 routing domains:


Control: for admin, including a default route

Data: for packets filtering/forwarding/routing

From the sysadmin point of vue: use routing domain 0 as the control plane:

- doesn't know about Carp
- has all the regular services (sshd, ntpd, unwind, ...) running
- has its own IP addresses and default route.

Carp with routing domains architecture

Installation and configuration

- connect the administration interface first
- install OpenBSD normally, configuring only this interface
- once firewalls are installed, the data routing domain can be configured

This procedure also makes it easy to prepare new firewalls that are going to replace existging ones.

/etc/sysctl.conf

On both routers, enable:

- packet forwarding (both v4 and v6)
- Carp preemption

/etc/sysctl.conf

```
net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1
net.inet.carp.preempt=1
```

Physical interfaces

/etc/hostname.vio0 et /etc/hostname.vio1 on both routers

```
up
rdomain 1
```

routeur A: /etc/hostname.vio2

```
rdomain 1
up
inet 10.0.42.1 255.255.255.0
```

routeur B : /etc/hostname.vio2

```
rdomain 1
up
inet 10.0.42.2 255.255.255.0
```

(pfsync transport is v4 only)

CARP: router A

/etc/hostname.carp0

```
rdomain 1
vhid 10 carpdev vio0 pass SuperSecret10
inet 203.0.113.42 255.255.255.255
inet6 2001:db8:2022:2a00::1/56
! route -T1 add default 203.0.113.1
! route -T1 add -inet6 default fe80::1%carp0
```

/etc/hostname.carp1

```
rdomain 1
vhid 20 carpdev vio1 pass SuperSecret20
inet 192.168.1.1 255.255.255.0
inet6 2001:db8:2022:2a01::1/64
```

CARP: router B

/etc/hostname.carp0

```
rdomain 1
vhid 10 advskew 200 carpdev vio0 pass SuperSecret10
inet 203.0.113.42 255.255.255.255
inet6 2001:db8:2022:2a00::1/56
! route -T1 add default 203.0.113.1
! route -T1 add -inet6 default fe80::1%carp0
```

/etc/hostname.carp1

```
rdomain 1
vhid 20 advskew 200 carpdev vio1 pass SuperSecret20
inet 192.168.1.1 255.255.255.0
inet6 2001:db8:2022:2a01::1/64
```

pfsync

/etc/hostname.pfsync0 on both routers

rdomain 1
up syncdev vio2

/etc/pf.conf

On both routers:

```
ext=carp0
ext if=vio0
int=carp1
int if=vio1
sync=pfsync0
sync_if=vio2
adm = vio3
set skip on { lo $int_if $adm }
set loginterface $ext if
```

```
block log
# let pfsync go through
pass quick on $sync if proto pfsync \
    keep state (no-svnc)
pass quick on $sync if proto icmp
# idem for carp
pass quick on $ext_if proto carp \
    keep state (no-sync)
# outbound traffic
pass out on $ext if inet nat-to ($ext)
```

Running services in the data plane

Since the data plane is in rdomain 1, some services must run there too. For example for a SOHO like configuration: dhcpd, rad, unbound, ntpd,...

```
dhcpd_flags=-y 10.0.42.1 -Y 10.0.42.2 carp1
dhcpd_rtable=1
rad_flags=
rad_rtable=1
unbound_flags=
unbound_rtable=1
ntpd_flags=
ntpd_rtable=1
```

LAAS setup

External firewalls pair:

- 2 Dell R340 with Xeon E-2124 (3.30 GHz) CPUs and 16GiB of RAM
- Dual Intel X710 10Gb/s cards for packet forwarding (rdomain 1)
- Dual Intel X550T cards for pfsync (rdomain 1) and management (rdomain 0)
- ca 320 PF rules

Internal firewalls pair:

- 2 Virtual machines running on a VMWare cluster with 1vCPU and 4GiB RAM
- using 2 vmxnet3 interfaces:
 - one in rdomain 0 for management
 - one in rdomain 1 carrying all the internals VLANs and Carp interfaces (26)
- ca 300 PF rules

All four systems running OpenBSD 7.3-stable currently.

PF rulesets

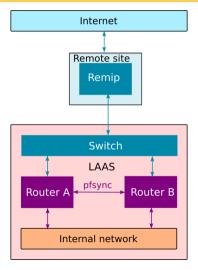
- Block everything inbound
- Allow specific trafic to specific servers (Web, SSH, SMTP/IMAP...)
- Let most of egress trafic out
- Use max-src-conn and max-sec-conn-rate to slow down brute-force attacks
- Use dynamic block lists (https://feodotracker.abuse.ch/) to block Botnets trafic
- Use pflog for mandatory logging of some outbound trafic

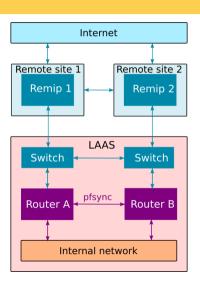
Updating pf rules

/usr/local/bin/update-pf

```
#! /bin/ksh
autre="routeur-b"
if /sbin/pfctl -n -f /etc/pf.conf; then
      echo "syntaxe ok -> update"
      pfctl -f /etc/pf.conf
else
       echo "erreur dans pf.conf"
      exit 2
fi
echo "mise a jour $autre"
scp -p /etc/pf.conf $autre:/etc/
ssh autre /sbin/pfctl -f /etc/pf.conf
exit 0
```

IPv6

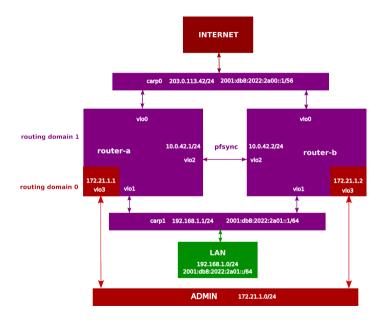

- makes rule sets bigger
- need special rules for Link-Local and Multicast trafic
- Carp over IPv6 only?
- Pfsync currently v4 only
- need to run rad(8) on the active router (\rightarrow ifstated(8) rules)


On Carp usage

- Initially : protect from kernel panics / hangs
- \blacksquare \rightarrow very few (none) of such events
- also very few / no hardware failures
- main use : seemless syspatch / sysupgrades

There have been one strange failure where the facing uplink provider router would stop answering to ARP \rightarrow loss of IPv4 connectivity, not detectable by Carp or ifstated

New external connection setup: single to double attachment



A test setup with vmm(4)

On a machine with 2 physical interfaces (or 1 interface and a vlan-capable switch):

- set up 2 virtual machines and 3 veb(4)
- bind the external interface to the internet
- bind the internal interface to the lan
- use the "local" vmm network for the admin rdomain

Makes it possible to test things on a laptop or a smallish machine before going to production.

VMM network setup

/etc/vm.conf (1/3)

```
switch ext {
       enable
       interface veb0
switch int {
       enable
       interface veb1
switch pfsync {
       enable
       interface veb2
EuroBSDCon 2023 - 17 september 2023
                                                                                     29/33
```

router-a VM config - /etc/vm.conf (2/3)

```
vm "router-a" {
  disable
  memory 1G
  disk "/local/vm/a.img"
  interface {
     switch "ext"
  interface {
     switch "int"
  interface {
     switch "pfsync"
  local interface
  owner matthieu
```

router-b VM config - /etc/vm.conf (3/3)

```
vm "router-b" {
   disable
   memory 1G
   disk "/local/vm/b.img"
   interface {
       switch "ext"
   interface {
      switch "int"
   interface {
       switch "pfsync"
   local interface
   owner matthieu
```

Conclusion

- Running OpenBSD firewalls at LAAS for almost 15 years
- On a 10Gb/s uplink since 3 years.
- Performance is not a concern (good enough)
- The use of routing domains to separate admin interface is really comfortable
- Have successfully blocked a few mild DDoS attacks
- PF states and debugging tools provide good insight into actual network flows
- Main concern: teach staff about OpenBSD and pf administration
- Also: hardware compatibility issues when replacing the hardware

Questions ?