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The observation problem

System T Observer 3
u x = f(x,u) y,u |, N N R
S S fo= F(%,0) + Ly — W) ——
System X Observer &
m state x € R” m estimate X € R”
m known external input u € U m unknown measurement noise v € R”

®m measured output y € R™
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The observation problem

System T Observer 3
u x = f(x,u) y,u |, N N R
S S fo= F(%,0) + Ly — W) ——
System X Observer &
m state x € R” m estimate X € R”
m known external input u € U m unknown measurement noise v € R”

®m measured output y € R™

ISS Observer

The observer ¥ is ISS (input-to-state stable) if

IX(6) = #(6)] < B(x(0) = 20)L8) +( sup Iv(5)])

selo,t

for all t > 0, for some 8 € KL and vy € K.
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Properties of an observer

Characteristics of an ISS Observer

m [ characterizes the performance in nominal conditions (v = 0).

m 7 characterizes the robustness with respect to v.

Ix(£) = 2(5)] < B(Ix(0) = 2(0)], 1) +(_sup_[v(s)])

s€[0,t)

m Ideal behavior of an ISS observer:
v Fast convergence:

for example, B(s, t) = ae~?%|s|, a, b > 0, with b “large.”

v Small Peaking:

for example, 8(s,t) = ae~bt|s|, a, b > 0, with a “small.”

v/ Small asymptotic gain:
for example, v(s) = 7|s|, with ¥ > 0 “small.”

X Trade-off between speed of convergence and asymptotic gain

L. Zaccarian
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The linear case: an example

Consider a linear system and a linear (Luenberger) observer

z:{X:AX“B“ $. &= AR+ ButL(y — CR)

y=Cx+v

with
m (A, C) detectable pair

m L gain of the observer to be chosen so that A — LC is Hurwitz.
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The linear case: an example

Consider a linear system and a linear (Luenberger) observer

S A=A+ Bu+L(y— CR)

5 - x =Ax+ Bu
: y=Cx+v

with
m (A, C) detectable pair

m L gain of the observer to be chosen so that A — LC is Hurwitz.
The dynamics of the estimation error X := x — X is given by
k=(A-LC)%—Lv
and thus

(s,t) = B(s, ) = |eA=LO)E| 5]

(B)=2()] <[4 OO (v)s ] 4 ) em foiL] 7 ety
0

(finite-gain exponentially ISS).
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The linear case: an example

Consider a linear system and a linear (Luenberger) observer

Y — i S:%=AR+Bu+L(y—CR)

5 - { x =Ax+ Bu
with
m (A, C) detectable pair

m L gain of the observer to be chosen so that A — LC is Hurwitz.
The dynamics of the estimation error X := x — X is given by
k=(A-LC)%—Lv
and thus

(s,t) = B(s, ) = |eA=LO)E| 5]

(B)=2()] <[4 OO (v)s ] 4 ) em foiL] 7 ety
0

(finite-gain exponentially ISS).

X We cannot make both A — LC s.t. [e(A=LO)t| < Mexp(—at) with « large (i.e.,
fast transient) and ~(-) small (i.e. insensitive to noise)
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Observer gain design for linear systems

m Based on additional hypothesis on v, we can figure out different approaches:
s Hoo design allows to minimize v over all frequencies.

= If v acts on some known frequencies w € [w, @], minimize the gain

G(jw) = [jwl — (A~ LC)] L.

= Kalman filter for optimal gain design

L. Zaccarian
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Observer design for nonlinear systems

v Exploring some structural properties of the system, many different designs exist

Property Observer Technique

Detectability Kazantis-Kravaris Luenberger (KKL) observers
Uniform observability ~ High-gain (HGO) observers

Lipschitz systems LMI or circle-criterion approach

Input-affine systems Riccati-like approach

Local observability extended Kalman filters

X [Shim, Seo, & Teel, Automatica 2003, p. 890] and reference therein
pointed out the fragility (lack of ISS) of certain nonlinear observers

X Few tools to analyze the effect of noises in the nonlinear framework:

m ISS gains based on Lyapunov analysis [Alessandri, Mathematics 2020];

m analysis of measurement noise in high-gain observers [Sanfelice & Praly,
Automatica 2011], [Astolfi, Marconi, Praly, & Teel, NOLCOS 2016].

X Techniques to improve sensitivity to measurement noise are developed ad hoc
(i.e. for specific classes of systems and/or observers)

L. Zaccarian
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Plan of the talk

m We follow a redesign approach.
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Plan of the talk

We follow a redesign approach.

m We focus on two special classes of measurement-noise perturbations v:
1) outliers (i.e. sporadic impulsive noise);
2) persistent “small” noise.

m Two techniques will be developed:

1) dynamic saturation redesign ( “stubborn redesign”);

2) dynamic dead-zone redesign.

We will provide sufficient conditions to apply a general paradigm for the purpose
of redesign of

1) state observers for linear and nonlinear systems;
2) static output feedback for synchronization of multi-agent systems;

3) dynamic output feedback of linear plants.

L. Zaccarian
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Main Assumptions

System T Observer &

u | x=Ff(x,u)+w y,u z=p(z,u) + Gr(z,y — h(X)) + Gd | %

— —
y=h(x)+v % =1(2)

m state x € R” m observer state z € R?, p > n

m known external input u € U m state estimate X € R"

m measured output y € R™ m unknown measurement noise v € V

m unknown perturbation w € W = unknown perturbation d € D

m G is a selection matrix
B K is the correction term
B 1) maps the state of the observer z in the actual estimate X

= We will use D to denote the (upper-right) Dini derivative

V(t+h)— V(t
DT V(t) = IimsupM
h—0 h

L. Zaccarian

Stubborn and e e Output Feedback



Observer Class
O800000

Main Assumptions

System T Observer T

u )-(:f(X,LI)-i-W y,u Z:@(Z,U)-"‘GH(Z,y—h()?))-i‘Gd X

y=h(x) +v %= u(2)

Assumption 1 (ISS Observer with ISS Lyapunov function)

There exists V : X x Z — R>q, a function Y R:X—>2Z a,a€Ko, and ¢, &
cv, cw > 0 such that

x = (= R(x)) (pseudo-right-inverse)
Gl <1, [|6(z,y1) — K(z,y2)| < Rly1 — y2 (Lipschizianity)
alx = 9(2)]) < V(x,2) < allvR(x) - 2I) (“sandwich”)
@ DTV < —cV(x,2)+ cv|v| + cw|w| + cq|d| (“ISS bound™)

forallxe X, ue U, z€Z, y1,y» € R™, (v,w,d) € V X W x D.

m The observer is supposed to be ISS also with respect to system disturbances w
and observer perturbations d.

L. Zaccarian
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Main Assumptions

System T Observer T

u k:f(X,U)'i‘W y,u Z:@(Z,U)-"‘GH(Z,y—h()?))-i‘Gd X

y=h(x)+v % =1(2)

Assumption 2 (output-growth condition)

There exists £g, 41,4y, 4w, Ly > 0 such that

|h(x) = h(R)| < LoV (x,2)
@ [D¥(h(x) = h(£))] < L1V(x,2) + &|v] + Lw|w| + Ld|d]
forallxe X, ue U, z€ Z, y1,y» € R™, (v,w,d) € VX W x D.
m Recall that V(x,z) > a(|x — ¢(z)|). Hence condition 5 holds if
[A(x) = h(X)| = |h(x) = h($(2))] < ko a(lx —¥(2)]), ko >0.

m Condition 6 imposes a growth on the derivative of y — y, with y := h(X).

L. Zaccarian
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Example: Input-affine systems (Besangon et al, 1996)

s % = A(u)x + Bu s £ =A%+ Bu+ P ICT(y — CX)
AU s

= —2uP — A(u)TP — PA(u) +2CTC

L. Zaccarian
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Example: Input-affine systems (Besangon et al, 1996)

s % = A(u)x + Bu s £ =A%+ Bu+ P ICT(y — CX)
AU s

= —2uP — A(u)TP — PA(u) +2CTC

z= 90(27 Ll) + GK(Z,_)/ - h()?))» X = T/J(Z)
x =y~ R(x))
|G| <1, |k(z, y1) — K(z, y2)| < Ely1 — yal
v/ z=(&,vec(P)), ¥(z) = [I 0](%, vec(P)) = &, v~ R(x) = (x,0)
/ G =1[I;0], k(z,s) = P71CTs

v Lipschizianity of x follows from boundedness of P.

L. Zaccarian
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Example: Input-affine systems (Sandwich and Directional Derivative)

s %= A(u)x +Bu+w s £=A(W%+Bu+ P 1CT(y—CR)+d
| y=Cx+v | P=—2uP - A(u)TP — PA(u)+2CT C

Observer with ISS Lyapunov function
alx = 9(2)]) £ V(x,2) < a(jp~R(x) — 2])
@ DYV < —cV(x,2z) + cv|v| + cw|w| + cqld|

e Suppose PE is verified = p/ < P(t) < p/ Vt > 0.

e Select V(x,z) := /W(z,x), W(z,x) := (x — %) T P(x — R).

L. Zaccarian
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Example: Input-affine systems (Sandwich and Directional Derivative)

s %= A(u)x +Bu+w s £=A(W%+Bu+ P 1CT(y—CR)+d
| y=Cx+v | P=—2uP - A(u)TP — PA(u)+2CT C

Observer with ISS Lyapunov function
alx = 9(2)]) £ V(x,2) < a(jp~R(x) — 2])
@ DYV < —cV(x,2z) + cv|v| + cw|w| + cqld|

e Suppose PE is verified = p/ < P(t) < p/ Vt > 0.
e Select V(x,z) := /W(z,x), W(z,x) := (x — %) T P(x — R).

/B3 < Vi < VB Rl < VA R -2, { VS )

L. Zaccarian
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Example: Input-affine systems (Sandwich and Directional Derivative)

s %= A(u)x +Bu+w s £=A(W%+Bu+ P 1CT(y—CR)+d
' | P=—2uP - A(u)TP — PA(u)+2CT C

y=C+v

Observer with ISS Lyapunov function

a(lx = $(2))) < V(x,2) < a(lp=R(x) - 2))
@ DYV < —cV(x,2z) + cv|v| + cw|w| + cqld|

e Suppose PE is verified = p/ < P(t) < p/ Vt > 0.

e Select V(x,z) := /W(z,x), W(z,x) := (x — %) T P(x — R).

{ PR (x) = (x,0)

7 JBlIx =% < V(z,%) < VBlx — £ < VB R(x) - 2], Y el

v/ Furthermore, W = —2uW + 2(x — £) T[P(w — d) 4+ CT v], which gives

DTV < —uV + ¢ |v| + cw|w| + cqld|.

L. Zaccarian
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Example: Input-affine systems

s %= A(u)x +Bu+w s £=A(W%+Bu+ P 1CT(y—CR)+d
| y=Cx+v | P=—2uP - A(u)TP — PA(u)+2CT C
Observer with ISS Lyapunov function and output growth-condition
[h(x) — h(R)| < £V (x,2)
@ [DF(h(x) — h(%))] < &V (x, 2) + Ly |v] + bw|w| + Lq]d]|

/1€ =) < 1FV(x2)

v/ IDYC(x = R)| < |C(A(u) = P7ICTC)(x — %) — CP~1CTv + Cd + Cw]|
< (IClsup |A(u)| +CPpM)(/B) Tt V(x, 2)+

£

+p HCP v+ |C] lw| + |C] |d]
—_—— ~~ ~~

£y Ly Ly

L. Zaccarian
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Other examples

Assumptions 1-2 are verified by the following observer techniques:

L. Zaccarian
Stubborn and D

[Astolfi, Alessandri & Zaccarian

Kalman filter and extended Kalman filter [Kalman (1960),
Linear Luenberger observers [Luenberger
Observers for Lipschitz systems based on LMI design or circle criterion

[Rajamani (1998), Arcak & Kokotovic
[Zemouche & Boutayeb

Observers for input-affine systems with Riccati design
[Besangon & Bornard & Hammouri

High-gain observers [Tornambé (1991), Khalil
[Gauthier & Kupka
Kazantzis-Kravaris/Luenberger observer [Andrieu & Praly

Output Feedback

(2021)1

others]

(1971)1]

(2001)]
(2013)]

(1996)1

(1992)1]
(2001)1]

(2006)]
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How to deal with outliers?

Observer:

h(%)

y mey:y_f’ z=p(z,u) + Gk(z,¢ey) |X
N £ =(2)

—— Mean Time Series

L. Zaccarian
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How to deal with outliers?

Observer:

y mey:y_f’ z=p(z,u) + Gk(z,¢ey) |X
N £ =(2)

We have y = h(x) + v where v is supposed to be an outlier (sporadic impulsive
perturbations).

—— Mean Time Series
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How to deal with outliers?

Observer:

y mey:y_f’ z=p(z,u) + Gk(z,¢ey) |X
N £ =(2)

We have y = h(x) + v where v is supposed to be an outlier (sporadic impulsive
perturbations).

o —— Mean Time Series
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How to deal with outliers?

Observer:

h(%)

Y NS =Y I 2=p(z,u) + Gr(z,e) | %
I\ % =Y(z)

Main idea:

L. Zaccarian
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How to deal with outliers?

Observer:
h(x)
y=h&)
Y e =y—J| z=q(z,u)+ Gr(z,ey)
/ % =9(2)

m Suppose ey is very small for a long amount of time
—> x and X are close to each other
= we don’t want to use the correction term k(z,ey)

L. Zaccarian
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How to deal with outliers?

Observer:
h(%)
y=h&)
Y N\ =YY z2=9(z,u) + Gr(z,e)) | R
/ % =9(2)

m Suppose ey is very small for a long amount of time
—> x and X are close to each other
= we don’t want to use the correction term k(z,ey)

m Suppose ey is large but for a very short amount of time
— it could be an outlier!
= we don’t want to use the correction term x(z,ey)

L. Zaccarian
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How to deal with outliers?

Observer:
h(%)
y=h&)
Y N\ =YY z2=9(z,u) + Gr(z,e)) | R
/ % =9(2)

m Suppose ey is very small for a long amount of time
—> x and X are close to each other
= we don’t want to use the correction term k(z,ey)

m Suppose ey is large but for a very short amount of time
— it could be an outlier!
= we don’t want to use the correction term x(z,ey)

m If e, is large for a long amount of time
— x and X are far from each other
= we need to use the correction term x(z,ey)

L. Zaccarian
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A Dynamic Saturation Scheme

We modify the previous structure by adding a dynamic saturation for e, =y — y, i.e,,

h(%)

y = h(%) Dynamic Saturation

y /_\ey:y_}? 6 =—Xo+0le| €y z=¢(z,u) + Gkr(z,8)) |x
/ & = satos(ey) £ =1p(2)

where saty(s) := max{—o, min{o,s}} and X,0 > 0 (from now on we consider a
scalar output to simplify the pictorial description).

L. Zaccarian
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A Dynamic Saturation Scheme

We modify the previous structure by adding a dynamic saturation for e, =y — y, i.e,,

y = h(%) Dynamic Saturation

Y (NS =Y I 6=-do+ble| | & | 2=¢(z,u)+Gr(z,8) | R
& = sats(ey) £ =1(2)

where sats(s) := max{—o, min{o,s}} and X,0 > 0 (from now on we consider a
scalar output to simplify the pictorial description).

m The level of the saturation is selected as the current value of o.

m The level of o is dynamically adapted based on the norm of e, =y — y.

What happens in the presence of an outlier?
m If e, is persistently small then & becomes small.
m If an outlier occurs, e, becomes large but &, is saturated at the current (small)
value of o, thus mitigating the outlier’s effect on the estimate.
m If e, is persistently large then o becomes large and we desaturate
(avoids intrinsic limitations of saturated feedback).

L. Zaccarian
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Saturation Redesign: Main Result

Theorem 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system ¥ and observer b

:{X:f(x,u)-i-w f:{z':Lp(z,u)—l—G/i(z,y—h(>“<))—‘,-Gd

y =h(x)+v % =1(2)

Suppose that S is an ISS Observer for satisfying the output-growth condition.
Then, for any A > 0 there exists a * > 0 such that, for any 6 > 6*, the observer

z=(z,u) + Gr(z,sats(y — h(X))) + Gd
Seat 4 &= —Ao+0ly — h(R)]
£ =1(2)

is an ISS Observer for X with ISS Lyapunov function satisfying the output-growth
condition.

L. Zaccarian
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Saturation Redesign: Main Result

Theorem 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system ¥ and observer b

:{X:f(x,u)-i-w f:{z':Lp(z,u)—l—G/i(z,y—h(>“<))—‘,-Gd

y =h(x)+v % =1(2)

Suppose that S is an ISS Observer for satisfying the output-growth condition.
Then, for any A > 0 there exists a * > 0 such that, for any 6 > 6*, the observer

z=(z,u) + Gr(z,sats(y — h(X))) + Gd
Seat 4 &= —Ao+0ly — h(R)]
£ =1(2)

is an ISS Observer for X with ISS Lyapunov function satisfying the output-growth
condition.

mIfy € R™, m>1, then fsat reads
z=¢(z,u)+ Gk (z, [sato; (y1 — m(R)),- .., sate, (Ym — hm()?))])
oj = —Xjoi + 0ily; — hi(%)| i=1,...,m,

m In general, A < 0

L. Zaccarian
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Sketch of Proof of Theorem 1

m Rewrite the observer fsat as
6 =—Xo + 0|y — h(g)|
z= 50(27 U) + GH(Z,_y - h(ﬁ)) + Gts
6 = k(z,sats(y — h(8))) — K(z,y — h(&)).
m In light of the Lipschitz properties of x and saturation function, we have
6] < R[sate(y — h(%)) = (v — h(%))| < &ly — h(2)].
m Use the Lyapunov function
(x,2,0) = W(x,2,0) = V(x,2) + Co + (¢ + ) max{]y — h(%)| — 7,0}

with ¢,n > 0.

L. Zaccarian
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[e]e]e]e] lelelele)

Sketch of Proof of Theorem 1

m Rewrite the observer fsat as
6 = —Xo + 0|y — h(X)|
z=p(z,u) + Gr(z,y — h(R)) + G&
6 = k(z,sats(y — h(X))) — K(z,y — h(X)).
m In light of the Lipschitz properties of x and saturation function, we have
6] < Rlsata (y — h(%)) — (v — h(2))| < &ly — h(R)]
m Use the Lyapunov function
(x,2,0) = W(x,z,0) = V(x,2) + (o + (¢ + n) max{ly — h(X)| — o,0}

with ¢,n > 0.
m When |y — h(X)| < o, then § = 0, and we have

DYW < —cV(x,2) — (Ao + COly — h(%)]
using the output-growth condition we obtain
DTW < —(c—C0p)V(x,z) — Ao <0

for ¢ small enough.

L. Zaccarian
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Sketch of Proof of Theorem 1

m Rewrite the observer fsat as
6 = —Xo + 0|y — h(X)|
z=p(z,u) + Gr(z,y — h(R)) + Gb
6 = k(z,sats(y — h(X))) — K(z,y — h(X)).
m In light of the Lipschitz properties of x and saturation function, we have
6] < Rlsato(y — h(R)) = (v — h(%))| < Rly — h(%)].
m Use the Lyapunov function
(x,2,0) = W(x,z,0) = V(x,2) + (o + (¢ + n) max{|y — h(%)| — 5,0}

with ¢, > 0.
m When |y — h(X)| > o, then § # 0, and we have

DTW < —cV(x,2) + cgld| + (¢ +n)| DT (y — h(R))| +nAa — 0]y — h(%)]).
By using the output-growth condition we obtain
DTW < —[c — (C+n)(tr + LoRly) | V(x,z) — (01 — An + cqRlo)|y — h(X)]
<0

for ¢, small enough and 0 large enough.

L. Zaccarian
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Sketch of Proof of Theorem 1

= Rewrite the observer fsat as
6 = —Xo + 0|y — h(X)|
z= 90(27 U) + G’{(Zay - h()’%)) + G‘S
§ = K(z,5ata(y — h(X))) — r(z,y — h(%)).
m In light of the Lipschitz properties of x and saturation function, we have
6] < Rlsato(y — h(%)) — (v — h(%))| < &ly — h(2)].
m Use the Lyapunov function
(x,2,0) = W(x,z,0) = V(x,z) + (o + ({ + n) max{|ly — h(%)| — 0,0}

with ¢,n > 0.
v/ We conclude that DTW < —eW for some ¢ > 0.

v The analysis can be done with w, v, d to show the desired ISS properties.

v It is not to hard to verify also the other properties for the redesigned observer.

L. Zaccarian
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Noise effect analysis for linear systems

m Consider the linear case
x = Ax + Bu
z .
y=C+veR

X =A%+ Bu+L(y — CR)

M)

and the (nonlinear) redesigned observer

~ £ = AR + Bu+ L sat,(y — CX)
Zsaut .
6 =—-Xo+0ly—Cx|.

m Consider the error variables

Ksat 1= X — X, X
m We are interested in analyzing the effect of two types of measurement noise v:

e impulsive noise (outlier);

e constant noise.

L. Zaccarian
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Effect of outliers in the linear case

Proposition 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

m Suppose Vv is a piecewise constant perturbation of the form

1

— <t<
v(r):éf(t)={ - Pefsr

0 t>T.

m Suppose A is non-singular.
m Consider the solutions of & and fsat with %5(0) = %Xsat(0) = 0 and &(0) = 0.

Then, as 7 tends to 01, we have
[Xsat ()| < 276[%(7)] .

Furthermore, |Xsat(t)| converges to zero if 7 — 0.

L. Zaccarian
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Effect of outliers in the linear case

Proposition 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

m Suppose Vv is a piecewise constant perturbation of the form

1

— <t<
v(r):éf(t)={ - Pefsr

0 t>T.

m Suppose A is non-singular.
m Consider the solutions of & and fsat with %5(0) = %Xsat(0) = 0 and &(0) = 0.
Then, as 7 tends to 01, we have

[Xsat (T)| < 2760|%(7)] .
Furthermore, |Xsat(t)| converges to zero if 7 — 0.
v The performance in the presence of outliers is improved.
v If the outlier is instantaneous (7 = 0), its effect is completely erased!

m After t > 7, there are no more perturbations v =0
= the observers evolves with initial conditions such that |%sat(0)| < |%0(0)|.

L. Zaccarian
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Effect of constant noise in the linear case

Proposition 2 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

= Suppose Vv is constant.
m Suppose (A — LC) is Hurwitz.

For any 6 > X the disturbance-to-error DC-gains between v and |%X|, and between v
and |Xsat|, coincide.

m For constant v, the redesigned observer cannot do worse than the nominal one.

L. Zaccarian
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A Numerical Example

s. | Xx=Ax+Bu ¢ | X=A%+Bu+Lsats(y — CR)
: o =—-Xo+0ly—CX|

(8D (0 o0 () om0

0 0<t<?20,
v(t)={ 6.(t) 20<t<40, T=001
1 40 < t < 60,
25
2
ol
i
L
A H >
05 Y iV
0 RN
0,\ 10 ,\20 30 40 50 N 60
o [%|(t) of & o [Ksat(t)] of Tsar with A =60 =10 e |Xsat(t)| of Tsat with
A 1

L. Zaccarian
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Dead-Zone Redesign
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Another scenario: persistent small measurement noise

h(X)
y=h&)
Y e =y—J| z=p(z,u)+ Gr(z,e)) | %
/ £ =1(z)

m Suppose y = h(x) + v, with v a small persistent measurement noise.

m When e, is persistently small, we have e, ~ v:
= the information given by ey is not reliable

= we want to trim out ey .

L. Zaccarian
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A Dynamic Dead-Zone Scheme

We modify the previous structure by adding a dynamic dead-zone fore, =y — y, i.e,,

h(%)

¥ = h(%) Dynamic Dead-zone

y f\ey:yf}? 6 =—Xo +0ley| €y z=p(z,u)+ Gkr(z,8) |%
_/ & = dzo(ey) 2 =1(2)

where dz,(s) := s — satss and A, 0 > 0.

L. Zaccarian
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A Dynamic Dead-Zone Scheme

We modify the previous structure by adding a dynamic dead-zone for e, =y — 7, i.e,,

h(%)

y=h(x) Dynamic Dead-zone

y /\ey:y—f’ 6=—Xo+0e| €y z=(z,u)+ Gkr(z,8) |X
_/ & = dzs(ey) 2 =1(2)

where dz,(s) := s — satss and A\, 0 > 0.

m The level of the dead-zone is selected as the current value of o.
o

m If ley| > o then |dzs(ey)| = |ey| (1 — ﬁ) < ley|.
€y

m If ley| < o then dzs(ey) = 0.

m We obtain a trimming effect of e, .

L. Zaccarian
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Dead-Zone Redesign: Main Result

Theorem 2 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system ¥ and observer b

:{X:f(x,u)-i-w f:{z':Lp(z,u)—l—G/i(z,y—h(>“<))—‘,-Gd

y =h(x)+v x=1(2).

Suppose that S is an ISS observer for ¥ satisfying the output-growth condition. Then,
for any 6 > 0 there exists a A* > 0 such that, for any A > \*, the observer

2= (z,u) + Gr(z,dzs(y — h(X))) + Gd
Saz:4 6=-Ao+0ly — h(z)|
£ =1(2)

is an ISS observer for ¥ with ISS Lyapunov function satisfying the output-growth
condition.

mIfy € R™, m>1, then fdz reads
2= p(z,u) + Gr (2, [020y (1 — (R); -, AZery (v — hn(R))] )
6; = —Aioj + 0ily; — hi(X)] i=1,...,m

m In general, A > 6.

L. Zaccarian
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Sketch of Proof of Theorem 2

m Rewrite the observer fdz as

6 =—Xo+0ly — h(g)|

z=¢(z,u) + Gr(z,y — h(X)) + Gé

§ = K(z,dza (y — h(%))) = K(z,y — h(%)).
m In light of the Lipschitz properties of x and the dead-zone function, we have

6] < Rldzo(y — h(%)) = (v — h(%))| < Ro.
m Use the Lyapunov function
(x,z,0) = W(x,z,0) = V(x,z) + (o

with ¢ > 0.

L. Zaccarian
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Sketch of Proof of Theorem 2

m Rewrite the observer fdz as

6 =—Xo+0ly — h(x)|

z=¢(z,u) + Gkr(z,y — h(X)) + Gé

6 = k(z,dzq(y — h(R))) — k(z,y — h(X)).
m In light of the Lipschitz properties of x and the dead-zone function, we have

18] < Rldza (y — (%)) — (v — h())| < R
m Use the Lyapunov function
(x,z,0) = W(x,z,0) = V(x,z)+ (o

with ¢ > 0.
m When |y — h(X)| > o then § = 0 and we have

D*W < —cV(x,2) — (Ao + (fly — h(R)|
using the output-growht condition
DTW < —(c—(0p)V(x,z) — Ao <0

for ¢ small enough (6 is fixed).

L. Zaccarian
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Sketch of Proof of Theorem 2

m Rewrite the observer fdz as

6 =—Xo+0ly — h(x)|

z=¢(z,u) + Gkr(z,y — h(X)) + Gé

6 = k(z,dzq(y — h(R))) — k(z,y — h(X)).
m In light of the Lipschitz properties of x and the dead-zone function, we have

18] < Rldza (y — (%)) — (v — h())| < R
m Use the Lyapunov function
(x,z,0) = W(x,z,0) = V(x,z)+ (o

with ¢ > 0.
m When |y — h(R)| < o then § # 0 and we have

DtW < —cV(x,2) + c4|d] — Cho + ¢Oly — h(R)]
using the output-growth condition
DTW < —cV(x,z) — (CA — ¢O — Rey)o <0
for X large enough (¢, 0 are fixed).

L. Zaccarian
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Sketch of Proof of Theorem 2

m Rewrite the observer fdz as

6 = —Xo + 0y — h(X)|

z=¢(z,u) + Gkr(z,y — h(X)) + Gé

6 = k(z,dzs(y — h(R))) — k(z,y — h(R)).
m In light of the Lipschitz properties of x and the dead-zone function, we have

18] < Rldza (y — (%)) — (v — h())| < R
m Use the Lyapunov function
(x,z,0) = W(x,z,0) = V(x,z) + Co

with ¢ > 0.
v/ We conclude that DTW < —eW for some ¢ > 0.

v The analysis can be done with w, v, d to show the desired ISS properties.

v It is not to hard to verify also the other properties for the redesigned observer.

L. Zaccarian
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Noise effect analysis for linear systems

m Consider the linear case

s x = Ax + Bu
' y=Cx+veR

M)

AR+ Bu+ L(y — CX)

and the (nonlinear) redesigned observer
s %= AR+ Bu+ L dz,(y — CR)
dz
“ 6=-Xo+0ly— CK|.

m Consider the error variables

)

X :=x — X, Xex,
Xdz = X — X, X E XLy,

m We are interested in analyzing the effect of constant perturbations
(approximation of persistently small noise).

L. Zaccarian
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Effect of constant noise in the linear case

Proposition 3 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

= Suppose Vv is constant.
m Suppose (A — LC) is Hurwitz and CA71L < 1.

The disturbance-to-error DC-gains between v and |Xp|, denoted as kg, and between v
and |Xq,|, denoted as kg, satisfy

s (3)]

for any A > 6 > 0 and for some k € K.

m The DC-gain is always reduced thus improving the rejection to measurement
noise.

m The condition CA™!L < 1 is always verified if both A and (A — LC) are Hurwitz.

L. Zaccarian
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A Numerical Example

5. %=Ax+Bu $ . %= AR + Bu+ L dz,(y — CR)
"1 y=Cx+v S 6 =—Ao 40|y — CX|

A:(_Ol (1)) B:(g), c=(1 0, L:G), x(o):(‘l)), 2(0):(_11)

0 0 <t <20, e sup, |%o(t)| < 0.028
vit)=1 1 20 < t <40 o sup_ |%q,(t)| < 0.022
sin(50t) 40 <t < 60, ® sup, |Xa,(t)| <0.016

-0.5

o [%(F)| of &
o |Sa(t)] of Tear with A =4, 0=1 o |%ay(t)] of Sgar with A =2,60 =1

L. Zaccarian
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Application to vehicle lateral speed estimation

m linear parameter-varying model (parameter r = yaw rate)

c— A
X (r)X+U A(r):|:0 I’j|, C = [1 0]
y=Cx, -r 0

m yaw-rate dependent kinematic observer
$=A(NK+u+ L)@~ y) —2ar|
~ s L(r) = 1— 2 )
y=Cx, ( a®)r

m deadzonated observer reduces the sensitivity to noise

0.05

0.4

Simulated
Estimated Kinematic Obs. (o = 10)
Estimated Dead-zone Obs.(a = 20)

output injection
ind amplitude /&
NG

Output injection

output injection
dead-zonated output injection

ccarian
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A synchronization problem for multi-agent systems

m Consider a synchronization problem among N identical agents

e Xi:AXf+¢)(Xf)+U; i=1,...

yvi = Cx; i=1,...

e xi €R", ui €R, y; €R.

m We want to achieve consensus among all the states

lim () = (0] =0 Vije{l,... N},

m We want to use a distributed control law.

m A typical solution is to use a diffusive coupling
N
ui=-K> ljy;  LiEL
=1

where L is the Laplacian matrix of the graph.

L. Zaccarian
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Perturbations in networks

m What happens in the presence of perturbations?

4

v ,7 Yo vi=Cx; +v;

A

1

xi = Ax; + ¢(x;) + u;

—~Nrp Y2 ‘{ va
1

m If we have some ISS property then

N
lim sup [x;(£) = x;(¢)] <7 | D |vil vije{l,....,N} yeK.
t—oo i—1

L. Zaccarian
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Perturbations in networks

m What happens in the presence of perturbations?

;t é : X = Ax; + ¢(x;) + u;
7 ” yi=Cx+v;

e NE
Y1

X Design of diffusing coupling for nonlinear systems in the presence of output
perturbations v;?

L. Zaccarian
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Saturation and Dead-Zone Redesign for Diffusing Coupling

m In the presence of impulsive disturbances (e.g. outliers, switching topologies, . ..)
we use a dynamic saturation redesign

N
2 iy
i=1
N
u,-——Ksat,,—,.<Z€,-jyj> i=1,...,N.
i=1

m In the presence of persistent disturbances (communication networks noise) we use
a dynamic dead-zone redesign

Gj=—Xoj+0;

N
D iy
i=1

N
u; = —K dzg, <Zejyj> i=1,...,N.
i=1

m Synchronization in nominal conditions v; = 0 is preserved.

0-‘,': —>\0','+0,‘

m Performance in the presence of noise is improved.

m Proofs and philosophy design are very similar to the observer design.

L. Zaccarian
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Simulation Example for Saturation Redesign

Consider a network of N = 6 linear oscillators
. 0o 1
X = (_1 0) xitu,  yi=(1 0)xi+v;

in the presence of outliers v;.

Synchronization without Redesign
T T T

1 1 1 1 1
0 5 10 15 20 25 30 35 4

Synchronization with Redesign
T T T

L. Zacc:
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Simulation Example for Saturation Redesign

Consider a network of N = 6 linear oscillators
. 0o 1
Xj = (_1 0) xi + uj, vi=@ 0)x+v;

in the presence of outliers v;.

Inputs norm |[u;| without redesign
200 T T

VR WU U VN VN S

0 5 10 15 20 25 30 35 40 45
Inputs norm [ju;|| with Saturation redesign
200 [~ T T T T =
100
- ) L ‘r\A | L_ /R
0 5 10 15 20 25 30 35 40 45

Zaccarian
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Simulation Example for Dead-Zone Redesign

Consider a network of N = 5 Van der Pol oscillators

. 0 1 0
in the presence of white noise v;.

Output y; without Dead Zone redesign
& Z

2 aN 2N \ a

0
2 / / / \/ — /
. ‘

0 20 40 60 80 100

Output y; with Dead Zone redesign

4= T =
2| N/ ~ \ NN N
2 f\\/’*\ / M\/\ ’ /\/\ /\\/\ NN /‘\/\
2 v U / / / ! SN )

0 20 40 60 80 100

L. Zacc:
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Simulation Example for Dead-Zone Redesign

Consider a network of N = 5 Van der Pol oscillators

. 0 1 0
Xi=(_1 M)Xi+(_#xgxi2)+Uf, vi=(1 0)xi+v;

in the presence of white noise v;.

Norm |[u;| of the local control input without redesign
|
10000
0 20 40 60 80 100
Norm ||u;| of the local control input with Dead Zone redesign
10000 L ‘ -
5000 — =1
o ) ; | i "

0 20 40 60 80 100
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Dynamic Output Feedback

| w

u Xp = ApXp + Bpu + Bpyw y
y = Cpxp + Dpww

Plant
m state xp € R ® measured output y € RP
m known external input u € R™ ® unknown system and measurement
disturbances w € R"d
Controller

m state z € R
|w

z=Fz+ Gy u Xp = Apxp + Bpu + Bpww | Y
u = Hz + Ny y = Cpxp + Dpww

The linear closed-loop system with w = 0 is globally exponentially stable to the origin.

L. Zaccarian
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Stubborn Redesgin to handle Measurment Outliers

m The controller dynamics is augmented with a new non-negative state o € R>¢:
z=Fz+ Gsat s,(y)
u=Hz+ Nsat (y)
6=-Xo+y 'Ry
where \/ov are the componentwise square-roots of the elements of the
non-negative vector v scaled by o; A > 0; R is a symmetric, positive definite

matrix; sates(s) := max{—o, min{o,s}}.
|w

z=Fz+ Gsat i

e () ul| X =Apxp+ Bpou+ Bpuw | ¥y
u=Hz+ Nsat 75(y) —
6=-Xo+y Ry Y = Coxp + Dpuw

m Notice:
v The level of the saturation is a scaled square root of the current value of o.

v/ The value of o is dynamically adapted according to yTRy.

m What happens in presence of an outlier?
v If y is persistently constant, then o tends to a constant value.
v If an outlier occurs, y becomes large but the effect of y on the loop is saturated on the
current (small) value of \/o'v, mitigating its effect on the closed-loop system.
v/ If y grows or is persistently affected by outliers, then o increases, thus generating

desaturation.

L. Zaccarian
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Closed-Loop Input-to-State Stability After Redesign

Theorem 3 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Assume that there exist a scalar A > 0, a symmetric positive definite matrix P € R"*",
a symmetric positive semi-definite matrix R € RP*P, two diagonal positive definite
matrices Uy € RPXP, Uy € RP*P, and a matrix Y € RPX" such that inequalities

PA—INCTRC+INP -PB
— 2 2
Mg : He{ Uy C _u, <0
PA  —PB
Mg.—He|:UeC+Y —Ug:|<0
P Y >0, Vi=1
_ =0, r=1,..p,
Yiy A lug,

are satisfied, where He(x) := « + ' . Then, the closed loop system with dynamically
saturated output regulator having entries with a vector v as the inverse of the
diagonal elements of U, (namely diag(v) = U[l), is finite-gain exponentially ISS from
w to x, namely there exist positive scalars M, o > and ~ such that all solutions satisfy

|(x(2), V| < Mo~ | (x(0), /a0 |+ 7 sup Iw(r)l,

for all t > 0.

L. Zaccarian
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Sketch of Proof and Feasibility

m The proof of Theorem 3 follows from using the Lyapunov function
V(x,0) = x" Px + Co 4+ pmax{x ' Px — Ao, 0}

with P symmetric positive semi-definite matrix and constants ¢, > 0 to be
suitably chosen.

m It is an ISS Lyapunov function and it is not continuosly differentiable.

m For an overview on nonsmooth Lyapunov functions, see [Della Rossa, Goebel,
Tanwani, Zaccarian, "Piecewise structure Lyapunov functions and
densely checked decrease conditions for hybrid systems," MCSS 2021].

m The LMIs involved by Theorem 3 are homogeneus, thus they can be solved with
the additional condition P > | for increased numerical robustness

Proposition 4 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS
2022]

Under Assumption 1 there exist parameters P, R, Up, Uy , Y and X satisfying the
conditions of Theorem 3.

L. Zaccarian
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Simulation Case Study

L. Zaccarian

Linearization about an equilibrium point of the longitudinal dynamics of
fixed-wing aircrafts flying at high speed [Astolfi, Praly, "Integral action
in output feedback for multi-input multi-output nonlinear systems,"
IEEE TAC, 2017]: ] ]

v=e—gsin(y)+w

¥ =Lvsin(0 — ) — gcos(y)

v

b=gq
where v is the modulus of the speed, «y is the flight path angle, 0 is the pitch
angle, g is the pitch rate, e is the propulsive balance, g is the standard
gravitational acceleration, ¢ is an aerodynamic lift coefficient, w; is a wind
perturbation.
The signals e, g are regarded as control inputs and v, 6 as measured outputs.
The measurement noises wp, w3 affect the outputs.
The linearization around an equilibrium (v, 0,0) of this model provides matrices
Ap, Bp, Cp as follows:

0 —-g 0 ]1 0]1 0 0
-2
g, —tw fwn |0 0|0 0 O
{’é" Bp gpw]: 0 0 0|0 1|0 0 0.
P pw 0 1 0 0 1 0
0 0 1 0 0 1

We choose g =1, vp =2, £ = 0.1 and used pole placement to select closed-loop
poles having real part in [—3,—0.1].
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0 10 20 30

40 50 60 70 80 90
time

100

T T T
[x(t)] with standard regulator

2 === /x(t)] with stubborn redesigned regulator | |
1 4
0 I ! I N T—
0 10 20 30 40 50 60 70 80 90 100
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time

Integrals of |x(t)|, t € [0, 60]

v The adpaptive saturation attenuates the effect

Standard reg.

Stubborn reg.

of the outliers upon their sudden rise.

42.4572 39.4415

X Small noises are not reduced at steady state.
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Deadzone Redesign to handle persistent measurement noise

m The controller dynamics, augmented
with a new non-negative state .

o € R>, is given by 3
z2=Fz+ Gdz sy(y) —0 /
u:Hz+Ndzm(y) 4
6=-Xo+y Ry,

where we modify the original structure <
by adding a dynamic dead-zone.

lw

z=Fz+ Gdz i

— Ny Nd vao(y) u | Xp=Apxp+ Bou+ Bouw | ¥
ki ZV"V(y) —> y = Coxp + Dpww
s=-Ao+y'Ry e

v The dead-zone provides a trimming effect on y, which denoises the feedback loop
when the output is close enough to zero.

L. Zaccarian
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Closed-Loop Input-to-State Stability After Redesign

Theorem 5 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Assume that there exist a scalar A > 0, a symmetric positive definite matrix
P € R"™%" a symmetric positive semi-definite matrix R € RP*P, a diagonal positive
definite matrices Ug € RP*P such that

PA+ L1CTRC —PB
e 2 <0,
Ug C —Ug(1+ 1)
is satisfied, where He(*) := x + % 1. Then, the closed loop system with dynamically
dead-zonated output regulator having entries with a vector v as the inverse of the
diagonal elements of Uy (namely diag(v) = Uz '), is finite-gain exponentially ISS from
w to x, namely there exist positive scalars M, a > and « such that all solutions satisfy

|6x(6), VoD < Mo |(x(0), Vo0 +7 sup w(o),

for all t > 0.

Mg :=H

m The proof of Theorem 5 follows from using the Lyapunov function
V(x,0) = x' Px 4 20 with P = PT > 0 to be suitably chosen.

Proposition 6 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS
2022]

Under Assumption 1 there exist parameters P, R, Ug, and X satisfying the conditions
of Theorem 5.

L. Zaccarian

Stubborn and De: e r e Output Feedback



Dynamic Output Feedback
00000000 e

Simulation Results

time
3 T T T T
[x(t)] with standard regulator
2 === /x(t)/ with dead-zone redesigned regulator | 7
1 4
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time
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0.2r 4
0.1r 4
0 I I I T . v
0 10 20 30 40 50 60 70 80 90 100
time

Integrals of |x(t)|, t € [60,100]

Standard reg.

Dead-zone reg.

3.6459

2.5558

L. Zaccarian

v/ The dead-zone adaptation attenuates the effect
of small noises at steady state.

X Outliers deteriorate performance.
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Conclusions

Summary

m Adaptive nonlinearities such as saturation and dead-zone can improve the
performance of state observers and controllers in the presence of measurement
noise.

m General and flexible approach to redesign ISS observers and output feedback
regulators while preserving ISS.

m The effectiveness of the redesign approach follows from devising the appropriate
ISS Lyapunov functions.

m For linear systems, design conditions based on LMIs are established that can be
treated by means of convex optimization tools.

Next Goals
m redesign in output feedback control for nonlinear continuous-time systems;

m extension of the redesign approach for estimation and control of discrete-time
systems;

m experimental validation of the approach on suitable case studies.

L. Zaccarian
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