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An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

∫ xcẋcv Bc

Ac

Example: PI controller

ẋc = Acxc + Bcv

∫ xcv

kp

ki

C

R vC
v −xc

ẋc =
1

RC
v

• In an analog integrator, the state
information is stored in a capacitor:
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An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

∫ xcẋcv Bc

Ac

Example: PI controller

ẋc = Acxc + Bcv

∫ xcv

kp

ki
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg's integrator (1956):
• feedback diodes: the positive part of xc
is all and only coming from the upper
capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never have

opposite signs
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Hybrid dynamics may �ow or jump

Hybrid Clegg integrator:

ẋc =
1

RC
v , allowed when xcv ≥ 0,

x+
c = 0, allowed when xcv ≤ 0,

• Flow set C: where xc may �ow (1st eq'n)
• Jump set D: where xc may jump (2nd eq'n)

DC

xc

v

C
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg's integrator (1956):
• feedback diodes: the positive part of xc
is all and only coming from the upper
capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never have

opposite signs



Clegg and FORE are hybrid Exponential Stability Generalized analysis Generalized synthesis Conclusions

Hybrid dynamical systems review: dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (�ow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn (�ow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D

C

D

ẋ ∈ F (x) x+ ∈ G(x)
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Hybrid dynamical systems review: continuous dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (�ow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn (�ow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D

{
ẋ1 = x2
ẋ2 = −x1 + x2(1− x2

1
)

−4 −2 0 2 4

−2

0

2

x
1

x
2

Van der Pol
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Hybrid dynamical systems review: discrete dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (�ow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn �ow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D

x+ ∈




{0, 1} if x = 0
{0, 2} if x = 1
{1, 2} if x = 2

A possible sequence of states from
x0 = 0 is:

(0 · 1 · 2 · 1)i i ∈ N
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Hybrid dynamical systems review: trajectories

C

D

x1x0

x2

x4 x5

x7

x3

x6

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D
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Hybrid dynamical systems review: hybrid time

The motion of the state is parameterized by two parameters:

• t ∈ R≥0, takes into account the elapse of time during the
continuous motion of the state;

• j ∈ Z≥0, takes into account the number of jumps during the discrete
motion of the state.

ξ(0, 0)

ξ(5, 0)

ξ(8, 3)
ξ(5, 1)

ξ(5, 2)

∀τ ∈ [0, 5], ξ(τ, 0) ∀τ ≥ 8, ξ(τ, 3)∀τ ∈ [5, 8], ξ(τ, 2)

ξ(8, 2)
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Hybrid dynamical systems review: hybrid time

E ⊆ R≥0 × Z≥0 is a compact

hybrid time domain if

E =
J−1⋃

j=0

([tj , tj+1]× {j})

where 0 = t0 ≤ t1 ≤ · · · ≤ tJ .

E is a hybrid time domain if for all
(T , J) ∈ R≥0 × Z≥0

E ∩ ([0,T ]× {0, 1, . . . , J})

is a compact hybrid time domain.

t

j

(t0,0) (t1,0)

(t1,1) (t2,1)

(t2,2)=(t3,2)

(t3,3) (t4,3)

(t4,4) (t5,4)

(t5,5)
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Hybrid dynamical systems review: solution

• Formally, a solution satis�es the �ow dynamics when �owing and
satis�es the jump dynamics when jumping

t

j

ξ

t1 t2 t3 t4

1

2

3

4
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Hybrid dynamical systems review: Lyapunov theorem

Theorem Given the Euclidean norm |x | =
√
xT x and a hybrid system

H :

{
ẋ = f (x), x ∈ C
x+= g(x), x ∈ D,

aassume that function V : Rn → R≥0 satis�es for some
scalars c1, c2 positive and c3 positive:

c1|x |2 ≤ V (x) ≤ c2|x |2, ∀x ∈ C ∪ D ∪ G (D)

〈∇V (x), f (x)〉 ≤ −c3|x |2, ∀x ∈ C,
V (g(x))− V (x) ≤ −c3|x |2, ∀x ∈ D,

then the origin is uniformly globally exponentially stable (UGES) for H,
namely there exist K , λ > 0 such that all solutions satisfy

|ξ(t, j)| ≤ Keλ(t+j)|ξ(0, 0)|, ∀(t, j) ∈ dom ξ

Note: Lyapunov conditions comprise �ow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)
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Hybrid dynamical systems review: Lyapunov theorem

Theorem Given a closed set A ⊂ Rn and a hybrid system

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D,

aassume that function V : Rn → R≥0 satis�es for some
α1, α2 ∈ K∞ and ρ positive de�nite:

α1(|x |A) ≤ V (x) ≤ α2(|x |A), ∀x ∈ C ∪ D ∪ G (D)

〈∇V (x), f 〉 ≤ −ρ(|x |A), ∀x ∈ C, f ∈ F (x),

V (g)− V (x) ≤ −ρ(|x |A), ∀x ∈ D, g ∈ G (x)

then A is uniformly globally asymptotically stable (UGAS) for H, namely
there exists β ∈ KL such that all solutions satisfy

|ξ(t, j)|A ≤ β(|ξ(0, 0)|A, t + j), ∀(t, j) ∈ dom ξ

Note: Lyapunov conditions comprise �ow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)
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Hybrid dynamics and the Clegg integrator (recall)

Hybrid Clegg integrator:

ẋc =
1

RC
v , allowed when xcv ≥ 0,

x+
c = 0, allowed when xcv ≤ 0,

• Flow set C: where xc may �ow (1st eq'n)
• Jump set D: where xc may jump (2nd eq'n)

DC

xc

v

C
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg's integrator (1956):
• feedback diodes: the positive part of xc
is all and only coming from the upper
capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never have

opposite signs
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Hybrid dynamics of the Clegg integrator (revisited)

Hybrid Clegg integrator:

ẋc(t, j) = (RC)−1v(t, j), xc(t, j)v(t, j) ≥ 0,

xc(t, j + 1) = 0, xc(t, j)v(t, j) ≤ 0,

• Flow set C := {(xc , v) : xcv ≥ 0} is closed
• Jump set D := {(xc , v) : xcv ≤ 0} is closed
• Stability is robust! (Teel 2006�2012)

DC

xc

v

C
Previous models (Clegg '56, Horowitz '73, Hollot '04):

ẋc = (RC)−1v , if v 6= 0,
x+
c = 0, if v = 0,

• Imprecise: solutions ∃ s.t. xcv < 0, but
Clegg's xc and v always have same sign!

• Unrobust: C is almost all R2

(arbitrary small noise disastrous)
• Unsuitable: Adds extra solutions
⇒ Lyapunov results too conservative!

CC

xc

v

C
D

D
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Stabilization using hybrid jumps to zero

First Order Reset Element (Horowitz '74):

ẋc = acxc + bcv , xcv ≥ 0,

x+
c = 0, xcv ≤ 0,

Theorem If P is linear, minimum phase
and relative degree one, then

FORE
y

d

Puv xc

ac , bc or (ac , bc) large enough ⇒ uniform global exponential stability

Theorem In the planar case, γdy shrinks to zero as parameters grow

Simulation
uses:

P =
1

s

bc = 1
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Interpretation: Resets remove overshoots, instability improves transient
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Piecewise quadratic Lyapunov function construction

• Given N ≥ 2 (number of sectors)
• Patching angles:

−θε = θ0 < θ1 < · · · < θN =
π

2
+ θε

• Patching hyperplanes (Cp = [0 · · · 0 1])

Θi =
[
01×(n−2) sin(θi ) cos(θi )

]T

• Sector matrices:
S0 := Θ0ΘT

N + ΘNΘT
0

Si := −(ΘiΘ
T
i−1 + Θi−1ΘT

i ), i = 1, . . . ,N,

Sε1 :=




0(n−2)×(n−2) 0 0
0 0 sin(θε)
0 sin(θε) −2 cos(θε)




Sε2 :=




0(n−2)×(n−2) 0 0
0 −2 cos(θε) sin(θε)
0 sin(θε) 0




xc axis

P1

PN

P2

PN−1

y axis

P0

Sε1

Sε2

θ1

θ2

θ0

θN−2

θN−1 θN

S0

S2

S0

SN−1

SN

S1

Hybrid closed-loop:
ẋ = AF x + Bww , x ∈ C
x+ = AJx , x ∈ D
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Example 1: Clegg (ac = 0) connected to an integrator

• Block diagram:

1
s

y
d

xc

Clegg

ac = 0

• Output response (overcomes linear
systems limitations)
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Clegg (a
c
=0)

Linear (a
c
=0)

• Quadratic Lyapunov functions
are unsuitable

• Gain γdy estimates (N = # of sectors)
N 2 4 8 50

gain γdy 2.834 1.377 0.914 0.87

• A lower bound:
√

π
8
≈ 0.626

• Lyapunov func'n level sets for N = 4
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• P1, . . . ,P4 cover 2nd/4th quadrants
• P0 covers 1st/3rd quadrants
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Example 2: FORE (any ac) and linear plant (Hollot et al.)

• Block diagram (P = s+1

s(s+0.2) )

P y
d

xc
FORE

• ac = 1: level set with N = 50
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• Gain γdy estimates

−5 0 5
0

1

2

3

4

5

6

7

8

a
c

L
2
 g

a
in

s

 

 

Linear CLS

Reset CLS (Thm 3, ACC 2005)

Reset CLS (this theorem)

• Time responses
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A class of homogeneous hybrid systems

H





ẋ = Ax + Bw

τ̇ = 1− dz

(
τ
ρ

)
(x , τ) ∈ C

x+ = Gx

τ+ = 0
(x , τ) ∈ D

z = Czx + Dzww

C = {(x , τ) : x ∈ F or τ ∈ [0, ρ]}
D = {(x , τ) : x ∈ J and τ ∈ [ρ, 2ρ]}

F=
{
x ∈ Rn : x>Mx ≤ 0

}

J=
{
x ∈ Rn : x>Mx ≥ 0

}

xc

xp

F

F

J

J

Ideal behavior
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Dwell time can force the solution to �ow in the set J

H





ẋ = Ax + Bw

τ̇ = 1− dz

(
τ
ρ

)
(x , τ) ∈ C

x+ = Gx

τ+ = 0
(x , τ) ∈ D

z = Czx + Dzww

C = {(x , τ) : x ∈ F or τ ∈ [0, ρ]}
D = {(x , τ) : x ∈ J and τ ∈ [ρ, 2ρ]}

F =
{
x ∈ Rn : x>Mx ≤ 0

}

J =
{
x ∈ Rn : x>Mx ≥ 0

}

xc

xp

F

F

J

J

x(t0, 0)

x(t0 + ρ, 0)

x(t1, 1)

τ(t0, 0) = 0

τ(t0 + ρ, 0) = ρ

τ(t1, 1) = 0

The dwell time enables �ow in the
set J (t1 = t0 + ρ)

Disadvantage: �ow in J
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Dwell-time prevents consecutive jumps from being too close

H





ẋ = Ax + Bw

τ̇ = 1− dz

(
τ
ρ

)
(x , τ) ∈ C

x+ = Gx

τ+ = 0
(x , τ) ∈ D

z = Czx + Dzww

C = {(x , τ) : x ∈ F or τ ∈ [0, ρ]}
D = {(x , τ) : x ∈ J and τ ∈ [ρ, 2ρ]}

F =
{
x ∈ Rn : x>Mx ≤ 0

}

J =
{
x ∈ Rn : x>Mx ≥ 0

}

Dwell-time condition: Each
solution ξ to H satis�es

t − s ≥ ρ

for any pair of hybrid times
(t, j), (s, i) ∈ dom(ξ),

(t, j) ≥ (s, i)

0 0.5 1 1.5 2 0

1

2

3

4

0

0.2

0.4

0.6

j

t

x

Advantage: persistent �ow of all solutions
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From dwell time ⇒ performance wrt ordinary time t

Dwell-time allows us to use classical performance indexes.

De�nition (t-decay rate)

Given a compact set A ⊂ Rn and w = 0, H has t-decay rate α > 0 if
there exists K > 0 such that each solution x satis�es

|x(t, j)|A ≤ K exp(−αt)|x(0, 0)|A, for all (t, j) ∈ dom(x).

De�nition (t-L2 gain)

Consider a set A ⊂ Rn uniformly globally asymptotically stable for H.
H is �nite t-L2 gain stable from w to z with gain (upper bounded by)
γ > 0 if any solution x to H starting from A satis�es

‖x‖2t ≤ γ‖w‖2t , for all w ∈ t-L2.
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Performance analysis result: V (x) = x
>
Px

Proposition: Consider system H. If there exist matrices P = P> > 0,
M̃ = M̃>, non-negative scalars τF , τC , τR ∈ R≥0 and positive scalars ε,
γ̄, such that 


A>P + PA− (M̃ − εI ) PB C>z

B>P −γ̄I D>zw
Cz Dzw −γ̄I


 < 0, (1a)

G>PG − P + τRM ≤ 0, (1b)

M̃ − τFM ≤ εI , (1c)

G>M̃G + τCM ≤ 0. (1d)

Then for any γ satisfying

γ ≥ γ̄, γ >
√
2|Dzw |, (2)

there exists ρ > 0 such that for any ρ ∈ (0, ρ):

1) the set A = {0} × [0, 2ρ] is uniformly globally exponentially stable for
the hybrid system H with w = 0;

2) the t-L2 gain from w to z is less than or equal to γ, for all w ∈ t-L2.
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An architecture for homogeneous reset controller deisgn

May design the reset rules Kp, M, ρ only (case 1) or the whole dynamics
(case 2)

ẋc = Ācxc + B̄cy

τ̇ = 1− dz
(
τ
ρ

)

u = C̄cxc + D̄cy

xp

xc, τ

yu

Supervisor

flow:



xp
xc




⊤
M



xp
xc


 ≤ 0 or τ ∈ [0,ρ ]

x+c = Kpxp

τ+ = 0

jump:



xp
xc




⊤
M



xp
xc


 ≥ 0 and τ ∈ [ρ, 2ρ]

Hc

ẋp = Āpxp + B̄pu
y = C̄pxp + D̄pu

P



Clegg and FORE are hybrid Exponential Stability Generalized analysis Generalized synthesis Conclusions

Case 1: Flow dynamics is given, design Jump sets and rules

Matrices Āc , B̄c , C̄c , D̄c are given. Deisgn Kp, M and ρ

ẋc = Ācxc + B̄cy

τ̇ = 1− dz
(
τ
ρ

)

u = C̄cxc + D̄cy

xp

xc, τ

yu

Supervisor

flow:



xp
xc




⊤
M



xp
xc


 ≤ 0 or τ ∈ [0,ρ ]

x+c = Kpxp

τ+ = 0

jump:



xp
xc




⊤
M



xp
xc


 ≥ 0 and τ ∈ [ρ, 2ρ]

Hc

ẋp = Āpxp + B̄pu
y = C̄pxp + D̄pu

P
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Design paradigm is inherited from Clegg integrator

• Reset to the minimizer of the hybrid Lyapunov function:

x+
c = φ(xp) := argmin

xc

V (xp, xc)

• Reset whenever the function
Vp(xp) := V (xp, φ(xp)) is nondecreasing:

J =
{

[ xpxc ] ∈ Rn : [ xpxc ]
>
M [ xpxc ] ≥ 0

}
,

[ xpxc ]
>
M [ xpxc ] = 〈∇Vp(xp),Apxp + Bpxc〉

= V̇p(xp, xc)

xp

xc
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Design paradigm for the quadratic case V (x) = x
T
Px

• Reset to the minimizer of the hybrid Lyapunov function:

x+
c = φ(xp) := argmin

xc

[ xpxc ]
>
[
Pp Ppc

PT
pc Pc

]
[ xpxc ] = −P−1c PT

pcxp = Kpxp

• Reset to ensure nonincrease of
Vp(xp) := V (xp, φ(xp)) = xTp (Pp − PpcP

−1
c PT

pc)
︸ ︷︷ ︸

Pp

xp:

J =
{

[ xpxc ] ∈ Rn : [ xpxc ]
>
M [ xpxc ] ≥ 0

}
,

[ xpxc ]
>
M [ xpxc ] = 〈∇Vp(xp),Apxp + Bpxc〉+ 2α̃Vp(xp)

= V̇p(xp, xc) + 2α̃Vp(xp)

= [ xpxc ]
>
2
[
P̄p(Ap+α̃I ) P̄pBp

0 0

]

︸ ︷︷ ︸
M

[ xpxc ] xp

xc
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Construction leaves many degrees of freedom

Theorem: Consider system H and assume that

He

(
P̄p(Ap + BpKp) +

α

2
P̄p

)
< 0, P̄p = P̄p

> > 0, α > 0. (3)

Then for each α̃ ∈ (0, α], there exists a small enough ρ > 0 such that
controller Hc with

M = 2

[
P̄p(Ap + α̃I ) P̄pBp

0 0

]

guarantees that:

the set A = {0} × [0, 2ρ] is globally exponentially stable for H;

any solution with xc(0, 0) = 0 satis�es

|xp(t, j)| ≤ K exp

(
− α̃
2
t

)
|xp(0, 0)|, ∀(t, j) ∈ dom(ξ). (4)
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Positioning system: overshoot reduction

A DC motor controlled by a �rst oder �lter

Ke

1 + τes

1

F + Js
1
s

TmV ω θ

P

u y
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optimal synthesis for overshoot reduction xTp Ppxp ≈ |y |2
or improvement of the convergence rate (using α̃)
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Multi-objective hybrid H∞ controller synthesis

Design all blue parameters Āc , B̄c , C̄c , D̄c , Kp, M and ρ

ẋc = Ācxc + B̄cy

τ̇ = 1− dz
(
τ
ρ

)

u = C̄cxc + D̄cy

xp

xc, τ

yu

Supervisor

flow:



xp
xc




⊤
M



xp
xc


 ≤ 0 or τ ∈ [0,ρ ]

x+c = Kpxp

τ+ = 0

jump:



xp
xc




⊤
M



xp
xc


 ≥ 0 and τ ∈ [ρ, 2ρ]

Hc

ẋp = Āpxp + B̄pu + B̄ww
y = C̄pxp + D̄pu + D̄ww
z = C̄zxp + D̄zu + D̄zww P

w z
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Multi-objective hybrid H∞: t-L2 gain and t-decay rate

Analysis conditions:
t-L2 gain




A>P + PA− (M̃ − εI ) PB C>z
B>P −γ̄I D>zw
Cz Dzw −γ̄I


 < 0

G>PG − P + τRM ≤ 0

M̃ − τFM ≤ εI
G>M̃G + τCM ≤ 0

Reset controller:
t-decay rate

He

(
P̄p(Ap + BpKp) +

α

2
P̄p

)
< 0

Nonlinear coupling
constraints:

P =

[
Pp Ppc
PT
pc Pc

]

P̄p = Pp − PpcP
−1
c PT

pc

=⇒ Change of coordinates from Scherer, Gahinet, Chilali 1997 leads to

P :=

[
W −W
−W W + Z−1

]
, P−1 :=

[
Y Z

Z Z

]
, P̄p = Y−1

Π =

[
Y Z

I 0

]
, ΠP =

[
I 0
W −W

]
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Multi-objective synthesis then becomes an LMI problem

Theorem: Consider plant P and any solution to LMIs:
[
Y I

I W

]
> 0

He







ĀpY + B̄pĈ Āp + B̄pD̂C̄p B̄w + B̄pD̂D̄w Y C̄>z + Ĉ>D̄>z
Â W Āp + B̂C̄p WB̄w + B̂D̄w C̄>z + C̄>p D̂>D̄>z
0 0 −γ

2
I D̄>zw + D̄>w D̂

>D̄>z
0 0 0 −γ

2
I





 < 0

He

(
ĀpY + B̄pĈ + α

2
Y
)
< 0

Then there exists a hybrid controller Hc such that:

the t-decay rate is equal to α̃/2, with α̃ ∈ (0, α];

the t-L2 gain from w to z less than or equal to γ, for all w ∈ t-L2.
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DC motor: optimal t-L2 gain for a given α̃ = α = 0.5
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DC motor: optimal t-L2 gain for a given α̃ = α = 2
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Conclusions and perspectives

1 Objective and motivation
exploit hybrid tools to push further the initial idea of Clegg in 1956

2 Revisiting Clegg and FORE
new modeling paradigm: �ow only in half of the state space
can now give Lyapunov guarantees of exponential stability
exp instability before reset promises high performance
experimental tests on EGR valve control (Diesel engines)

3 Generalized reset controllers
A Lyapunov framework for stability and performance analysis
A hybrid H∞ controller design

4 Perspectives
feedback from observed state (not covered here, partially done)
overcome performance limitations
improve synthesis scheme to allow for unstable continuous dynamics
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