Clegg and FORE are hybrid	Exponential Stability	Generalized analysis	Generalized synthesis	Conclusions
000000000000	0000	00000	0000000000	0

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H_{∞} controller

> Luca Zaccarian LAAS-CNRS, Toulouse and University of Trento

> > University of Oxford November 12, 2013

> > > ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clegg and FORE are hybrid	Exponential Stability	Generalized analysis	Generalized synthesis	Conclusions
	0000	00000	0000000000	O
Outline				

- Clegg integrators and First Order Reset Elements (FORE) and an overview of hybrid dynamical systems
- 2 Exponential stability of FORE control systems
- 3 Stability/Performance analysis for a larger class of hybrid systems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- 4 Synthesis of higher order hybrid controllers
- Conclusions and perspectives

Integrators: core components of dynamical control systems

Example: PI controller

 In an analog integrator, the state information is stored in a capacitor:

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э

Integrators: core components of dynamical control systems

Example: PI controller

$$\dot{\mathbf{x}}_{\mathbf{c}} = A_c \mathbf{x}_c + B_c \mathbf{v}$$

- Clegg's integrator (1956):
 - *feedback diodes*: the **positive** part of *x_c* is all and only coming from the **upper** capacitor (and viceversa)
 - input diodes: when $v \leq 0$ the upper capacitor is reset and the lower one integrates (and viceversa) $[R_d \ll 1]$
- As a consequence ⇒ v and x_c never have opposite signs

Hybrid Clegg integrator: $\dot{x}_c = \frac{1}{RC}v$, allowed when $x_c v \ge 0$, $x_c^+ = 0$, allowed when $x_c v \le 0$,

- Flow set C: where x_c may flow (1st eq'n)
- Jump set \mathcal{D} : where x_c may jump (2nd eq'n)

- Clegg's integrator (1956):
 - feedback diodes: the **positive** part of x_c is all and only coming from the **upper** capacitor (and viceversa)
 - input diodes: when $v \leq 0$ the upper capacitor is reset and the lower one integrates (and viceversa) $[R_d \ll 1]$
- As a consequence ⇒ v and x_c never have opposite signs

- $\mathcal{H} = (\mathcal{C}, \mathcal{D}, F, G)$
- $n \in \mathbb{N}$ (state dimension)
- $\mathcal{C} \subseteq \mathbb{R}^n$ (flow set)
- $\mathcal{D} \subseteq \mathbb{R}^n$ (jump set)
- $F: \mathcal{C} \rightrightarrows \mathbb{R}^n$ (flow map)
- $G:\mathcal{D}\rightrightarrows\mathbb{R}^n$ (jump map)

$$\mathcal{H}: \left\{ egin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \ x^+ \in G(x), & x \in \mathcal{D} \end{array}
ight.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

- $\mathcal{H} = (\mathcal{C}, \mathcal{D}, F, G)$
 - $n \in \mathbb{N}$ (state dimension)
 - $\mathcal{C} \subseteq \mathbb{R}^n$ (flow set)
 - $\mathcal{D} \subseteq \mathbb{R}^n$ (jump set)
 - $F: \mathcal{C} \rightrightarrows \mathbb{R}^n$ (flow map)
 - $G:\mathcal{D}\rightrightarrows\mathbb{R}^n$ (jump map)

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \\ x^+ \in G(x), & x \in \mathcal{D} \end{array} \right.$$

$$\left(egin{array}{cc} \dot{x}_1 &= x_2 \ \dot{x}_2 &= -x_1 + x_2 (1-x_1^2) \end{array}
ight.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- $\mathcal{H} = (\mathcal{C}, \mathcal{D}, \textit{F}, \textit{G})$
 - $n \in \mathbb{N}$ (state dimension)
 - $\mathcal{C} \subseteq \mathbb{R}^n$ (flow set)
 - $\mathcal{D} \subseteq \mathbb{R}^n$ (jump set)
 - $F: \mathcal{C} \Longrightarrow \mathbb{R}^n$ flow map)
 - $G:\mathcal{D}\rightrightarrows\mathbb{R}^n$ (jump map)

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \\ x^+ \in G(x), & x \in \mathcal{D} \end{array} \right.$$

$$x^{+} \in \begin{cases} \{0,1\} & \text{if } x = 0\\ \{0,2\} & \text{if } x = 1\\ \{1,2\} & \text{if } x = 2 \end{cases}$$

A possible sequence of states from $x_0 = 0$ is:

$$(0\cdot 1\cdot 2\cdot 1)^i$$
 $i\in N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

The motion of the state is parameterized by two parameters:

- t ∈ ℝ_{≥0}, takes into account the elapse of time during the continuous motion of the state;
- j ∈ Z_{≥0}, takes into account the number of jumps during the discrete motion of the state.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

 $E \subseteq \mathbb{R}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is a compact hybrid time domain if

$$E = \bigcup_{j=0}^{J-1} ([t_j, t_{j+1}] \times \{j\})$$

where $0 = t_0 \leq t_1 \leq \cdots \leq t_J$.

E is a **hybrid time domain** if for all $(T, J) \in \mathbb{R}_{\geq 0} \times \mathbb{Z}_{\geq 0}$

 $E \cap ([0,T] \times \{0,1,\ldots,J\})$

is a compact hybrid time domain.

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うへつ

• Formally, a solution satisfies the flow dynamics when flowing and satisfies the jump dynamics when jumping

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 Clegg and FORE are hybrid
 Exponential Stability
 Generalized analysis
 Generalized synthesis
 Conclusions

 00000
 0000
 0000
 0000
 0000
 0000
 0000

 Hybrid
 dynamical
 systems
 review:
 Lyapunov
 theorem

Theorem Given the Euclidean norm $|x| = \sqrt{x^T x}$ and a hybrid system

$$\mathcal{H}: \left\{ egin{array}{ll} \dot{x}=f(x), & x\in\mathcal{C} \ x^+\!=g(x), & x\in\mathcal{D}, \end{array}
ight.$$

aassume that function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfies for some scalars c_1 , c_2 positive and c_3 positive:

$$\begin{split} & c_1 |x|^2 \le V(x) \le c_2 |x|^2, & \forall x \in \mathcal{C} \cup \mathcal{D} \cup \mathcal{G}(\mathcal{D}) \\ & \langle \nabla V(x), f(x) \rangle \le -c_3 |x|^2, & \forall x \in \mathcal{C}, \\ & V(g(x)) - V(x) \le -c_3 |x|^2, & \forall x \in \mathcal{D}, \end{split}$$

then the origin is uniformly globally exponentially stable (UGES) for \mathcal{H} , namely there exist $\mathcal{K}, \lambda > 0$ such that all solutions satisfy

 $|\xi(t,j)| \leq Ke^{\lambda(t+j)}|\xi(0,0)|, \quad \forall (t,j) \in \operatorname{dom} \xi$

ション ふゆ くり くり くし くし

<u>Note</u>: Lyapunov conditions comprise **flow** and **jump** conditions. <u>Note</u>: UGAS is characterized in terms of hybrid time (t, j)

Theorem Given a closed set $\mathcal{A} \subset \mathbb{R}^n$ and a hybrid system

$$\mathcal{H}: \left\{ egin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \ x^+ \in \mathcal{G}(x), & x \in \mathcal{D}, \end{array}
ight.$$

aassume that function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfies for some $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and ρ positive definite:

$$\begin{aligned} &\alpha_1(|x|_{\mathcal{A}}) \leq V(x) \leq \alpha_2(|x|_{\mathcal{A}}), & \forall x \in \mathcal{C} \cup \mathcal{D} \cup \mathcal{G}(\mathcal{D}) \\ &\langle \nabla V(x), f \rangle \leq -\rho(|x|_{\mathcal{A}}), & \forall x \in \mathcal{C}, f \in F(x), \\ &V(g) - V(x) \leq -\rho(|x|_{\mathcal{A}}), & \forall x \in \mathcal{D}, g \in \mathcal{G}(x) \end{aligned}$$

then \mathcal{A} is uniformly globally asymptotically stable (UGAS) for \mathcal{H} , namely there exists $\beta \in \mathcal{KL}$ such that all solutions satisfy

 $|\xi(t,j)|_{\mathcal{A}} \leq \beta(|\xi(0,0)|_{\mathcal{A}},t+j), \quad \forall (t,j) \in \mathrm{dom} \ \xi$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

<u>Note</u>: Lyapunov conditions comprise **flow** and **jump** conditions. <u>Note</u>: UGAS is characterized in terms of hybrid time (t, j)

- Flow set C: where x_c may flow (1st eq'n)
- Jump set \mathcal{D} : where x_c may jump (2nd eq'n)

- Clegg's integrator (1956):
 - feedback diodes: the **positive** part of x_c is all and only coming from the **upper** capacitor (and viceversa)
 - input diodes: when $v \leq 0$ the upper capacitor is reset and the lower one integrates (and viceversa) $[R_d \ll 1]$
- As a consequence \Rightarrow v and x_c never have opposite signs

Hybrid Clegg integrator:

- $\dot{x}_{c}(t,j) = (RC)^{-1}v(t,j), \quad x_{c}(t,j)v(t,j) \ge 0,$ $x_{c}(t,j+1) = 0, \qquad \qquad x_{c}(t,j)v(t,j) \le 0,$
- Flow set $\mathcal{C} := \{(x_c, v) : x_c v \ge 0\}$ is closed
- Jump set $\mathcal{D} := \{(x_c, v) : x_c v \leq 0\}$ is closed
- Stability is robust! (Teel 2006–2012)

Previous models (Clegg '56, Horowitz '73, Hollot '04):

$$\begin{split} \dot{x}_c &= (RC)^{-1}v, \quad \text{ if } v \neq 0, \\ x_c^+ &= 0, \quad \text{ if } v = 0, \end{split}$$

- Imprecise: solutions \exists s.t. $x_c v < 0$, but Clegg's x_c and v always have same sign!
- <u>Unrobust</u>: C is almost all \mathbb{R}^2 (arbitrary small noise disastrous)
- <u>Unsuitable</u>: Adds extra solutions
 ⇒ Lyapunov results too conservative!

 a_c , b_c or (a_c, b_c) large enough \Rightarrow uniform global exponential stability

Theorem In the planar case, γ_{dy} shrinks to zero as parameters grow

Simulation Linear (a =-1 0.8 a_=-3 uses: a_=-' 0.6 Plant output a_=1 0.4 a_=3 0.2 $b_{c} = 1$ 0 -0.2L 2 6 7 9 10 Interpretation: Resets remove overshoots, instability improves transient

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\begin{array}{c} \mbox{Clegg and FORE are hybrid} \\ \hline \mbox{concentral Stability} \\ \hline \mbox{concentral S$

• Block diagram:

• Output response (overcomes linear systems limitations)

• Quadratic Lyapunov functions are unsuitable

• Gain γ_{dy} estimates (N = # of sectors)

N	2	4	8	50
gain γ_{dy}	2.834	1.377	0.914	0.87

- A lower bound: $\sqrt{\frac{\pi}{8}} \approx 0.626$
- Lyapunov func'n level sets for N = 4

P₁,..., P₄ cover 2nd/4th quadrants
P₀ covers 1st/3rd quadrants

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

•
$$a_c = 1$$
: level set with $N = 50$

• Gain γ_{dv} estimates

Clegg and FORE are hybrid Exponential Stability Generalized analysis Generalized synthesis Conclusions

$$\mathcal{H} \begin{cases} \dot{x} = Ax + Bw \\ \dot{\tau} = 1 - \mathrm{dz} \left(\frac{\tau}{\rho}\right) & (x, \tau) \in \mathcal{C} \\ x^+ = Gx \\ \tau^+ = 0 & (x, \tau) \in \mathcal{D} \\ z = C_z x + D_{zw} w \end{cases}$$

$$\mathcal{C} = \{(x, \tau) : x \in \mathcal{F} \text{ or } \tau \in [0, \rho]\} \\ \mathcal{D} = \{(x, \tau) : x \in \mathcal{J} \text{ and } \tau \in [\rho, 2\rho]\} \\ \mathcal{F} = \{x \in \mathbb{R}^n : x^\top Mx \le 0\}$$

$$\mathcal{I} = \{x \in \mathbb{R}^n : x^\top Mx \ge 0\}$$

$$\text{Ideal behavior}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\mathcal{H} \begin{cases} \dot{x} = Ax + Bw \\ \dot{\tau} = 1 - dz \left(\frac{\tau}{\rho}\right) & (x, \tau) \in \mathcal{C} \\ x^+ = Gx \\ \tau^+ = 0 \\ z = C_z x + D_{zw} w \end{cases}$$

$$\mathcal{C} = \{(x, \tau) : x \in \mathcal{F} \text{ or } \tau \in [0, \rho]\} \\ \mathcal{D} = \{(x, \tau) : x \in \mathcal{J} \text{ and } \tau \in [\rho, 2\rho]\} \\ \mathcal{F} = \{x \in \mathbb{R}^n : x^\top Mx \le 0\} \\ \mathcal{J} = \{x \in \mathbb{R}^n : x^\top Mx \ge 0\}$$

$$The dwell time enables flow in the set $\mathcal{J} (t_1 = t_0 + \rho)$

$$Disadvantage: flow in \mathcal{J}$$$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Clegg and FORE are hybrid Exponential Stability Generalized analysis Generalized synthesis Conclusions

$$\mathcal{H} \begin{cases} \dot{x} = Ax + Bw \\ \dot{\tau} = 1 - \mathrm{dz} \left(\frac{\tau}{\rho}\right) & (x, \tau) \in \mathcal{C} \\ x^+ = Gx \\ \tau^+ = 0 \\ z = C_z x + D_{zw} w \end{cases}$$

 $\mathcal{C} = \{(x,\tau) : x \in \mathcal{F} \text{ or } \tau \in [0,\rho]\}$ $\mathcal{D} = \{(x,\tau) : x \in \mathcal{J} \text{ and } \tau \in [\rho,2\rho]\}$

 $\mathcal{F} = \{ x \in \mathbb{R}^n : x^\top M x \le 0 \}$

 $\mathcal{J} = \{ x \in \mathbb{R}^n : x^\top M x \ge 0 \}$

Dwell-time condition: Each solution ξ to \mathcal{H} satisfies

$$t-s \ge \rho$$

for any pair of hybrid times $(t,j), (s,i) \in \text{dom}(\xi),$ $(t,j) \ge (s,i)$

Advantage: persistent flow of all solutions t

Dwell-time allows us to use *classical* performance indexes.

Definition (*t*-decay rate)

Given a compact set $\mathcal{A} \subset \mathbb{R}^n$ and w = 0, \mathcal{H} has *t*-decay rate $\alpha > 0$ if there exists K > 0 such that each solution x satisfies

 $|x(t,j)|_{\mathcal{A}} \leq K \exp(-\alpha t)|x(0,0)|_{\mathcal{A}}, \text{ for all } (t,j) \in \operatorname{dom}(x).$

Definition $(t-\mathcal{L}_2 \text{ gain})$

Consider a set $\mathcal{A} \subset \mathbb{R}^n$ uniformly globally asymptotically stable for \mathcal{H} . \mathcal{H} is finite t- \mathcal{L}_2 gain stable from w to z with gain (upper bounded by) $\gamma > 0$ if any solution x to \mathcal{H} starting from \mathcal{A} satisfies

 $\|x\|_{2t} \leq \gamma \|w\|_{2t}$, for all $w \in t$ - \mathcal{L}_2 .

Proposition: Consider system \mathcal{H} . If there exist matrices $P = P^{\top} > 0$, $\widetilde{M} = \widetilde{M}^{\top}$, non-negative scalars τ_F , τ_C , $\tau_R \in \mathbb{R}_{\geq 0}$ and positive scalars ϵ , $\overline{\gamma}$, such that

$$\begin{pmatrix} A^{\top}P + PA - (\widetilde{M} - \epsilon I) & PB & C_{z}^{\top} \\ B^{\top}P & -\overline{\gamma}I & D_{zw}^{\top} \\ C_{z} & D_{zw} & -\overline{\gamma}I \end{pmatrix} < 0,$$
(1a)

$$G^{\top} P G - P + \tau_R M \le 0, \tag{1b}$$

$$\widetilde{M} - \tau_F M \le \epsilon I, \tag{1c}$$

$$G^{\top}\widetilde{M}G + \tau_{C}M \le 0. \tag{1d}$$

Then for any γ satisfying

$$\gamma \ge \bar{\gamma}, \quad \gamma > \sqrt{2}|D_{zw}|,$$
 (2)

there exists $\overline{
ho} > 0$ such that for any $ho \in (0, \overline{
ho})$:

1) the set $\mathcal{A} = \{0\} \times [0, 2\rho]$ is uniformly globally exponentially stable for the hybrid system \mathcal{H} with w = 0;

2) the *t*- \mathcal{L}_2 gain from *w* to *z* is less than or equal to γ_{t} for all $w \in t$ - \mathcal{L}_2 .

May design the reset rules K_p , M, ρ only (case 1) or the whole dynamics (case 2)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Matrices $\bar{A}_c, \bar{B}_c, \bar{C}_c, \bar{D}_c$ are given. Deisgn K_p , M and ρ

• Reset to the minimizer of the hybrid Lyapunov function:

$$x_c^+ = \phi(x_p) := \underset{x_c}{\operatorname{argmin}} V(x_p, x_c)$$

• Reset whenever the function $V_p(x_p) := V(x_p, \phi(x_p))$ is nondecreasing:

$$\mathcal{J} = \left\{ \begin{bmatrix} x_p \\ x_c \end{bmatrix} \in \mathbb{R}^n : \begin{bmatrix} x_p \\ x_c \end{bmatrix}^\top M \begin{bmatrix} x_p \\ x_c \end{bmatrix} \ge 0 \right\},$$
$$\begin{bmatrix} x_p \\ x_c \end{bmatrix}^\top M \begin{bmatrix} x_p \\ x_c \end{bmatrix} = \langle \nabla V_p(x_p), A_p x_p + B_p x_c \rangle$$
$$= \dot{V}_p(x_p, x_c)$$

• Reset to the minimizer of the hybrid Lyapunov function:

$$x_c^+ = \phi(x_p) := \operatorname*{argmin}_{x_c} \begin{bmatrix} x_p \\ x_c \end{bmatrix}^\top \begin{bmatrix} P_p & P_{pc} \\ P_{pc}^T & P_c \end{bmatrix} \begin{bmatrix} x_p \\ x_c \end{bmatrix} = -P_c^{-1}P_{pc}^T x_p = \mathbf{K}_p x_p$$

• Reset to ensure nonincrease of $V_p(x_p) := V(x_p, \phi(x_p)) = x_p^T \left(P_p - P_{pc} P_c^{-1} P_{pc}^T \right) x_p$ P. $x_c \blacktriangle$ $\mathcal{J} = \left\{ \begin{bmatrix} x_{\boldsymbol{p}} \\ x_{\boldsymbol{c}} \end{bmatrix} \in \mathbb{R}^{n} : \begin{bmatrix} x_{\boldsymbol{p}} \\ x_{\boldsymbol{c}} \end{bmatrix}^{\top} M \begin{bmatrix} x_{\boldsymbol{p}} \\ x_{\boldsymbol{c}} \end{bmatrix} \ge 0 \right\},$ $\begin{bmatrix} x_{\boldsymbol{\rho}} \\ x_{\boldsymbol{c}} \end{bmatrix}^{\top} M\begin{bmatrix} x_{\boldsymbol{\rho}} \\ x_{\boldsymbol{c}} \end{bmatrix} = \langle \nabla V_{\boldsymbol{\rho}}(x_{\boldsymbol{\rho}}), A_{\boldsymbol{\rho}}x_{\boldsymbol{\rho}} + B_{\boldsymbol{\rho}}x_{\boldsymbol{c}} \rangle + 2\widetilde{\alpha}V_{\boldsymbol{\rho}}(x_{\boldsymbol{\rho}})$ $= \dot{V}_p(x_p, x_c) + 2\widetilde{\alpha} V_p(x_p)$ $= \begin{bmatrix} x_{\boldsymbol{p}} \\ x_{\boldsymbol{c}} \end{bmatrix}^{\top} \underbrace{2}_{\boldsymbol{c}} \begin{bmatrix} \bar{P}_{\boldsymbol{p}}(A_{\boldsymbol{p}} + \tilde{\alpha}I) & \bar{P}_{\boldsymbol{p}}B_{\boldsymbol{p}} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{\boldsymbol{p}} \\ x_{\boldsymbol{c}} \end{bmatrix}$ \bar{x}_r М ・ロト ・四ト ・モト ・モト ∃ \0 \0 Clegg and FORE are hybrid Exponential Stability Generalized analysis Generalized synthesis Conclusions

Theorem: Consider system \mathcal{H} and assume that

$$\operatorname{He}\left(\bar{P}_{p}(A_{p}+B_{p}K_{p})+\frac{\alpha}{2}\bar{P}_{p}\right)<0,\quad \bar{P}_{p}=\bar{P}_{p}^{\top}>0,\quad \alpha>0.$$
(3)

Then for each $\tilde{\alpha} \in (0, \alpha]$, there exists a small enough $\rho > 0$ such that controller \mathcal{H}_c with

$$M = 2 \begin{bmatrix} \bar{P}_p(A_p + \tilde{\alpha}I) & \bar{P}_pB_p \\ 0 & 0 \end{bmatrix}$$

guarantees that:

- the set $\mathcal{A} = \{0\} \times [0, 2\rho]$ is globally exponentially stable for \mathcal{H} ;
- any solution with $x_c(0,0) = 0$ satisfies

$$|x_p(t,j)| \leq K \exp\left(-\frac{\widetilde{lpha}}{2}t
ight) |x_p(0,0)|, \quad \forall (t,j) \in \operatorname{dom}(\xi).$$
 (4)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A DC motor controlled by a first oder filter

• optimal synthesis for **overshoot reduction** $x_p^T \overline{P}_p x_p \approx |y|^2$ or improvement of the **convergence rate** (using $\widetilde{\alpha}$)

э

Design all blue parameters $\bar{A}_c, \bar{B}_c, \bar{C}_c, \bar{D}_c, K_p, M$ and ρ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Clegg and FORE are hybrid	Exponential Stability 0000	Generalized an	nalysis Generalized synthesi ○○○○○○●○○○	s Conclusions O
Multi-objective	hybrid \mathcal{H}_∞ :	$t extsf{-}\mathcal{L}_2$ ga	in and <i>t</i> -decay	rate
Analysis condit $t-\mathcal{L}_2$ gain $\begin{pmatrix} A^{\top}P + PA - (\widetilde{M} - B^{\top}P) \\ C_z \\ G^{\top}PG - P + \tau_R M \leq \widetilde{M} - \tau_F M \leq \epsilon I \\ G^{\top}\widetilde{M}G + \tau_C M \leq 0 \end{pmatrix}$	ions: – <i>ϵI</i>) PB C _z – $\bar{\gamma}I$ D _z D _{zw} – $\bar{\gamma}$	$\left(\begin{array}{c} T \\ T \\ W \\ V \end{array} \right) < 0$	Reset controller: <i>t</i> -decay rate He $(\bar{P}_p(A_p + B_pK_p))$ Nonlinear couplin constraints: $P = \begin{bmatrix} P_p & P_{pc} \\ P_{pc}^T & P_c \end{bmatrix}$ $\bar{P}_a = P_a - P_{ac}P^{-1}$	$(1+rac{lpha}{2}ar{P}_p) < 0$
			P P PC C	pc

 $\implies \text{Change of coordinates from Scherer, Gahinet, Chilali 1997 leads to}$ $P := \begin{bmatrix} W & -W \\ -W & W + Z^{-1} \end{bmatrix}, \quad P^{-1} := \begin{bmatrix} Y & Z \\ Z & Z \end{bmatrix}, \quad \overline{P}_p = Y^{-1}$ $\Pi = \begin{bmatrix} Y & Z \\ I & 0 \end{bmatrix}, \quad \Pi P = \begin{bmatrix} I & 0 \\ W & -W \end{bmatrix}$

Theorem: Consider plant \mathcal{P} and any solution to LMIs:

$$\begin{bmatrix} \mathbf{Y} & \mathbf{I} \\ \mathbf{I} & \mathbf{W} \end{bmatrix} > 0$$

$$\operatorname{He} \left(\begin{bmatrix} \overline{A}_{p}\mathbf{Y} + \overline{B}_{p}\hat{C} & \overline{A}_{p} + \overline{B}_{p}\hat{D}\overline{C}_{p} & \overline{B}_{w} + \overline{B}_{p}\hat{D}\overline{D}_{w} & \mathbf{Y}\overline{C}_{z}^{\top} + \hat{C}^{\top}\overline{D}_{z}^{\top} \\ \frac{\hat{A} & W\overline{A}_{p} + \hat{B}\overline{C}_{p} & W\overline{B}_{w} + \hat{B}\overline{D}_{w} & \overline{C}_{z}^{\top} + \overline{C}_{p}^{\top}\hat{D}^{\top}\overline{D}_{z}^{\top} \\ \hline 0 & 0 & -\frac{\gamma}{2}\mathbf{I} & \overline{D}_{zw}^{\top} + \overline{D}_{w}^{\top}\hat{D}^{\top}\overline{D}_{z}^{\top} \\ 0 & 0 & 0 & -\frac{\gamma}{2}\mathbf{I} \end{bmatrix} \right) < 0$$

$$\operatorname{He} \left(\overline{A}_{p}\mathbf{Y} + \overline{B}_{p}\hat{C} + \frac{\alpha}{2}\mathbf{Y} \right) < 0$$

Then there exists a hybrid controller \mathcal{H}_c such that:

• the *t*-decay rate is equal to $\tilde{\alpha}/2$, with $\tilde{\alpha} \in (0, \alpha]$;

• the $t-\mathcal{L}_2$ gain from w to z less than or equal to γ , for all $w \in t-\mathcal{L}_2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Clegg and FORE are hybrid	Exponential Stability	Generalized analysis	Generalized synthesis	Conclusions
	0000	00000	00000000000	●
Conclusions and	perspectives	5		

- Objective and motivation
 - $\bullet\,$ exploit hybrid tools to push further the initial idea of Clegg in 1956
- Revisiting Clegg and FORE
 - new modeling paradigm: flow only in half of the state space
 - can now give Lyapunov guarantees of exponential stability
 - exp instability before reset promises high performance
 - experimental tests on EGR valve control (Diesel engines)
- Generalized reset controllers
 - A Lyapunov framework for stability and performance analysis
 - \bullet A hybrid \mathcal{H}_∞ controller design

Perspectives

- feedback from observed state (not covered here, partially done)
- overcome performance limitations
- improve synthesis scheme to allow for unstable continuous dynamics