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Linear results
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Weak and strong input redundancy in linear plants

> A linear plant with weak or strong input redundancy
e Weak: means that equilibria can be induced by different input patterns

e Strong: means that transients can be induced by different input
patterns

x = Ax+ Bu+ Byd
y = x4+ Du+ Dyd,

Def’n: A plant is input-redundant if one of the following two conditions
is satisfied
@ it is strongly input-redundant from u if it satisfies Ker ([g}) # 0,
denote
B. such that Im(B.) = Ker ([5]);
@ it is weakly input-redundant from u to y if
pP*:= IimO(C(sl — A)71B+D) is finite and satisfies Ker(P*) # 0;
s5—
denote

B, such that Im(B, ) = Ker(P*).
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Allocator dynamics may only act in the B, directions

\)

C
Controller Y .U Plant
Input
B
Allocator )<~

> Assume that a controller has been designed disregarding input
redundancy to obtain a desirable plant output response y

Xe = Acxc+ By + B,r
Ye = Cxc+ Dcy+ Dyr,

> Design an input allocator which
e exploits strong redundancy to get fast reallocation during transients
e exploits weak redundancy to get slow reallocation at the steady-state
> The allocator measures controller output y. and adds compensating signal

e Choose that signal as B w for some w
e Pick w as the output of a pool of integrators (dynamic solution)
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Linear dynamic allocation minimizes J=(u—uo)" W(u—uo

U Plant
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Allocator
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> Linear solution only relying on the knowledge of the controller output y.

w = —2pKBTW(u—up) =—-pKBIVJ
u yc+ BJ_Wa

Th'm: With strong redundancy, if K > 0 and BIV_VBL > 0 then internal
stability and output response y unaffected by allocator

Th’'m: With weak redundnacy, if K > 0 and BIV_VBL > 0 then internal
stability and steady-state output response y unaffected by allocator for
small enough p

> Role of W: assign the steady-state plant input, solution to:

min J(u) := (u— up) " W(u — up), subject to: u=y*+ B w,

corresponding to u* = ug + (I — BL(BTWB,)"1B] W) y?.
> up is a useful drift term (e.g., center of saturation range)
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Linear dynamic allocation minimizes J=(u—uo)" W(u—uo
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> Linear solution only relying on the knowledge of the controller output y.

w = —2pKBTW(u—up) =—-pKBIVJ
u yc+ BJ_Wa

Th'm: With strong redundancy, if K > 0 and BIV_VBL > 0 then internal
stability and output response y unaffected by allocator

Th’'m: With weak redundnacy, if K > 0 and BIV_VBL > 0 then internal
stability and steady-state output response y unaffected by allocator for
small enough p

> Role of K diagonal: promote/penalize different redundant directions while
not affecting the steady-state input:

v =u+ (I - BL(BIWB.) 'B[ W)y}

> Role of p € R+ is to assign any (arbitrily fast or slow) allocation speed
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Randomly generated academic example (strong)

> Plant is strongly input redundant (one direction), controller is LQG

Plant Output

Plant Input

Controller Output

AlB —0.157 —-0.094 | 0.87 0.253 0.743
{T‘i] = —0.416 —0.45 | 0.39 0.354 0.65
0 i [0 0 0
Y oy ]

K =10/ and W = | W=




Linear results
[e]e]e] le]ee)

Randomly generated academic example (strong)

> Plant is strongly input redundant (one direction), controller is LQG

Plant Output

Plant Input

Controller Output

—0.157
—0.416

44

—0.094
—0.45

0.87 0.253 0.743
0.39 0.354 0.65

K =10/ and W =/
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Linear results

0O000e00

Randomly generated academic example (weak)

> Plant is weakly input redundant (two directions), controller is LQG

AlB —0.157 —0.094 | 0.87 0.253 0.743
[%ﬁ] = | —0.416 —0.45 |0.39 0.354 0.65
0 1 [0 0 0
pK = 0.1/ and W = [: OKI! pK =11 and W = [: unstable!
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Randomly generated academic example (weak)

> Plant is weakly input redundant (two directions), controller is LQG

AlB ~0.157 —0.094 | 0.87 0.253 0.743
[%ﬁ]: —0.416  —0.45 | 0.39 0.354 0.65
0 1 [0 0 o0

Plant Output
Plant Output

Controller Output
Controller Output

Plant Input
Plant Input

o 5 10 15 20 25 30 o 5 10 15 20 25 30

pK = 0.1/ and W = I: OK! pK =[P 51 and W = I: Better!
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Nonlinear allocation with magnitude saturation

> Select nonlinear W(-) to increasingly penalize each actuator as it
approaches its magnitude saturation limit M

W(u) = (diag((1 + €)M — abs(sat,\/,(u))))f1

d

Magnitude ’
Saturation l
r
—> Y Input U olu+v Y
Controller | pu »D | ( ) Plant >
Allocator T | n
v

Anti-windup

Yaw compensator
- +

U=

> Interpretation: anti-windup deals with saturation during transients;
dynamic allocation avoids saturation at the steady-state
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Example 1 (revisited with magnitude saturation)

> Input usage after allocation [9.5 3.37 7]% (note uj ~ 0.5 >> mp = 0.01)
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FTU elongation control
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Application: plasma position and elongation control

> Frascati Tokamak Upgrade (FTU): a nuclear fusion experiment

Poloidal Field Power Supply Toroidal Field
(TRANSFORMER) Power Supply

Poloidal Fields
for plasma position

PLASMA

Coils and toroidal plasma Cross section

> Poloidal field coils regulate plasma position and elongation
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FTU elongation control
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Current FTU horizontal position regulation

> Frascati Tokamak Upgrade: AW = plasma horiz. position, ip = plasma

current
Wrp ip
iFFF
v AU
iFors : Plant —+—
ip
PID —d

> Tools: V coil: very slow and powerful; F coil: fast and squeezes the plasma
> Goal: Want to use the F coil to perform two actions:

e high bandwith disturbance rejection on AV (= y)

e low bandwith elongation, equivalently, ir(= u>) regulation

15 /48



FTU elongation control
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Solution with allocator uses weak redundancy

> Transfer (slowly) control authority from F to V using dynamic allocation

io 4 ip AV
(AT e
inuJ ! T:(F) Yo Plant | |
PID D L
Aiv

Air | Allocator | iy,
le— i,:u

> Zoom of the allocator block (note the drift term up = u, which is now a
reference signal for i)

Allocator g | u

éi —/)BIW@L),“;gJO

Th'm: With weak redundnacy, if K > 0 then internal stability and
steady-state output response y = AW unaffected by allocator for small
enough p
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Experiments: F current regulation

> ig current is slowly regulated without affecting plant output y = AWV

Shot 31725
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FTU elongation control
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From current regulation to elongation regu

lation

> An approximately known nonlinear static map f relates /¢ to the

elongation

ip , AV
. iv
| 0 Plant |,

Allocator{__ iy,

1R fﬂ

LPO[ ati]
i —

> Invert the map f to perform feedback elongation regulation via allocation

> Experiments confirm that the scheme works only if p is sufficiently slow

Th’'m: With weak redundnacy, if K > 0 and map f is invertible, then
internal stability and steady-state output response y = AW unaffected by
allocator for small enough p + elongation regulation x — Kg.
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Experiments: Elongation regulation

Shots 31970 (without allocator) and 31971 (with allocator)
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FTU elongation control
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Experiments: loss of stability if parameter too large

Experiments with different values of p
(Shots 31937, 31971, 31975)
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Adding actuator dynamics
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Hybrid Electric Vehicle has ICE and EM actuators

> A prototype built at the “University of Rome, Tor Vergata”

battery

&
fuel tank

gear 7
[5 Tox Hawn il ]

lock =

Dynamic allocator I
,,,,,,,,, 5 |
T— Ye U
Controller 41?6\ ; » Actuators d}fll‘&alrlllti(lﬁ Y

|

! \
4| | Allocator !
| ocator ¢ v < — == === = =

| dynamics |
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Adding actuator dynamics
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Hybrid Electric Vehicle has ICE and EM actuators

> Redundancy: net torque= ICE torque + EM torque
Parallel HEV control strategy

. ro - -----_-_ - --- - - I 'S
Vg Tueetsrea! | Transient | 1108t »> TK'E‘”’/; h[{(d(]f\ e ICE v
Driver k | reference T state [ |
v Ygear | generator EM.t > inversion
L Dynamic I HEV
T allocator | s
| J/Steady-state| = ICE.ss T, EM 50¢
|| reference b‘”'”t steady- WE“" EM
generator | L infﬁz?ﬁﬂ ) Tpm
|
> Dynamic allocator inputs:
e y. represents the transient torque request (non-optimized),
e up represents the steady-state torque allocation (energy efficient)
Plant d
N I
Dynamic allocator I
,,,,,,,,, 5 |
T— Ye U
Controller 41’6\ ‘ » Actuators dyfll:;rlltics Y
| (;ul : | |
I Allocator w 00 ——— === ===
| dynamics |




Adding actuator dynamics
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Dynamic allocation uses LCM of actuators dynamics

> Allocator dynamics G(s), W(s) designed following a systematic procedure

-G(s)B, % Y - [« KB/G(0)W(3) u

> Slow variation of the injected signals ensured by the presence of saturation
> Main result proven using saturated systems techniques

Th’m: If the actuator parameters are designed following the procedure, the
transient response given by the controller is not modified by the
allocator, and the steady-state torque allocation ug is asymptotically
obtained.



Adding actuator dynamics
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Experimental response on the prototype

[s]

gear[]

T

wheels.req

gear 1

So - vw s

o 10 20 30 40 5
[s1

TICE.rer

L] S R 4
= EM.ret
=

= 20 R
= 10 [26] 4
this paper
00 5 10 15 . 20 25 30 35
Torque regulation. Steady-state Human driver in the loop.
reference ug changes at t =20 s Reference ug changes at t =10 s
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Attitude control with reaction wheels and magnetorquers

= - b
— ~ 1
L - I
V| |
\ I
\ —F—
initial desired :
attitude attitude

Reaction wheels
/\

PiB)
[
e Plant dynamics: b —
. Y X X Tx ! - Y
Jo+wJw=w"h, —71, — b (t,q)Tm , 9 ‘ﬂ
—_———
q = S(M)q T, &_ :_ %_ —
e Actuator dynamics (Reaction Wheels): '
: Magnetorquers
hy =Ty

> Reaction wheels: if 7, = k then h,, = kt — risk of saturation of h,,
> Magnetorquers: Controllability issues: T,

b*(t.q)rm = —(R(q)bo(£))*Tim
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Adding actuator dynamics
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Attitude control with reaction wheels and magnetorquers

> Classical solution: “Cross-product law” uses separate loops and high-gain

> Proposed-solution: use static allocation in feedback from actuator state

Dynamics: Control law:

Jir 4w Jw = —7 — w hu + Tn Tw = —w" hy = (R(q)bo(1)) " 7m — 7,

. N—— ~
g=5(w)q r o _(R(g)bs(1))* k(b — hrer)
: ~ m — ~ p\w re
hw = —w™ hy — (R(q)bo(t)) T — T |bo(t)|2
Tw 7 = Hybrid attitude controller command

Hybrid | 7, Tw T=7, | Attitude (q,w)

Attitude —* Allocator Actuators -

Controller Tm (¢,w)

+ Ry
thf

(g,w) -
Th'm: If 7 ensures GAS of the origin for (g,w) dynamics,

then allocation scheme preserve the same exact (g, w) response and
ensures GAS of h,, = h,r.
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Allocation scheme enables inverting the cascade

UPPER SUBSYSTEM LOWER SUBSYSTEM
bol1)
Dynamics of |(q,w)
q,w
B, | ()
7 P
[bo ()2 Hybrid
Controller
]L,(;fibL_ ((qvw)
Frcr]
UPPER SUBSYSTEM LOWER SUBSYSTEM

Ul

w

7=7, Dynamics of (q,w)
(¢, w)

_kO
b ()

Hybrid
controller = T
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Adding actuator dynamics
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Stabilization transients with aggressive controller

x107° x107°
7 7
== classical
- = —revisited
6 allocation
5
__ 4
=
|
— 3
2
1
0
0 0.5 1 1.5 2 1.5 2
N ————— ‘ ‘

10 15 20 2
Position on orbit (%)

v Similar results X saturation of h,
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Adding actuator dynamics
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Stabilization transients with non aggressive controller

0.02

0.018

0.016

0.014

0.012

0.01

—nl

— 0.008

0.006

N
0.004

v revisited and allocation controllers preserve stability

x 10
3 T
== classical |
- — —revisited ;
allocation 25 ! ]
1 1
] )
21 |
] W
1 315! A 1
! Vit
\ 1 hotto
\ ] IR A2 ]
\ ot
1
\ i I /
\ 050 v, ) N ]
\ ] I / \
\ N
~
~ o -
60 80 100 0 20 40 60 80

100

Position on orbit (%)

30/48



Cardan angles (°)

Adding actuator dynamics
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Attitude transient decoupled from the h,, transient

— — —revisited
allocation

Position on orbit (%)

RN _ J A
3P/
—4
0 20 40 60 80 100
T T
» e
04
L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

v allocation-based strategy gives more regular attitude transient
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Adding actuator dynamics
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Nonlinear allocation with partial actuator measurements

> In some applications may be able to only access virtual input T
> If g(x,) is invertible and f(x,) is incrementally stable, may use scheme

. ACTUATOR
! iq = f(za) + g(za)u| 7
o 7= h(x,)
|
1
. OuTrPUT FEEDBACK ALLOCATOR !
Th’m: Under stated assumptions, we have 7 = —v,(7 — 7) and (slow)

convergence of x, to the minimum of J(x,).
> Hydrodynamlc dynamometer uses two valves with nonlinear output map h

i

s 1.5
#" Rotor
(s Air Vent 1
o :
or

a,

Actuator state x
S
o

0.5 0
Actuator state X4
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JET Current Limit Avoidance
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Joint European Torus (JET) plasma shape control

@ We want to control the plasma shape on a poloidal cross section.

@ Shape is described by a finite number of geometrical parameters
called gaps.

@ Gaps are defined as the
distances between the plasma
boundary and the first wall "
along certain segments.

@ Gaps values are evaluated T
from magnetic sensor :
measurements by estimation
algorithms.

@ We want to control:

32 outputs y.
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JET Current Limit Avoidance
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JET shape control has not redundant inputs

— i
Iron Core
Coil P3

o JET has 8 poloidal field (PF) Hcaiee
coils available as actuators for

plasma shape control.

@ JET PF coils are connected
to form 9 circuits.

fF CollP1 Tf

@ Control inputs represented by
currents flowing in the
circuits.

@ Inputs available: n

Coil P2
=1

L] T  E—
Divertor Coils
(D1, D2, D3 and D4)

Toroidal Coils

9 control inputs v.

> No redundant inputs: still need achieve saturation avoidance!
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JET Current Limit Avoidance
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Recall allocator features for the redundant case

> Essential features of the dynamic allocator seen before

r

—

w=—pKB]VJ

Controller v

u=y.+Biw

Allocator

Plant

e l&

> The columns of B correspond to the redundant directions

> K diagonal allows to promote/penalize different redundant directions

> W imposes the optimality criterion: u converges to
u* = argmin,, (v — up) T W(u — up), subject to: u=y*+ B, w,

namely minizes cost J = (u — ug)” W(u — up).

> p, positive scalar allows to adjust convergence speed
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JET Current Limit Avoidance
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Extended cost function and new ‘“trade-off” allocator

> We introduce a more general cost function [before]
Je(u,d0y) [J = (u— o) W(u— up)]

> Minimum of J is a trade-off between (x denotes steady state values).
e the modified steady state value of the plant input u* and
e the associated output modification dy* with respect to the original y*

> The new allocator is described by the equations [before] :

W = —pKBJ [L]T Ve W =—pKBIVJ
u =yc+ Bow u =y.+Biw

> By is a suitable full column rank matrix, generalizing the matrix B,
(all input directions are potentially “redundant” now).
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JET Current Limit Avoidance
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Allocator now also injects signals at plant output

> New allocator injects extra signal §y = P*y, so as to not “fight” against
the controller at the steady-state:

ue = y—PBw=y—Pvy,
u = ye+Bw=y.+Vya

—> Ye U Plant Y

ue | Controller '
) +
—>|Allocator Y —

Th’m Under some convexity assumptions on nonlinear cost Je, for sufficiently
small p the allocator is such that, under constant inputs, (u(t),dy(t))
converge to the minimizer of Je.




JET Current Limit Avoidance
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Example of a cost function: penalize u and dy

A possible selection of the cost function is

Je(u,dy) = Zadz u;) —i—Zb(éy,

where dz(u;) = sign(u;) max{0, |u;| — 1}, a; >0, i=1,...,n, and
bi>0i=1,...,n,.

Inputs cost function Outputs cost function
09 09
08 08
07 : : : 07
[ 08
RS} % 05
2 >
N
¥ o4 e 04
03 03
02 02
o o
0 0
01 i ; i i i i i o1 i
2 s 1 05 0 05 1 5 2 & 05 0 05 1
Y 3y,

Alternative non symmetric choices are possible
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Steady-state allocation: penalize input u

4E -

ZSIGB |—
- —
i
@ Allocated shape (red baloon) greatly
modified wrt the nominal shape (blue
baloon)

e ID1 is moved away from saturation by
allocator

B T

Poloidal coils currents

ulA]

-5

IPF‘HM IP‘llT IPI‘IIM |P|‘=X |S|1|P |D‘1 IDé |D‘3 |D‘4
Input ranges (red), controller output y. (blue), allocated input u (green)
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JET Current Limit Avoidance
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Steady-state allocation: penalize output y

Plasma shape Steady-state output deviations

75iG8 ]

=
3
o
&
=,

e @ Allocated shape (red baloon) slightly
o modified wrt the nominal shape (blue
g baloon)

2
3
2

i @ Increasing output penalty, shape
& i modification dy* is reduced

et b @ ID1 comes back very close to
e saturation level

[ 01 02
ay[m)

a Poloidal coils currents
x 10 T T T

ulA]

-5

IPF‘HM IP‘llT IPI‘IIM |P|‘=X |S|1|P |D‘1 IDé |D‘3 |D‘4
Input ranges (red), controller output y. (blue), allocated input u (green)
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JET Current Limit Avoidance
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Steady-state allocation: restrict By to nail down outputs

Plasma shape Steady-state output deviations

@ Allocated shape (red baloon)

e nominal shape (blue baloon)

@ Penalize input u as in first test

@ Remove columns from By to fix 5
outputs (CV-RX, CV-ZX, ZSOGB,
RSIGB and RSOGB, i.e. X-point and
i strike points) and one input (IP4T

- current)

01 02

@ ID1 again far from saturation level
Poloidal coils currents

[
Ay [m]

ulA]

-5

IPF‘HM IP‘llT IPI‘IIM |P|‘=X |S|1|P |D‘1 IDé |D‘3 |D‘4
Input ranges (red), controller output (blue), allocated input (green)
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Experiment during current ramp-down without allocator

> X-point and strike points severely compromised at t =19 s

> Radial Inner Gap (RIG) also becomes very small
SURF 1x201.2 SURF Lx201.2

Y Iﬁ R 2[ 5
i 1 iL
- = =
% a@ LE’ ar En ar
T E 3
1L ! A
\
A S ‘ ‘ |
20 28 30 35 Ll AT PR s b NI = - EE S
Majer radius [m] 20 25 30 35 20 25 0 : 3.5
Major radius [m] Maijor radius [m]
t=15 t=17s t= 19
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JET Current Limit Avoidance
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Experiment during current ramp-down with allocator

> X-point, strike points and RIG better behaved in the same conditions
> Shape is sacrificed in the upper part of the vessel where space is available

SURF Lx201.2 SURF Lx201.2
T T e

SURF Lx201.2
any Fiana T | PR AN RS R R
i
1 1 1
E E £
E E E
2 0 2 qr o0
T T T
-1 -1t =1
NS o S TR N . T P R WP
20 25 30 35 20 25 30 35 20 25 30 35
Major radius [m] Majer radius [m] Major radius [m]
t=1s t = 165 t=18s
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Summary of presented works with references

> A recent survey about input allocation in Johansen and Fossen [2013]

> First ideas behind the presented theory with some nonlinear applications
Zaccarian [2007, 2009]

> The presented applications are reported in:
e FTU elongation control Boncagni et al. [2012]
e Hybrid Electric Vehicle control Cordiner et al. [2014]
e Satellite attitude stabilization Trégouét et al. [2014]
e Hydrodynamic dynamometer application Passenbrunner et al. [2012]

> JET current limiit avoidance system
e Theory of trade-off allocator and first simulations Tommasi et al. [2011]
e Software implementation commissioning Tommasi et al. [2012]
o Closed-loop experimental results Tommasi et al. [2013a,b]
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