Stubborn and Dead-Zone Redesign for State Observers and Dynamic Output Feedback

L. Zaccarian

LAAS-CNRS, Toulouse, France and University of Trento, Italy

Work in collaboration with A. Alessandri, D. Astolfi, G. Casadei, S. Tarbouriech, M. Cocetti

Nancy, October 3, 2023

Introduction

Outline

- 1 Introduction
- 2 Observer Class
- 3 Stubborn Redesign
- 4 Dead-Zone Redesign
- 5 Synchronization
- 6 Dynamic Output Feedback
- 7 Conclusions

Introduction •00000000 Outline

- 1 Introduction

The observation problem

Introduction

00000000

System
$$\Sigma$$
 Observer $\hat{\Sigma}$

$$\begin{array}{c}
u \\
y = f(x, u) \\
y = h(x) + v
\end{array}$$

$$\dot{\hat{x}} = f(\hat{x}, u) + L(y - h(\hat{x}))$$

System ∑

- state $x \in \mathbb{R}^n$
- lacksquare known external input $u \in U$
- measured output $y \in \mathbb{R}^m$

Observer $\widehat{\Sigma}$

- estimate $\hat{x} \in \mathbb{R}^n$
- lacksquare unknown measurement noise $v \in \mathbb{R}^m$

ISS Observei

The observer $\widehat{\Sigma}$ is ISS (input-to-state stable) in

$$|x(t) - \hat{x}(t)| \le \beta(|x(0) - \hat{x}(0)|, t) + \gamma \left(\sup_{s \in [0, t)} |v(s)|\right)$$

for all $t \geq 0$, for some $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$.

00000000

System Σ Observer $\hat{\Sigma}$ $\begin{array}{c} \dot{x} = f(x, u) \\ y = h(x) + v \end{array}$ $\begin{array}{c} \dot{x} = f(\hat{x}, u) + L(y - h(\hat{x})) \\ \dot{x} = f(\hat{x}, u) + L(y - h(\hat{x}))$

System Σ

- state $x \in \mathbb{R}^n$
- known external input $u \in U$
- measured output $y \in \mathbb{R}^m$

Observer $\widehat{\Sigma}$

- estimate $\hat{x} \in \mathbb{R}^n$
- unknown measurement noise $v \in \mathbb{R}^m$

ISS Observer

The observer $\widehat{\Sigma}$ is ISS (input-to-state stable) if

$$|x(t) - \hat{x}(t)| \leq \beta(|x(0) - \hat{x}(0)|, t) + \gamma \left(\sup_{s \in [0, t)} |v(s)|\right)$$

for all $t \geq 0$, for some $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$.

Properties of an observer

Characteristics of an ISS Observer

- $m{\beta}$ characterizes the performance in nominal conditions (v=0).
- lacksquare γ characterizes the robustness with respect to v.

$$|x(t) - \hat{x}(t)| \leq \beta(|x(0) - \hat{x}(0)|, t) + \gamma \left(\sup_{s \in [0, t)} |v(s)|\right)$$

- Ideal behavior of an ISS observer:
 - ✓ Fast convergence:

for example,
$$\beta(s,t) = ae^{-bt}|s|$$
, $a,b > 0$, with b "large."

✓ Small Peaking:

for example,
$$\beta(s,t) = ae^{-bt}|s|$$
, $a,b > 0$, with a "small."

✓ Small asymptotic gain:

for example,
$$\gamma(s) = \bar{\gamma}|s|$$
, with $\bar{\gamma} > 0$ "small."

X Trade-off between speed of convergence and asymptotic gain

Consider a linear system and a linear (Lyambarmar) absorbe

Consider a linear system and a linear (Luenberger) observer

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx + v \end{array} \right. \qquad \widehat{\Sigma} : \dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

with

- (A, C) detectable pair
- **L** gain of the observer to be chosen so that A LC is Hurwitz.

The dynamics of the estimation error $\tilde{x} := x - \hat{x}$ is given by

$$\dot{\tilde{x}} = (A - LC)\tilde{x} - Lv$$

and thu

$$|x(t)-\hat{x}(t)| \leq \left| e^{(A-LC)t} \right| |x(0)-\hat{x}(0)| + \gamma \left(|v|_{\infty} \right), \quad \left\{ \begin{array}{l} (s,t) \mapsto \beta(s,t) := \left| e^{(A-LC)t} \right| |s| \\ s \mapsto \gamma(s) := |s||L| \int_{0}^{\infty} \left| e^{(A-LC)\tau} \right| d\tau \right\}.$$

(finite-gain exponentially ISS)

X We cannot make both A-LC s.t. $|e^{(A-LC)t}| \leq M \exp(-\alpha t)$ with α large (i.e., fast transient) and $\gamma(\cdot)$ small (i.e. insensitive to noise)

The linear case: an example

Consider a linear system and a linear (Luenberger) observer

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx + v \end{array} \right. \qquad \widehat{\Sigma} : \dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

with

- (A, C) detectable pair
- **L** gain of the observer to be chosen so that A LC is Hurwitz.

The dynamics of the estimation error $\tilde{x} := x - \hat{x}$ is given by

$$\dot{\tilde{x}} = (A - LC)\tilde{x} - Lv$$

and thus

$$|x(t)-\hat{x}(t)| \leq \left| e^{(A-LC)t} \right| |x(0)-\hat{x}(0)| + \gamma \left(|v|_{\infty} \right), \quad \left\{ \begin{array}{l} (s,t) \mapsto \beta(s,t) := \left| e^{(A-LC)t} \right| |s| \\ s \mapsto \gamma(s) := |s||L| \int_{0}^{\infty} |e^{(A-LC)\tau}| d\tau \end{array} \right.$$

(finite-gain exponentially ISS).

X We cannot make both A-LC s.t. $|e^{(A-LC)t}| \leq M \exp(-\alpha t)$ with α large (i.e., fast transient) and $\gamma(\cdot)$ small (i.e. insensitive to noise)

The linear case: an example

Consider a linear system and a linear (Luenberger) observer

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx + v \end{array} \right. \qquad \widehat{\Sigma} : \dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

with

- (A, C) detectable pair
- **L** gain of the observer to be chosen so that A LC is Hurwitz.

The dynamics of the estimation error $\tilde{x} := x - \hat{x}$ is given by

$$\dot{\tilde{x}} = (A - LC)\tilde{x} - Lv$$

and thus

$$|x(t)-\hat{x}(t)| \leq \left|e^{(A-LC)t}\right| |x(0)-\hat{x}(0)| + \gamma(|v|_{\infty}), \quad \begin{cases} (s,t) \mapsto \beta(s,t) := \left|e^{(A-LC)t}\right| |s| \\ s \mapsto \gamma(s) := |s||L| \int_{0}^{\infty} |e^{(A-LC)\tau}| d\tau \end{cases}$$

(finite-gain exponentially ISS).

X We cannot make both A-LC s.t. $|e^{(A-LC)t}| \leq M \exp(-\alpha t)$ with α large (i.e., fast transient) and $\gamma(\cdot)$ small (i.e. insensitive to noise)

Observer gain design for linear systems

- **Based** on additional hypothesis on v, we can figure out different approaches:
 - \blacksquare H_{∞} design allows to minimize γ over all frequencies.
 - If v acts on some known frequencies $\omega \in [\omega, \bar{\omega}]$, minimize the gain

$$G(j\omega) = [j\omega I - (A - LC)]^{-1}L.$$

- Kalman filter for optimal gain design

Observer design for nonlinear systems

Observer Class

 \checkmark Exploring some structural properties of the system, many different designs exist

Property	Observer Technique
Detectability	Kazantis-Kravaris Luenberger (KKL) observers
Uniform observability	High-gain (HGO) observers
Lipschitz systems	LMI or circle-criterion approach
Input-affine systems	Riccati-like approach
Local observability	extended Kalman filters
	•••

- X [Shim, Seo, & Teel, Automatica 2003, p. 890] and reference therein pointed out the fragility (lack of ISS) of certain nonlinear observers
- Few tools to analyze the effect of noises in the nonlinear framework:
 - ISS gains based on Lyapunov analysis [Alessandri, Mathematics 2020];
 - analysis of measurement noise in high-gain observers [Sanfelice & Praly, Automatica 2011], [Astolfi, Marconi, Praly, & Teel, NOLCOS 2016].
- X Techniques to improve sensitivity to measurement noise are developed ad hoc (i.e. for specific classes of systems and/or observers)

00000000

Observer Class

■ We follow a redesign approach.

Plan of the talk

Observer Class

- We follow a redesign approach.
- $lue{}$ We focus on two special classes of measurement-noise perturbations v:
 - outliers (i.e. sporadic impulsive noise);
 - 2) persistent "small" noise.
- Two techniques will be developed:
 - 1) dynamic saturation redesign ("stubborn redesign");
 - 2) dynamic dead-zone redesign.
- We will provide sufficient conditions to apply a general paradigm for the purpose of redesign of
 - 1) state observers for linear and nonlinear systems;
 - 2) static output feedback for synchronization of multi-agent systems;
 - 3) dynamic output feedback of linear plants.

Bibliography

Observer Class

- The first part of this presentation is based on the following literature:
 - Stubborn redesign for linear observers

[Alessandri, Zaccarian, "Results on stubborn Luenberger observers for linear time-invariant plants," ECC 2015]

[Alessandri, Zaccarian, "Stubborn state observers for linear time-invariant systems," Automatica 2018]

Stubborn redesign for high-gain observers

[Astolfi, Alessandri, Zaccarian, "Stubborn ISS redesign for nonlinear high-gain observers," IFAC WC 2017]

Dead-zone redesign for linear observers

[Cocetti, Tarbouriech, Zaccarian, "On dead-zone observers for linear plants." ACC 2018]

Dead-zone redesign for high-gain observers

[Cocetti, Tarbouriech, Zaccarian, "High-gain dead-zone observers for linear and nonlinear plants," IEEE LCSS 2019]

· Stubborn and dead-zone redesign for nonlinear estimators

[Astolfi, Alessandri, Zaccarian, "Stubborn and dead-Zone redesign for nonlinear observers and filters," IEEE TAC 2021]

Bibliography

Observer Class

The second part of this presentation is adapted from

[Casadei, Astolfi, Alessandri, Zaccarian, "Synchronization of interconnected linear systems via dynamic saturation redesign," IFAC NOLCOS 2019]

[Casadei, Astolfi, Alessandri, Zaccarian, "Synchronization in networks of identical nonlinear systems via dynamic dead zones," IEEE LCSS 2019]

The third part of this presentation is based on

[Tarbouriech, Alessandri, Astolfi, Zaccarian, "LMI-based stubborn and dead-zone redesign in linear dynamic output feedback," 61st CDC and IEEE LCSS 2022]

Outline

- 2 Observer Class

Main Assumptions

Introduction

System Σ

Observer $\widehat{\Sigma}$

$$\begin{array}{c|c}
\dot{x} = f(x, u) + \mathbf{w} \\
y = h(x) + \mathbf{v}
\end{array}$$

$$\begin{array}{c|c}
\dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + G\mathbf{d} \\
\hat{x} = \psi(z)
\end{array}$$

- state $x \in \mathbb{R}^n$
- \blacksquare known external input $u \in U$
- lacksquare measured output $y \in \mathbb{R}^m$
- unknown perturbation $\mathbf{w} \in W$

- observer state $z \in \mathbb{R}^{\varrho}$, $\rho > n$
- state estimate $\hat{x} \in \mathbb{R}^n$
- \blacksquare unknown measurement noise $\mathbf{v} \in V$
- unknown perturbation $d \in D$

- G is a selection matrix
- \bullet κ is the correction term
- \mathbf{v} maps the state of the observer z in the actual estimate $\hat{\mathbf{x}}$
- We will use D^+ to denote the (upper-right) Dini derivative

$$D^+V(t):=\limsup_{h\to 0}\frac{V(t+h)-V(t)}{h}$$

Main Assumptions

Observer Class

00000000

System
$$\Sigma$$
 Observer $\widehat{\Sigma}$

$$\begin{array}{c|cccc}
u & \dot{x} = f(x, u) + w \\
y = h(x) + v
\end{array}
\begin{array}{c|cccc}
y, u & \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\widehat{x})) + Gd \\
\widehat{x} = \psi(z)
\end{array}$$

Assumption 1 (ISS Observer with ISS Lyapunov function)

There exists $V: X \times Z \to \mathbb{R}_{>0}$, a function $\psi^{-R}: X \to Z$, $\underline{\alpha}, \bar{\alpha} \in \mathcal{K}_{\infty}$, and $c, \bar{\kappa}$ $c_{\rm V}, c_{\rm W} > 0$ such that

$$\mathbf{I} \mathbf{X} = \psi(\psi^{-R}(\mathbf{X}))$$

(pseudo-right-inverse)

$$\|G\| \le 1$$
, $|\kappa(z, y_1) - \kappa(z, y_2)| \le \bar{\kappa}|y_1 - y_2|$

(Lipschizianity)

$$\alpha(|x - \psi(z)|) < V(x, z) < \bar{\alpha}(|\psi^{-R}(x) - z|)$$

("sandwich")

("ISS bound")

for all
$$x \in X$$
, $u \in U$, $z \in Z$, $y_1, y_2 \in \mathbb{R}^m$, $(v, w, d) \in V \times W \times D$.

The observer is supposed to be ISS also with respect to system disturbances w and observer perturbations d.

Assumption 2 (output-growth condition)

There exists $\ell_0, \ell_1, \ell_v, \ell_w, \ell_d > 0$ such that

$$|h(x) - h(\hat{x})| \le \ell_0 V(x, z)$$

$$|D^+(h(x) - h(\hat{x}))| \le \ell_1 V(x, z) + \ell_v |v| + \ell_w |w| + \ell_d |d|$$

for all $x \in X$, $u \in U$, $z \in Z$, $v_1, v_2 \in \mathbb{R}^m$, $(v, w, d) \in V \times W \times D$.

■ Recall that $V(x,z) \ge \alpha(|x-\psi(z)|)$. Hence condition 5 holds if

$$|h(x) - h(\hat{x})| = |h(x) - h(\psi(z))| \le k_0 \alpha(|x - \psi(z)|), \qquad k_0 > 0.$$

Condition 6 imposes a growth on the derivative of $y - \hat{y}$, with $\hat{y} := h(\hat{x})$.

Example: Input-affine systems (Besançon et al, 1996)

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = A(u)x + Bu \\ y = Cx \end{array} \right. \qquad \widehat{\Sigma} : \left\{ \begin{array}{l} \dot{\hat{x}} = A(u)\hat{x} + Bu + P^{-1}C^{\top}(y - C\hat{x}) \\ \dot{P} = -2\mu P - A(u)^{\top}P - PA(u) + 2C^{\top}C \end{array} \right.$$

Observer with Lipschitz output injection term

$$\dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})), \quad \hat{x} = \psi(z)$$

$$|G| \le 1, \qquad |\kappa(z, y_1) - \kappa(z, y_2)| \le \bar{\kappa}|y_1 - y_2|$$

$$\checkmark z = (\hat{x}, \text{vec}(P)), \ \psi(z) = [I \ 0](\hat{x}, \text{vec}(P)) = \hat{x}, \ \psi^{-R}(x) = (x, 0)$$

$$\checkmark G = [I; 0], \ \kappa(z, s) = P^{-1}C^{\top}s$$

✓ Lipschizianity of κ follows from boundedness of P.

Example: Input-affine systems (Besançon et al, 1996)

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = A(u)x + Bu \\ y = Cx \end{array} \right. \qquad \widehat{\Sigma} : \left\{ \begin{array}{l} \dot{\hat{x}} = A(u)\hat{x} + Bu + P^{-1}C^{\top}(y - C\hat{x}) \\ \dot{P} = -2\mu P - A(u)^{\top}P - PA(u) + 2C^{\top}C \end{array} \right.$$

Observer with Lipschitz output injection term

$$\dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})), \quad \hat{x} = \psi(z)$$

$$|G| \leq 1, \qquad |\kappa(z, y_1) - \kappa(z, y_2)| \leq \bar{\kappa}|y_1 - y_2|$$

$$\checkmark z = (\hat{x}, \text{vec}(P)), \ \psi(z) = [I \ 0](\hat{x}, \text{vec}(P)) = \hat{x}, \ \psi^{-R}(x) = (x, 0)$$

✓
$$G = [I; 0], \kappa(z, s) = P^{-1}C^{\top}s$$

✓ Lipschizianity of κ follows from boundedness of P.

Introduction

Example: Input-affine systems (Sandwich and Directional Derivative)

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = A(u)x + Bu + \mathbf{w} \\ y = Cx + \mathbf{v} \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\hat{x}} = A(u)\hat{x} + Bu + P^{-1}C^{\top}(y - C\hat{x}) + \mathbf{d} \\ \dot{P} = -2\mu P - A(u)^{\top}P - PA(u) + 2C^{\top}C \end{array} \right.$$

Observer with ISS Lyapunov function

$$\underline{\alpha}(|x-\psi(z)|) \leq V(x,z) \leq \bar{\alpha}(|\psi^{-R}(x)-z|)$$

$$D^+V \leq -cV(x,z) + c_v|v| + c_w|w| + c_d|d|$$

- Suppose PE is verified $\Longrightarrow \underline{p}I \leq P(t) \leq \bar{p}I \ \forall \ t \geq 0$.
- Select $V(x,z) := \sqrt{W(z,x)}, W(z,x) := (x \hat{x})^{\top} P(x \hat{x}).$

$$\sqrt{p}|x-\hat{x}| \le V(z,x) \le \sqrt{p}|x-\hat{x}| \le \sqrt{p}|\psi^{-R}(x)-z|, \qquad \left\{ \begin{array}{l} \psi^{-R}(x) = (x,0) \\ z = (x, \operatorname{vec}(P)) \end{array} \right.$$

✓ Furthermore,
$$\dot{W} = -2\mu W + 2(\mathbf{x} - \hat{\mathbf{x}})^{\top} [P(\mathbf{w} - \mathbf{d}) + C^{\top} \mathbf{v}]$$
, which gives
$$D^{+} \mathbf{V} \le -\mu \mathbf{V} + c_{\mathbf{v}} |\mathbf{v}| + c_{\mathbf{w}} |\mathbf{w}| + c_{\mathbf{d}} |\mathbf{d}|.$$

Example: Input-affine systems (Sandwich and Directional Derivative)

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = A(u)x + Bu + \mathbf{w} \\ y = Cx + \mathbf{v} \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\hat{x}} = A(u)\hat{x} + Bu + P^{-1}C^{\top}(y - C\hat{x}) + \mathbf{d} \\ \dot{P} = -2\mu P - A(u)^{\top}P - PA(u) + 2C^{\top}C \end{array} \right.$$

Observer with ISS Lyapunov function

$$\underline{\alpha}(|x-\psi(z)|) \leq V(x,z) \leq \bar{\alpha}(|\psi^{-R}(x)-z|)$$

$$D^+V \leq -cV(x,z) + c_v|v| + c_w|w| + c_d|d|$$

- Suppose PE is verified $\Longrightarrow \underline{p}I \leq P(t) \leq \bar{p}I \ \forall \ t \geq 0$.
- Select $V(x,z) := \sqrt{W(z,x)}, W(z,x) := (x \hat{x})^{\top} P(x \hat{x}).$

$$\sqrt{p}|x-\hat{x}| \leq V(z,x) \leq \sqrt{\bar{p}}|x-\hat{x}| \leq \sqrt{\bar{p}}|\psi^{-R}(x)-z|, \qquad \left\{ \begin{array}{l} \psi^{-R}(x) = (x,0) \\ z = (x, \operatorname{vec}(P)) \end{array} \right.$$

✓ Furthermore,
$$\dot{W} = -2\mu W + 2(x - \hat{x})^{\top} [P(\mathbf{w} - \mathbf{d}) + C^{\top} \mathbf{v}]$$
, which gives
$$D^{+} V \le -\mu V + c_{v} |\mathbf{v}| + c_{w} |\mathbf{w}| + c_{d} |\mathbf{d}|.$$

Example: Input-affine systems (Sandwich and Directional Derivative)

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = A(u)x + Bu + \mathbf{w} \\ y = Cx + \mathbf{v} \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\hat{x}} = A(u)\hat{x} + Bu + P^{-1}C^{\top}(y - C\hat{x}) + \mathbf{d} \\ \dot{P} = -2\mu P - A(u)^{\top}P - PA(u) + 2C^{\top}C \end{array} \right.$$

Observer with ISS Lyapunov function

$$\underline{\alpha}(|x-\psi(z)|) \leq V(x,z) \leq \bar{\alpha}(|\psi^{-R}(x)-z|)$$

$$D^+V \leq -cV(x,z) + c_v|v| + c_w|w| + c_d|d|$$

- Suppose PE is verified $\Longrightarrow \underline{p}I \leq P(t) \leq \bar{p}I \ \forall \ t \geq 0$.
- Select $V(x,z) := \sqrt{W(z,x)}, W(z,x) := (x \hat{x})^{\top} P(x \hat{x}).$

$$\sqrt{\underline{p}}|x-\hat{x}| \le V(z,x) \le \sqrt{\overline{p}}|x-\hat{x}| \le \sqrt{\overline{p}}|\psi^{-R}(x)-z|, \qquad \left\{ \begin{array}{l} \psi^{-R}(x) = (x,0) \\ z = (x, \operatorname{vec}(P)) \end{array} \right.$$

✓ Furthermore,
$$\dot{W} = -2\mu W + 2(x - \hat{x})^{\top} [P(\mathbf{w} - \mathbf{d}) + C^{\top} \mathbf{v}]$$
, which gives
$$D^{+} \mathbf{V} < -\mu \mathbf{V} + c_{\mathbf{v}} |\mathbf{v}| + c_{\mathbf{w}} |\mathbf{w}| + c_{\mathbf{d}} |\mathbf{d}|.$$

Example: Input-affine systems (Output Growth Condition)

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = A(u)x + Bu + \mathbf{w} \\ y = Cx + \mathbf{v} \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\hat{x}} = A(u)\hat{x} + Bu + P^{-1}C^{\top}(y - C\hat{x}) + \mathbf{d} \\ \dot{P} = -2\mu P - A(u)^{\top}P - PA(u) + 2C^{\top}C \end{array} \right.$$

Observer with ISS Lyapunov function and output growth-condition

$$|h(x) - h(\hat{x})| \le \ell_0 V(x, z)$$

$$|D^{+}(h(x) - h(\hat{x}))| \leq \ell_{1} V(x, z) + \ell_{v} |v| + \ell_{w} |w| + \ell_{d} |d|$$

$$|C(x-\hat{x})| \leq \frac{|C|}{\sqrt{p}}V(x,z)$$

$$|D^{+}C(x-\hat{x})| \leq |C(A(u) - P^{-1}C^{\top}C)(x-\hat{x}) - CP^{-1}C^{\top}v + Cd + Cw|$$

$$\leq \underbrace{(|C|\sup|A(u)| + |C|^{3}\underline{p}^{-1})(\sqrt{\underline{p}})^{-1}}_{\ell_{1}}V(x,z) + \underbrace{\underline{p}^{-1}|C|^{2}}_{\ell_{w}}|v| + \underbrace{|C|}_{\ell_{w}}|w| + \underbrace{|C|}_{\ell_{d}}|d|$$

Observer Class

00000000

Assumptions 1-2 are verified by the following observer techniques:

Kalman filter and extended Kalman filter

[Kalman (1960), others]

Linear Luenberger observers

- [Luenberger (1971)]
- Observers for Lipschitz systems based on LMI design or circle criterion

```
[Rajamani (1998), Arcak & Kokotovic (2001)]
               [Zemouche & Boutaveb (2013)]
```

[Astolfi, Alessandri & Zaccarian (2021)]

Observers for input-affine systems with Riccati design

[Besançon & Bornard & Hammouri (1996)]

■ High-gain observers

```
[Tornambé (1991), Khalil (1992)]
```

[Gauthier & Kupka (2001)]

■ Kazantzis-Kravaris/Luenberger observer

[Andrieu & Pralv (2006)]

. . . .

Outline

- 3 Stubborn Redesign

Observer:

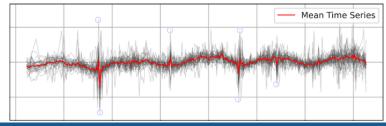
Introduction

$$\hat{y} = h(\hat{x})$$

$$y = e_y = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$



Observer:

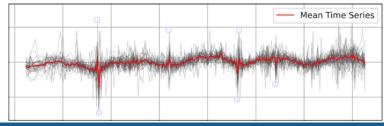
Introduction

$$\hat{y} = h(\hat{x})$$

$$y \rightarrow e_{y} = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_{y})$$

$$\hat{x} = \psi(z)$$



Observer:

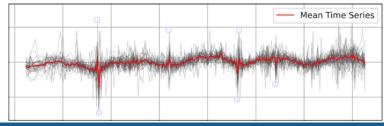
Introduction

$$\hat{y} = h(\hat{x})$$

$$y \rightarrow e_{y} = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_{y})$$

$$\hat{x} = \psi(z)$$



Observer:

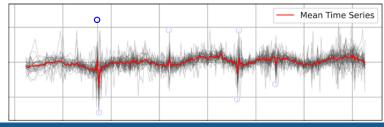
Introduction

$$\hat{y} = h(\hat{x})$$

$$y = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$



Observer:

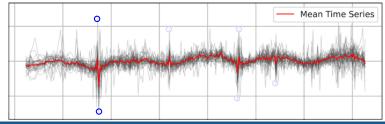
Introduction

$$\hat{y} = h(\hat{x})$$

$$y = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$



Observer:

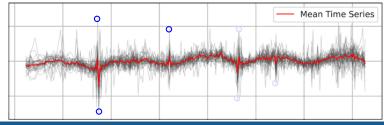
Introduction

$$\hat{y} = h(\hat{x})$$

$$y = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$



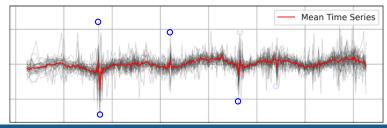
Observer:

$$\hat{y} = h(\hat{x})$$

$$y \rightarrow e_y = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$



Observer:

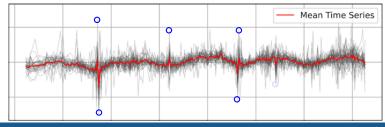
Introduction

$$\hat{y} = h(\hat{x})$$

$$y \rightarrow e_{y} = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_{y})$$

$$\hat{x} = \psi(z)$$



Observer:

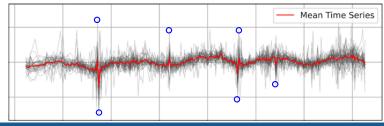
Introduction

$$\hat{y} = h(\hat{x})$$

$$y = y - \hat{y}$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$



Observer:

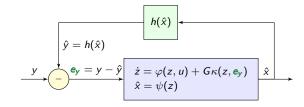
$$\hat{y} = h(\hat{x})$$

$$y \qquad e_y = y - \hat{y} \qquad \dot{z} = \varphi(z, u) + G\kappa(z, e_y)$$

$$\hat{x} = \psi(z)$$

Main idea:

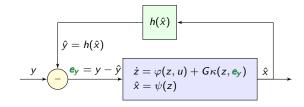
Observer:



- Suppose e_v is very small for a long amount of time
 - \implies x and \hat{x} are close to each other
 - \implies we don't want to use the correction term $\kappa(z, e_v)$

Observer Class How to deal with outliers?

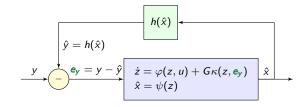
Observer:



- Suppose e_v is very small for a long amount of time
 - \implies x and \hat{x} are close to each other
 - \implies we don't want to use the correction term $\kappa(z, e_v)$
- Suppose e_v is large but for a very short amount of time
 - ⇒ it could be an outlier!
 - \implies we don't want to use the correction term $\kappa(z, e_v)$

Observer Class How to deal with outliers?

Observer:



- Suppose e_v is very small for a long amount of time
 - \implies x and \hat{x} are close to each other
 - \implies we don't want to use the correction term $\kappa(z, e_v)$
- Suppose e_v is large but for a very short amount of time
 - ⇒ it could be an outlier!
 - \implies we don't want to use the correction term $\kappa(z, e_v)$
- If e_V is large for a long amount of time
- \implies x and \hat{x} are far from each other
 - \implies we **need to** use the correction term $\kappa(z, e_v)$

A Dynamic Saturation Scheme

We modify the previous structure by adding a dynamic saturation for $\mathbf{e}_{\mathbf{y}}=y-\hat{y}_{\mathbf{y}}$, i.e.,

$$\hat{y} = h(\hat{x}) \qquad \text{Dynamic Saturation}$$

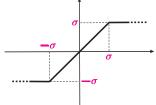
$$y \qquad \qquad \dot{\sigma} = -\lambda \sigma + \theta |\mathbf{e}_y|$$

$$\bar{\mathbf{e}}_y = \mathrm{sat}_{\sigma}(\mathbf{e}_y)$$

$$\hat{z} = \varphi(z, u) + G\kappa(z, \bar{\mathbf{e}}_y)$$

$$\hat{x} = \psi(z)$$

where $\mathsf{sat}_\sigma(s) := \mathsf{max}\{-\sigma, \mathsf{min}\{\sigma, s\}\}$ and $\lambda, \theta > 0$ (from now on we consider a scalar output to simplify the pictorial description).



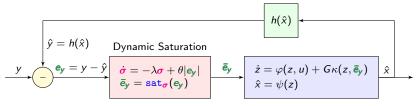
What happens in the presence of an outlier?

- \blacksquare If e_v is persistently small then σ becomes small
- If an outlier occurs, $\mathbf{e}_{\mathbf{v}}$ becomes large but $\mathbf{\bar{e}}_{\mathbf{v}}$ is saturated at the current (small)

A Dynamic Saturation Scheme

Observer Class

We modify the previous structure by adding a dynamic saturation for $\mathbf{e}_{\mathbf{v}} = \mathbf{y} - \hat{\mathbf{y}}$, i.e.,



where $\operatorname{sat}_{\sigma}(s) := \max\{-\sigma, \min\{\sigma, s\}\}\$ and $\lambda, \theta > 0$ (from now on we consider a scalar output to simplify the pictorial description).

- The level of the saturation is selected as the current value of σ .
- The level of σ is dynamically adapted based on the norm of $\mathbf{e}_{\mathbf{v}} = y \hat{y}$.

What happens in the presence of an outlier?

- If e_v is persistently small then σ becomes small.
- If an outlier occurs, \mathbf{e}_{V} becomes large but $\bar{\mathbf{e}}_{V}$ is saturated at the current (small) value of σ , thus mitigating the outlier's effect on the estimate.
- If e_v is persistently large then σ becomes large and we desaturate (avoids intrinsic limitations of saturated feedback).

Saturation Redesign: Main Result

Theorem 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system Σ and observer $\widehat{\Sigma}$

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = f(x, u) + w \\ y = h(x) + v \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + Gd \\ \hat{x} = \psi(z) \end{array} \right.$$

Suppose that $\widehat{\Sigma}$ is an ISS Observer for Σ satisfying the output-growth condition. Then, for any $\lambda>0$ there exists a $\theta^\star>0$ such that, for any $\theta>\theta^\star$, the observer

$$\widehat{\Sigma}_{\mathrm{sat}} : \left\{ \begin{array}{l} \dot{z} = \varphi(z,u) + G\kappa(z, \mathbf{sat}_{\sigma}(y - h(\hat{x}))) + Gd \\ \dot{\sigma} = -\lambda\sigma + \theta|y - h(\hat{x})| \\ \dot{x} = \psi(z) \end{array} \right.$$

is an ISS Observer for $\boldsymbol{\Sigma}$ with ISS Lyapunov function satisfying the output-growth condition.

If
$$y \in \mathbb{R}^m$$
, $m \ge 1$, then Σ_{sat} reads
$$\dot{z} = \varphi(z, u) + G\kappa \Big(z, \big[\mathtt{sat}_{\sigma_1}(y_1 - h_1(\hat{x})), \ldots, \mathtt{sat}_{\sigma_m}(y_m - h_m(\hat{x})) \big] \Big)$$

$$\dot{\sigma}_i = -\lambda_i \sigma_i + \theta_i |y_i - h_i(\hat{x})| \qquad i = 1, \ldots, m,$$

In general, $\lambda < 6$

Saturation Redesign: Main Result

Theorem 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system Σ and observer $\widehat{\Sigma}$

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = f(x, u) + w \\ y = h(x) + v \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + Gd \\ \hat{x} = \psi(z) \end{array} \right.$$

Suppose that $\widehat{\Sigma}$ is an ISS Observer for Σ satisfying the output-growth condition. Then, for any $\lambda>0$ there exists a $\theta^\star>0$ such that, for any $\theta>\theta^\star$, the observer

$$\widehat{\Sigma}_{\mathrm{sat}} : \left\{ \begin{array}{l} \dot{z} = \varphi(z,u) + G\kappa(z, \mathbf{sat}_{\sigma}(y - h(\hat{x}))) + Gd \\ \dot{\sigma} = -\lambda\sigma + \theta|y - h(\hat{x})| \\ \hat{x} = \psi(z) \end{array} \right.$$

is an ISS Observer for $\boldsymbol{\Sigma}$ with ISS Lyapunov function satisfying the output-growth condition.

lacksquare If $y \in \mathbb{R}^m$, $m \geq 1$, then $\widehat{\Sigma}_{\mathrm{sat}}$ reads

$$\dot{z} = \varphi(z, u) + G\kappa \left(z, \left[\operatorname{sat}_{\sigma_1}(y_1 - h_1(\hat{x})), \dots, \operatorname{sat}_{\sigma_m}(y_m - h_m(\hat{x})) \right] \right)
\dot{\sigma}_i = -\lambda_i \sigma_i + \theta_i |y_i - h_i(\hat{x})| \qquad i = 1, \dots, m,$$

In general, $\lambda < \theta$

Observer Class

Rewrite the observer $\widehat{\Sigma}_{sat}$ as

$$\begin{cases} \dot{\sigma} = -\lambda \sigma + \theta | y - h(\hat{x}) | \\ \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + G\delta \\ \delta = \kappa(z, \operatorname{sat}_{\sigma}(y - h(\hat{x}))) - \kappa(z, y - h(\hat{x})) \,. \end{cases}$$

In light of the Lipschitz properties of κ and saturation function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\mathbf{sat}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} |y - h(\hat{x})|.$$

Use the Lyapunov function

$$(x, z, \sigma) \mapsto W(x, z, \sigma) = V(x, z) + \zeta \sigma + (\zeta + \eta) \max\{|y - h(\hat{x})| - \sigma, 0\}$$

with $\zeta, \eta > 0$.

Rewrite the observer $\widehat{\Sigma}_{\mathrm{sat}}$ as

$$\begin{cases} \dot{\sigma} = -\lambda \sigma + \theta | y - h(\hat{x}) | \\ \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + G\delta \\ \delta = \kappa(z, \operatorname{sat}_{\sigma}(y - h(\hat{x}))) - \kappa(z, y - h(\hat{x})) \,. \end{cases}$$

■ In light of the Lipschitz properties of κ and saturation function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\operatorname{sat}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} |y - h(\hat{x})|.$$

Use the Lyapunov function

$$(x,z,\sigma) \mapsto W(x,z,\sigma) = V(x,z) + \zeta \sigma + (\zeta + \eta) \max\{|y - h(\hat{x})| - \sigma, 0\}$$

with $\zeta, n > 0$.

■ When $|y - h(\hat{x})| \le \sigma$, then $\delta = 0$, and we have

$$D^+W \le -cV(x,z) - \zeta\lambda\sigma + \zeta\theta|y - h(\hat{x})|$$

using the output-growth condition we obtain

$$D^+W \le -(c - \zeta\theta\ell_0)V(x,z) - \zeta\lambda\sigma \le 0$$

for ζ small enough.

Rewrite the observer $\widehat{\Sigma}_{sat}$ as

$$\left\{ \begin{array}{l} \dot{\boldsymbol{\sigma}} = -\lambda \boldsymbol{\sigma} + \theta | \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}) | \\ \dot{\boldsymbol{z}} = \varphi(\boldsymbol{z}, \boldsymbol{u}) + \boldsymbol{G} \kappa(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) + \boldsymbol{G} \boldsymbol{\delta} \\ \boldsymbol{\delta} = \kappa(\boldsymbol{z}, \mathtt{sat}_{\boldsymbol{\sigma}}(\boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}))) - \kappa(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) \,. \end{array} \right.$$

In light of the Lipschitz properties of κ and saturation function, we have

$$|\delta| \leq \bar{\kappa} |\operatorname{sat}_{\sigma}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} |y - h(\hat{x})|.$$

Use the Lyapunov function

$$(x, z, \sigma) \mapsto W(x, z, \sigma) = V(x, z) + \zeta \sigma + (\zeta + \eta) \max\{|y - h(\hat{x})| - \sigma, 0\}$$

with $\zeta, \eta > 0$.

■ When $|y - h(\hat{x})| > \sigma$, then $\delta \neq 0$, and we have

$$D^+W \le -cV(x,z) + c_d|\delta| + (\zeta + \eta)|D^+(y - h(\hat{x}))| + \eta\lambda\sigma - \eta\theta|y - h(\hat{x})|.$$

By using the output-growth condition we obtain

$$D^+W \le -\left[c - (\zeta + \eta)(\ell_1 + \ell_0\bar{\kappa}\ell_d)\right]V(x, z) - (\theta\eta - \lambda\eta + c_d\bar{\kappa}\ell_0)|y - h(\hat{x})|$$
< 0

for ζ, η small enough and θ large enough.

lacksquare Rewrite the observer $\widehat{\Sigma}_{\mathrm{sat}}$ as

$$\left\{ \begin{array}{l} \dot{\boldsymbol{\sigma}} = -\lambda \boldsymbol{\sigma} + \theta | \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}) | \\ \dot{\boldsymbol{z}} = \varphi(\boldsymbol{z}, \boldsymbol{u}) + \boldsymbol{G} \kappa(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) + \boldsymbol{G} \boldsymbol{\delta} \\ \boldsymbol{\delta} = \kappa(\boldsymbol{z}, \operatorname{sat}_{\boldsymbol{\sigma}}(\boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}))) - \kappa(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) \,. \end{array} \right.$$

lacksquare In light of the Lipschitz properties of κ and saturation function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\operatorname{sat}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} |y - h(\hat{x})|.$$

Use the Lyapunov function

$$(x, z, \sigma) \mapsto W(x, z, \sigma) = V(x, z) + \zeta \sigma + (\zeta + \eta) \max\{|y - h(\hat{x})| - \sigma, 0\}$$

with $\zeta, \eta > 0$.

- ✓ We conclude that $D^+W \le -\varepsilon W$ for some $\varepsilon > 0$.
- ✓ The analysis can be done with $\mathbf{w}, \mathbf{v}, \mathbf{d}$ to show the desired ISS properties.
- ✓ It is not to hard to verify also the other properties for the redesigned observer.

Noise effect analysis for linear systems

Consider the linear case

$$\Sigma : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + \mathbf{v} \in \mathbb{R} \end{cases} \qquad \widehat{\Sigma} : \dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

and the (nonlinear) redesigned observer

$$\widehat{\Sigma}_{\mathrm{sat}}: \left\{ \begin{array}{l} \dot{\hat{x}} = A\hat{x} + Bu + L \; \mathtt{sat}_{\sigma}(y - C\hat{x}) \\ \dot{\sigma} = -\boldsymbol{\lambda}\sigma + \boldsymbol{\theta}|y - C\hat{x}| \; . \end{array} \right.$$

Consider the error variables

$$\begin{split} & \widetilde{x}_0 := x - \hat{x}, \qquad \hat{x} \in \widehat{\Sigma}, \\ & \widetilde{x}_{\mathrm{sat}} := x - \hat{x}, \qquad \hat{x} \in \widehat{\Sigma}_{\mathrm{sat}}. \end{split}$$

- We are interested in analyzing the effect of two types of measurement noise v:
 - impulsive noise (outlier);
 - constant noise.

Effect of outliers in the linear case

Proposition 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

lacksquare Suppose $oldsymbol{v}$ is a piecewise constant perturbation of the form

$$\mathbf{v}(t) = \delta_{\tau}(t) = \left\{ egin{array}{ll} rac{1}{ au} & 0 \leq t \leq au \ 0 & t > au \end{array}
ight.$$

- \blacksquare Suppose A is non-singular.
- Consider the solutions of $\widehat{\Sigma}$ and $\widehat{\Sigma}_{\mathrm{sat}}$ with $\widetilde{x}_0(0) = \widetilde{x}_{\mathrm{sat}}(0) = 0$ and $\sigma(0) = 0$.

Then, as τ tends to 0^+ , we have

$$|\tilde{x}_{\mathrm{sat}}(\boldsymbol{\tau})| \leq 2 \boldsymbol{\tau} \boldsymbol{\theta} |\tilde{x}_0(\boldsymbol{\tau})|.$$

Furthermore, $|\tilde{x}_{\rm sat}(t)|$ converges to zero if $\tau \to 0^+$.

- √ The performance in the presence of outliers is improved.
- ✓ If the outlier is instantaneous $(\tau = 0)$, its effect is completely erased
- After $t \ge \tau$, there are no more perturbations $\mathbf{v} = 0$ \Longrightarrow the observers evolves with initial conditions such that $|\tilde{x}_{\mathrm{sat}}(0)| < |\tilde{x}_0(0)|$

Effect of outliers in the linear case

Proposition 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

■ Suppose **v** is a piecewise constant perturbation of the form

$$\mathbf{v}(t) = \delta_{\tau}(t) = \left\{ egin{array}{ll} rac{1}{ au} & 0 \leq t \leq au \ 0 & t > au \end{array}
ight.$$

- Suppose *A* is non-singular.
- Consider the solutions of $\widehat{\Sigma}$ and $\widehat{\Sigma}_{\mathrm{sat}}$ with $\widetilde{x}_0(0) = \widetilde{x}_{\mathrm{sat}}(0) = 0$ and $\sigma(0) = 0$.

Then, as τ tends to 0^+ , we have

$$|\tilde{x}_{\mathrm{sat}}(\tau)| \leq 2 \tau \theta |\tilde{x}_0(\tau)|$$
.

Furthermore, $|\tilde{x}_{\rm sat}(t)|$ converges to zero if $\tau \to 0^+$.

- ✓ The performance in the presence of outliers is improved.
- ✓ If the outlier is instantaneous ($\tau = 0$), its effect is completely erased!
- After $t \ge \tau$, there are no more perturbations $\mathbf{v} = 0$ \implies the observers evolves with initial conditions such that $|\tilde{x}_{\text{sat}}(0)| < |\tilde{x}_{0}(0)|$.

Effect of constant noise in the linear case

Observer Class

Introduction

Proposition 2 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

- Suppose **v** is constant.
- Suppose (A LC) is Hurwitz.

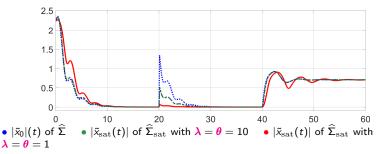
For any $\theta \geq \lambda$ the disturbance-to-error DC-gains between v and $|\tilde{x}_0|$, and between v and $|\tilde{x}_{\text{sat}}|$, coincide.

■ For constant v, the redesigned observer cannot do worse than the nominal one.

A Numerical Example

Observer Class

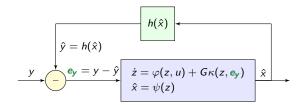
$$\begin{split} \Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx + \textbf{v} \end{array} \right. & \widehat{\Sigma}_{\mathrm{sat}} : \left\{ \begin{array}{l} \dot{\hat{x}} = A\hat{x} + Bu + \textbf{L} \ \mathrm{sat}_{\sigma}(y - C\hat{x}) \\ \dot{\sigma} = -\lambda\sigma + \textbf{\theta}|y - C\hat{x}| \end{array} \right. \\ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \textbf{L} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad x(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \hat{x}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ \textbf{v}(t) = \left\{ \begin{array}{l} 0 & 0 \leq t \leq 20, \\ \delta_{\tau}(t) & 20 \leq t \leq 40, \\ 1 & 40 \leq t \leq 60, \end{array} \right. \quad \tau = 0.01 \end{split}$$



Outline

- 4 Dead-Zone Redesign

Observer Class

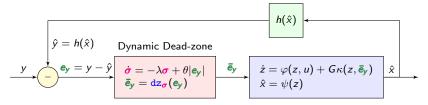


- Suppose y = h(x) + v, with v a small persistent measurement noise.
- When e_v is persistently small, we have $e_v \simeq v$:
 - \implies the information given by $e_{\mathbf{v}}$ is not reliable
 - \implies we want to trim out e_v .

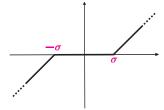
A Dynamic Dead-Zone Scheme

Observer Class

We modify the previous structure by adding a dynamic dead-zone for $\mathbf{e}_{\mathbf{y}}=y-\hat{y}$, i.e.,



where $dz_{\sigma}(s) := s - sat_{\sigma}s$ and $\lambda, \theta > 0$.



A Dynamic Dead-Zone Scheme

We modify the previous structure by adding a dynamic dead-zone for $\mathbf{e}_{\!y}=y-\hat{y},$ i.e.,

$$\hat{y} = h(\hat{x}) \qquad \text{Dynamic Dead-zone}$$

$$y \qquad \qquad \stackrel{\hat{e}_{y} = y - \hat{y}}{\rightleftharpoons} \qquad \stackrel{\hat{e}_{y} = dz_{\sigma}(\hat{e}_{y})} \qquad \stackrel{\hat{e}_{y}}{\rightleftharpoons} \qquad \stackrel{\hat{e}_{y} = \varphi(z, u) + G\kappa(z, \hat{e}_{y})}{\gtrless y = dz_{\sigma}(\hat{e}_{y})}$$

where $dz_{\sigma}(s) := s - sat_{\sigma}s$ and $\lambda, \theta > 0$.

- The level of the dead-zone is selected as the current value of σ .
- $\ \ \, \text{If} \, \, |e_y| > \sigma \, \, \text{then} \, \, |dz_\sigma(e_y)| = |e_y| \left(1 \frac{\sigma}{|e_y|}\right) \leq |e_y|.$
- If $|\mathbf{e}_y| < \sigma$ then $\mathrm{dz}_{\sigma}(\mathbf{e}_y) = 0$.
- We obtain a trimming effect of e_y.

Dead-Zone Redesign: Main Result

Theorem 2 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system Σ and observer $\widehat{\Sigma}$

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = f(x, u) + w \\ y = h(x) + v \end{array} \right. \qquad \widehat{\Sigma}: \left\{ \begin{array}{l} \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + Gd \\ \hat{x} = \psi(z) \, . \end{array} \right.$$

Suppose that $\widehat{\Sigma}$ is an ISS observer for Σ satisfying the output-growth condition. Then, for any $\theta > 0$ there exists a $\lambda^* > 0$ such that, for any $\lambda > \lambda^*$, the observer

$$\widehat{\Sigma}_{\mathrm{dz}}: \left\{ \begin{array}{l} \dot{z} = \varphi(z,u) + G\kappa(z, \mathrm{d}z_{\sigma}(y - h(\widehat{x}))) + Gd \\ \\ \dot{\sigma} = -\lambda\sigma + \theta|y - h(\widehat{x})| \\ \\ \hat{x} = \psi(z) \end{array} \right.$$

is an ISS observer for Σ with ISS Lyapunov function satisfying the output-growth condition.

If $v \in \mathbb{R}^m$, m > 1, then $\widehat{\Sigma}_{dx}$ reads

$$\dot{z} = \varphi(z, u) + G\kappa \left(z, \left[dz_{\sigma_1}(y_1 - h_1(\hat{x})), \dots, dz_{\sigma_m}(y_m - h_m(\hat{x})) \right] \right)$$

$$\dot{\sigma}_i = -\lambda_i \sigma_i + \theta_i | y_i - h_i(\hat{x}) | \qquad i = 1, \dots, m.$$

■ In general, $\lambda > \theta$.

Sketch of Proof of Theorem 2

 \blacksquare Rewrite the observer $\widehat{\Sigma}_{dz}$ as

$$\left\{ \begin{array}{l} \dot{\boldsymbol{\sigma}} = -\lambda \boldsymbol{\sigma} + \boldsymbol{\theta} | \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}) | \\ \dot{\boldsymbol{z}} = \boldsymbol{\varphi}(\boldsymbol{z}, \boldsymbol{u}) + \boldsymbol{G} \boldsymbol{\kappa}(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) + \boldsymbol{G} \boldsymbol{\delta} \\ \boldsymbol{\delta} = \boldsymbol{\kappa}(\boldsymbol{z}, \mathrm{d} \boldsymbol{z}_{\boldsymbol{\sigma}}(\boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}))) - \boldsymbol{\kappa}(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) \,. \end{array} \right.$$

lacksquare In light of the Lipschitz properties of κ and the dead-zone function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\operatorname{dz}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} \, \boldsymbol{\sigma}.$$

Use the Lyapunov function

$$(x, z, \sigma) \mapsto W(x, z, \sigma) = V(x, z) + \zeta \sigma$$

with $\zeta > 0$.

 \blacksquare Rewrite the observer $\widehat{\Sigma}_{dz}$ as

$$\left\{ \begin{array}{l} \dot{\boldsymbol{\sigma}} = -\lambda \boldsymbol{\sigma} + \boldsymbol{\theta} | \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}) | \\ \dot{\boldsymbol{z}} = \boldsymbol{\varphi}(\boldsymbol{z}, \boldsymbol{u}) + \boldsymbol{G} \boldsymbol{\kappa}(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) + \boldsymbol{G} \boldsymbol{\delta} \\ \boldsymbol{\delta} = \boldsymbol{\kappa}(\boldsymbol{z}, \mathrm{d} \boldsymbol{z}_{\boldsymbol{\sigma}}(\boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}))) - \boldsymbol{\kappa}(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) \,. \end{array} \right.$$

lacksquare In light of the Lipschitz properties of κ and the dead-zone function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\mathrm{dz}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} \, \boldsymbol{\sigma}.$$

Use the Lyapunov function

$$(x,z,\sigma)\mapsto W(x,z,\sigma)=V(x,z)+\zeta\sigma$$

with $\zeta > 0$

■ When $|y - h(\hat{x})| > \sigma$ then $\delta = 0$ and we have

$$D^+W \le -cV(x,z) - \zeta \lambda \sigma + \zeta \theta |y - h(\hat{x})|$$

using the output-growht condition

$$D^+W \le -(c - \zeta\theta\ell_0)V(x,z) - \zeta\lambda\sigma \le 0$$

for ζ small enough (θ is fixed).

 \blacksquare Rewrite the observer $\widehat{\Sigma}_{dz}$ as

$$\left\{ \begin{array}{l} \dot{\boldsymbol{\sigma}} = -\lambda \boldsymbol{\sigma} + \boldsymbol{\theta} | \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}) | \\ \dot{\boldsymbol{z}} = \boldsymbol{\varphi}(\boldsymbol{z}, \boldsymbol{u}) + \boldsymbol{G} \boldsymbol{\kappa}(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) + \boldsymbol{G} \boldsymbol{\delta} \\ \boldsymbol{\delta} = \boldsymbol{\kappa}(\boldsymbol{z}, \mathrm{d} \boldsymbol{z}_{\boldsymbol{\sigma}}(\boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}}))) - \boldsymbol{\kappa}(\boldsymbol{z}, \boldsymbol{y} - \boldsymbol{h}(\hat{\boldsymbol{x}})) \,. \end{array} \right.$$

lacksquare In light of the Lipschitz properties of κ and the dead-zone function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\operatorname{dz}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} \, \boldsymbol{\sigma}.$$

Use the Lyapunov function

$$(x, z, \sigma) \mapsto W(x, z, \sigma) = V(x, z) + \zeta \sigma$$

with $\zeta > 0$.

■ When $|y - h(\hat{x})| \le \sigma$ then $\delta \ne 0$ and we have

$$D^{+}W \leq -cV(x,z) + c_{d}|\delta| - \zeta\lambda\sigma + \zeta\theta|y - h(\hat{x})|$$

using the output-growth condition

$$D^+W \le -cV(x,z) - (\zeta\lambda - \zeta\theta - \bar{\kappa}c_d)\sigma \le 0$$

for λ large enough (ζ , θ are fixed).

lacksquare Rewrite the observer $\widehat{\Sigma}_{\mathrm{dz}}$ as

$$\left\{ \begin{array}{l} \dot{\sigma} = -\lambda \sigma + \theta | y - h(\hat{x}) | \\ \dot{z} = \varphi(z, u) + G\kappa(z, y - h(\hat{x})) + G\delta \\ \delta = \kappa(z, \mathrm{d}z_{\sigma}(y - h(\hat{x}))) - \kappa(z, y - h(\hat{x})) \,. \end{array} \right.$$

lacksquare In light of the Lipschitz properties of κ and the dead-zone function, we have

$$|\boldsymbol{\delta}| \leq \bar{\kappa} |\mathrm{dz}_{\boldsymbol{\sigma}}(y - h(\hat{x})) - (y - h(\hat{x}))| \leq \bar{\kappa} \, \boldsymbol{\sigma}.$$

Use the Lyapunov function

$$(x,z,\sigma)\mapsto W(x,z,\sigma)=V(x,z)+\zeta\sigma$$

with $\zeta > 0$.

- ✓ We conclude that $D^+W \le -\varepsilon W$ for some $\varepsilon > 0$.
- \checkmark The analysis can be done with w, v, d to show the desired ISS properties.
- ✓ It is not to hard to verify also the other properties for the redesigned observer.

Noise effect analysis for linear systems

Consider the linear case

$$\Sigma : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + v \in \mathbb{R} \end{cases} \qquad \widehat{\Sigma} : \dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

and the (nonlinear) redesigned observer

$$\widehat{\Sigma}_{dz}: \left\{ \begin{array}{l} \widehat{x} = A\widehat{x} + Bu + L \, dz_{\sigma}(y - C\widehat{x}) \\ \widehat{\sigma} = -\lambda \sigma + \theta | y - C\widehat{x}| \, . \end{array} \right.$$

Consider the error variables

$$\widetilde{x}_0 := x - \hat{x}, \qquad \hat{x} \in \widehat{\Sigma},$$
 $\widetilde{x}_{dx} := x - \hat{x}, \qquad \hat{x} \in \widehat{\Sigma}_{dx}.$

 We are interested in analyzing the effect of constant perturbations (approximation of persistently small noise).

Effect of constant noise in the linear case

Proposition 3 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

- Suppose v is constant.
- Suppose (A LC) is Hurwitz and $CA^{-1}L < 1$.

The disturbance-to-error DC-gains between ${\bf v}$ and $|\tilde{x}_0|$, denoted as k_0 , and between ${\bf v}$ and $|\tilde{x}_{\rm dz}|$, denoted as $k_{\rm dz}$, satisfy

$$k_{\mathrm{dz}} \leq \left[1 - \tilde{k}\left(rac{ heta}{\lambda}
ight)
ight] k_0$$

for any $\lambda > \theta \geq 0$ and for some $\tilde{k} \in \mathcal{K}$.

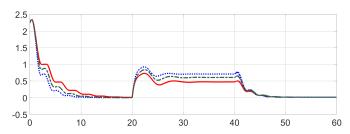
- The DC-gain is always reduced thus improving the rejection to measurement noise.
- The condition $CA^{-1}L < 1$ is always verified if both A and (A LC) are Hurwitz.

A Numerical Example

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx + \mathbf{v} \end{array} \right. \qquad \widehat{\Sigma}_{\mathrm{sat}} : \left\{ \begin{array}{l} \dot{\hat{x}} = A\hat{x} + Bu + \mathbf{L} \, \mathbf{d}\mathbf{z}_{\sigma}(y - C\hat{x}) \\ \dot{\sigma} = -\lambda \sigma + \boldsymbol{\theta}|y - C\hat{x}| \end{array} \right.$$

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \mathbf{L} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad x(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \hat{x}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\mathbf{v}(t) = \left\{ \begin{array}{ll} 0 & 0 \leq t \leq 20, \\ 1 & 20 \leq t \leq 40 \\ \sin(50t) & 40 \leq t \leq 60, \end{array} \right. \quad \begin{array}{l} \bullet \ \sup_{\infty} |\tilde{x}_0(t)| \leq 0.028 \\ \bullet \ \sup_{\infty} |\tilde{x}_{\rm dz}(t)| \leq 0.022 \\ \bullet \ \sup_{\infty} |\tilde{x}_{\rm dz}(t)| \leq 0.016 \end{array}$$



- $|\tilde{x}_0(\tilde{t})|$ of $\hat{\Sigma}$
- $|\tilde{x}_{dz}(t)|$ of $\hat{\Sigma}_{sat}$ with $\lambda = 4$, $\theta = 1$ $|\tilde{x}_{dz}(t)|$ of $\hat{\Sigma}_{sat}$ with $\lambda = 2$, $\theta = 1$

Application to vehicle lateral speed estimation

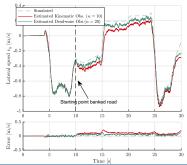
■ linear parameter-varying model (parameter r = yaw rate)

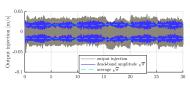
$$\begin{cases} \dot{x} = A(r)x + u \\ y = Cx, \end{cases} \quad A(r) := \begin{bmatrix} 0 & r \\ -r & 0 \end{bmatrix}, \quad C := \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

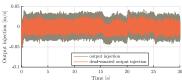
yaw-rate dependent kinematic observer

$$\begin{cases} \dot{\hat{x}} = A(r)\hat{x} + u + L(r)(\hat{y} - y) \\ \hat{y} = C\hat{x}, \end{cases} L(r) := \begin{bmatrix} -2\alpha|r| \\ (1 - \alpha^2)r \end{bmatrix},$$

deadzonated observer reduces the sensitivity to noise





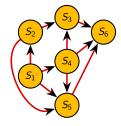


Outline

- 1 Introduction
- 2 Observer Class
- 3 Stubborn Redesign
- 4 Dead-Zone Redesign
- 5 Synchronization
- 6 Dynamic Output Feedback
- 7 Conclusions

A synchronization problem for multi-agent systems

 $lue{}$ Consider a synchronization problem among N identical agents



$$\dot{x}_i = Ax_i + \phi(x_i) + u_i \qquad \qquad i = 1, \dots, N,$$

$$y_i = Cx_i i = 1, \dots, N,$$

$$x_i \in \mathbb{R}^n$$
, $u_i \in \mathbb{R}$, $y_i \in \mathbb{R}$.

We want to achieve consensus among all the states

$$\lim_{t\to\infty}|x_i(t)-x_j(t)|=0 \qquad \forall i,j\in\{1,\ldots,N\}.$$

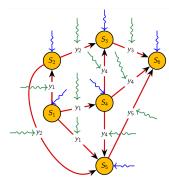
- We want to use a distributed control law.
- A typical solution is to use a diffusive coupling

$$u_i = -K \sum_{i=1}^N \ell_{ij} y_j \qquad \ell_{ij} \in L$$

where L is the Laplacian matrix of the graph.

Perturbations in networks

What happens in the presence of perturbations?



$$\dot{x}_i = Ax_i + \phi(x_i) + u_i$$

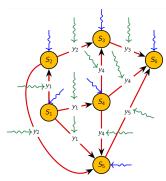
$$y_i = Cx_i + \mathbf{v}_i$$

If we have some ISS property then

$$\limsup_{t\to\infty} |x_i(t)-x_j(t)| \leq \gamma \left(\sum_{i=1}^N |\boldsymbol{v}_i|\right) \qquad \forall i,j\in\{1,\ldots,N\} \qquad \gamma\in\mathcal{K}.$$

Perturbations in networks

■ What happens in the presence of perturbations?



$$\dot{x}_i = Ax_i + \phi(x_i) + u_i$$

$$y_i = Cx_i + \mathbf{v}_i$$

X Design of diffusing coupling for nonlinear systems in the presence of output perturbations v_i ?

Saturation and Dead-Zone Redesign for Diffusing Coupling

In the presence of impulsive disturbances (e.g. outliers, switching topologies, ...)
 we use a dynamic saturation redesign

$$egin{aligned} \dot{oldsymbol{\sigma}}_i &= -\lambda oldsymbol{\sigma}_i + heta_i \left| \sum_{i=1}^N \ell_{ij} \; y_j
ight| & i = 1, \dots, N \ u_i &= - oldsymbol{K} \operatorname{sat}_{oldsymbol{\sigma}_i} \left(\sum_{i=1}^N \ell_{ij} \; y_j
ight) & i = 1, \dots, N \,. \end{aligned}$$

 In the presence of persistent disturbances (communication networks noise) we use a dynamic dead-zone redesign

$$\begin{aligned} \dot{\boldsymbol{\sigma}}_i &= -\lambda \boldsymbol{\sigma}_i + \theta_i \left| \sum_{i=1}^N \ell_{ij} \ y_i \right| & i = 1, \dots, N \\ u_i &= -K \operatorname{dz}_{\boldsymbol{\sigma}_i} \left(\sum_{i=1}^N \ell_{ij} \ y_j \right) & i = 1, \dots, N \,. \end{aligned}$$

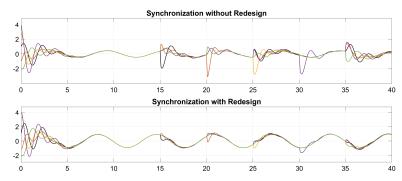
- Synchronization in nominal conditions $\mathbf{v}_i = 0$ is preserved.
- Performance in the presence of noise is improved.
- Proofs and philosophy design are very similar to the observer design.

Simulation Example for Saturation Redesign

Consider a network of N=6 linear oscillators

$$\dot{x}_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x_i + u_i, \qquad y_i = \begin{pmatrix} 1 & 0 \end{pmatrix} x_i + \mathbf{v}_i$$

in the presence of outliers \mathbf{v}_i .

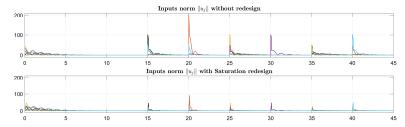


Simulation Example for Saturation Redesign

Consider a network of N=6 linear oscillators

$$\dot{x}_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x_i + u_i, \qquad y_i = \begin{pmatrix} 1 & 0 \end{pmatrix} x_i + \mathbf{v}_i$$

in the presence of outliers \mathbf{v}_i .

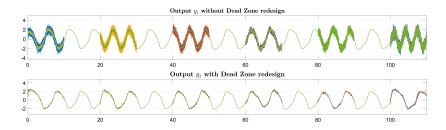


Simulation Example for Dead-Zone Redesign

Consider a network of N = 5 Van der Pol oscillators

$$\dot{x}_i = \begin{pmatrix} 0 & 1 \\ -1 & \mu \end{pmatrix} x_i + \begin{pmatrix} 0 \\ -\mu & x_{i_1}^2 x_{i_2} \end{pmatrix} + u_i, \qquad y_i = \begin{pmatrix} 1 & 0 \end{pmatrix} x_i + \mathbf{v}_i$$

in the presence of white noise \mathbf{v}_i .

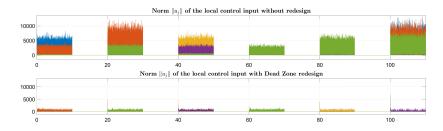


Simulation Example for Dead-Zone Redesign

Consider a network of N = 5 Van der Pol oscillators

$$\dot{x}_i = \begin{pmatrix} 0 & 1 \\ -1 & \mu \end{pmatrix} x_i + \begin{pmatrix} 0 \\ -\mu & x_{i_1}^2 x_{i_2} \end{pmatrix} + u_i, \qquad y_i = \begin{pmatrix} 1 & 0 \end{pmatrix} x_i + \mathbf{v}_i$$

in the presence of white noise \mathbf{v}_i .



Outline

- 6 Dynamic Output Feedback

Dynamic Output Feedback

$$\begin{array}{c}
\downarrow w \\
\underline{\dot{x}_p = A_p x_p + B_p u + B_{pw} w} \\
y = C_p x_p + D_{pw} w
\end{array}$$

Plant

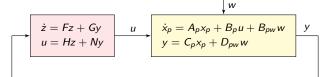
Introduction

- state $x_p \in \mathbb{R}^{n_p}$
- **•** known external input $u \in \mathbb{R}^m$

- lacksquare measured output $y \in \mathbb{R}^p$
- unknown system and measurement disturbances $w \in \mathbb{R}^{n_d}$

Controller

state $z \in \mathbb{R}^{n_c}$



Assumption 1

The linear closed-loop system with $w \equiv 0$ is globally exponentially stable to the origin.

Stubborn Redesgin to handle Measurment Outliers

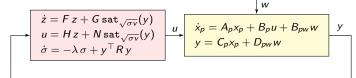
 \blacksquare The controller dynamics is augmented with a new non-negative state ${\color{red}\sigma}\in\mathbb{R}_{\geq0}$:

$$\dot{z} = F z + G \operatorname{sat}_{\sqrt{\sigma v}}(y)$$

$$u = H z + N \operatorname{sat}_{\sqrt{\sigma v}}(y)$$

$$\dot{\sigma} = -\lambda \sigma + y^{\top} R y$$

where $\sqrt{\sigma v}$ are the componentwise square-roots of the elements of the non-negative vector v scaled by σ ; $\lambda > 0$; R is a symmetric, positive definite matrix; $\operatorname{sat}_{\sigma}(s) := \max\{-\sigma, \min\{\sigma, s\}\}.$



- Notice:
 - ✓ The level of the saturation is a scaled square root of the current value of σ .
 - ✓ The value of σ is dynamically adapted according to $y^T R y$.
- What happens in presence of an outlier?
 - ✓ If y is persistently constant, then σ tends to a constant value.
 - ✓ If an outlier occurs, y becomes large but the effect of y on the loop is saturated on the current (small) value of $\sqrt{\sigma v}$, mitigating its effect on the closed-loop system.
 - ✓ If y grows or is persistently affected by outliers, then σ increases, thus generating desaturation

Closed-Loop Input-to-State Stability After Redesign

Theorem 3 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Assume that there exist a scalar $\lambda>0$, a symmetric positive definite matrix $P\in\mathbb{R}^{n\times n}$, a symmetric positive semi-definite matrix $R\in\mathbb{R}^{p\times p}$, two diagonal positive definite matrices $U_g\in\mathbb{R}^{p\times p}$, $U_\ell\in\mathbb{R}^{p\times p}$, and a matrix $Y\in\mathbb{R}^{p\times n}$ such that inequalities

$$\begin{split} M_g &:= \operatorname{He} \begin{bmatrix} PA - \frac{i}{2}\lambda C^{\top}RC + \frac{i}{2}\lambda P & -PB \\ U_gC & -U_g \end{bmatrix} < 0 \\ M_{\ell} &:= \operatorname{He} \begin{bmatrix} PA & -PB \\ U_{\ell}C + Y & -U_{\ell} \end{bmatrix} < 0 \\ \begin{bmatrix} P & Y_{(i)}^{\top} \\ Y_{(i)} & \lambda^{-1}u_{\ell,i} \end{bmatrix} \geq 0, \quad \forall i = 1, ..., p, \end{split}$$

are satisfied, where $\mathrm{He}(\star) := \star + \star^{\top}$. Then, the closed loop system with dynamically **saturated output regulator** having entries with a vector v as the inverse of the diagonal elements of U_{ℓ} (namely $\mathrm{diag}(v) = U_{\ell}^{-1}$), is finite-gain exponentially ISS from w to x, namely there exist positive scalars M, $\alpha >$ and γ such that all solutions satisfy

$$\left| (x(t), \sqrt{\sigma(t)}) \right| \le M e^{-\alpha t} \left| (x(0), \sqrt{\sigma(0)}) \right| + \gamma \sup_{\tau \in [0, t]} |w(\tau)|,$$

for all $t \geq 0$.

Sketch of Proof and Feasibility

■ The proof of Theorem 3 follows from using the Lyapunov function

$$\mathcal{V}(x,\sigma) = x^{\top} P x + \zeta \sigma + \mu \max\{x^{\top} P x - \lambda \sigma, 0\}$$

with P symmetric positive semi-definite matrix and constants $\zeta,\mu>0$ to be suitably chosen.

- It is an ISS Lyapunov function and it is not continuously differentiable.
- For an overview on nonsmooth Lyapunov functions, see [Della Rossa, Goebel, Tanwani, Zaccarian, "Piecewise structure Lyapunov functions and densely checked decrease conditions for hybrid systems," MCSS 2021].
- The LMIs involved by Theorem 3 are homogeneus, thus they can be solved with the additional condition P > I for increased numerical robustness

Proposition 4 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Under Assumption 1 there exist parameters P, R, U_{ℓ} , U_{g} , Y and λ satisfying the conditions of Theorem 3.

Simulation Case Study

Introduction

■ Linearization about an equilibrium point of the longitudinal dynamics of fixed-wing aircrafts flying at high speed [Astolfi, Praly, "Integral action in output feedback for multi-input multi-output nonlinear systems," IEEE TAC, 2017]:

$$\dot{v} = e - g \sin(\gamma) + w_1$$

$$\dot{\gamma} = \ell v \sin(\theta - \gamma) - \frac{g \cos(\gamma)}{v}$$

$$\dot{\theta} = q$$

where v is the modulus of the speed, γ is the flight path angle, θ is the pitch angle, q is the pitch rate, e is the propulsive balance, g is the standard gravitational acceleration, ℓ is an aerodynamic lift coefficient, w_1 is a wind perturbation.

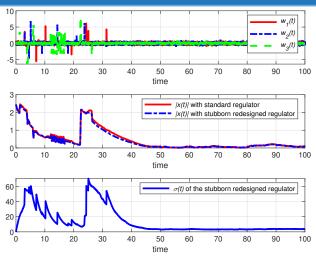
- The signals e, q are regarded as control inputs and γ, θ as measured outputs.
- The measurement noises w_2 , w_3 affect the outputs.
- The linearization around an equilibrium $(v_0, 0, 0)$ of this model provides matrices A_p, B_p, C_p as follows:

$$\begin{bmatrix}
A_p & B_p & B_{pw} \\
C_p & D_{pw}
\end{bmatrix} = \begin{bmatrix}
0 & -g & 0 & 1 & 0 & 1 & 0 & 0 \\
gv_0^{-2} & -\ell v_0 & \ell v_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}.$$

■ We choose g=1, $v_0=2$, $\ell=0.1$ and used pole placement to select closed-loop poles having real part in [-3,-0.1].

ction Observer Class Stubborn Redesign Dead-Zone Redesign Synchronization Dynamic Output Feedback Conclusio

Simulation Results



Integrals of $ x(t) $, $t \in [0, 60]$	
Standard reg.	Stubborn reg.
42.4572	39.4415

- ✓ The adpaptive saturation attenuates the effect of the outliers upon their sudden rise.
- Small noises are not reduced at steady state.

Deadzone Redesign to handle persistent measurement noise

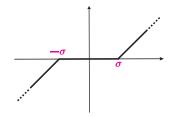
The controller dynamics, augmented with a new non-negative state σ ∈ ℝ>0, is given by

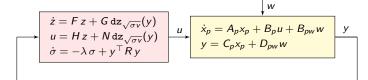
$$\dot{z} = F z + G \, dz_{\sqrt{\sigma v}}(y)$$

$$u = H z + N \, dz_{\sqrt{\sigma v}}(y)$$

$$\dot{\sigma} = -\lambda \, \sigma + y^{\top} R y,$$

where we modify the original structure by adding a dynamic dead-zone.





√ The dead-zone provides a trimming effect on y, which denoises the feedback loop
when the output is close enough to zero.

Closed-Loop Input-to-State Stability After Redesign

Theorem 5 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Assume that there exist a scalar $\lambda>0$, a symmetric positive definite matrix $P\in\mathbb{R}^{n\times n}$, a symmetric positive semi-definite matrix $R\in\mathbb{R}^{p\times p}$, a diagonal positive definite matrices $U_g\in\mathbb{R}^{p\times p}$ such that

$$M_g := \operatorname{He} \begin{bmatrix} PA + rac{1}{2}C^{\top}RC & -PB \ U_gC & -U_g(1+\lambda) \end{bmatrix} < 0,$$

is satisfied, where $\mathrm{He}(\star) := \star + \star^{\top}$. Then, the closed loop system with dynamically **dead-zonated output regulator** having entries with a vector v as the inverse of the diagonal elements of U_g (namely $\mathrm{diag}(v) = U_g^{-1}$), is finite-gain exponentially ISS from w to x, namely there exist positive scalars M, $\alpha > \mathrm{and} \gamma$ such that all solutions satisfy

$$\left| (x(t), \sqrt{\sigma(t)}) \right| \le M e^{-\alpha t} \left| (x(0), \sqrt{\sigma(0)}) \right| + \gamma \sup_{\tau \in [0, t]} |w(\tau)|,$$

for all $t \geq 0$.

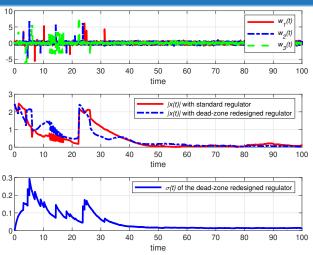
■ The proof of Theorem 5 follows from using the Lyapunov function $\mathcal{V}(x,\sigma) = x^\top P x + 2\sigma$ with $P = P^\top > 0$ to be suitably chosen.

Proposition 6 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Under Assumption 1 there exist parameters P, R, U_g , and λ satisfying the conditions of Theorem 5.

Observer Class Stubborn Redesign Dead-Zone Redesign Synchronization Dynamic Output Feedback Conclusio

Simulation Results



Integrals of $ x(t) $, $t \in [60, 100]$	
Standard reg.	Dead-zone reg.
3.6459	2.5558

- √ The dead-zone adaptation attenuates the effect of small noises at steady state.
- Outliers deteriorate performance.

Outline

- 7 Conclusions

Conclusions

Introduction

Summary

- Adaptive nonlinearities such as saturation and dead-zone can improve the performance of state observers and controllers in the presence of measurement noise.
- General and flexible approach to redesign ISS observers and output feedback regulators while preserving ISS.
- The effectiveness of the redesign approach follows from devising the appropriate ISS Lyapunov functions.
- For linear systems, design conditions based on LMIs are established that can be treated by means of convex optimization tools.

Next Goals

- redesign in output feedback control for nonlinear continuous-time systems;
- extension of the redesign approach for estimation and control of discrete-time systems;
- experimental validation of the approach on suitable case studies.