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The observation problem

ẋ = f (x , u)

y = h(x) + v

System Σ

˙̂x = f (x̂ , u) + L(y − h(x̂))

Observer Σ̂

x̂y , uu

System Σ

state x ∈ Rn

known external input u ∈ U

measured output y ∈ Rm

Observer Σ̂

estimate x̂ ∈ Rn

unknown measurement noise v ∈ Rm

ISS Observer

The observer Σ̂ is ISS (input-to-state stable) if

|x(t)− x̂(t)| ≤ βββ(|x(0)− x̂(0)|, t) + γγγ
(

sup
s∈[0,t)

|v(s)|
)

for all t ≥ 0, for some βββ ∈ KL and γγγ ∈ K.
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Properties of an observer

Characteristics of an ISS Observer

βββ characterizes the performance in nominal conditions (v = 0).

γγγ characterizes the robustness with respect to v .

|x(t)− x̂(t)| ≤ βββ(|x(0)− x̂(0)|, t) + γγγ
(

sup
s∈[0,t)

|v(s)|
)

Ideal behavior of an ISS observer:

✓ Fast convergence:

for example, β(s, t) = ae−bt |s|, a, b > 0, with b “large.”

✓ Small Peaking:

for example, β(s, t) = ae−bt |s|, a, b > 0, with a “small.”

✓ Small asymptotic gain:

for example, γ(s) = γ̄|s|, with γ̄ > 0 “small.”

✗ Trade-off between speed of convergence and asymptotic gain
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The linear case: an example

Consider a linear system and a linear (Luenberger) observer

Σ :

{
ẋ = Ax + Bu
y = Cx + v

Σ̂ : ˙̂x = Ax̂ + Bu + LLL(y − Cx̂)

with

(A,C) detectable pair

LLL gain of the observer to be chosen so that A− LLLC is Hurwitz.

The dynamics of the estimation error x̃ := x − x̂ is given by

˙̃x = (A− LLLC)x̃ − LLLv

and thus

|x(t)−x̂(t)| ≤
∣∣∣e(A−LLLC)t

∣∣∣ |x(0)−x̂(0)|+γγγ (|v |∞) ,

 (s, t) 7→ βββ(s, t) :=
∣∣e(A−LLLC)t

∣∣ |s|
s 7→ γγγ(s) := |s||LLL|

∫ ∞

0
|e(A−LLLC)τ |dτ

(finite-gain exponentially ISS).

✗ We cannot make both A− LLLC s.t. |e(A−LLLC)t | ≤ M exp(−αt) with α large (i.e.,
fast transient) and γγγ(·) small (i.e. insensitive to noise)
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Observer gain design for linear systems

Based on additional hypothesis on v , we can figure out different approaches:

H∞ design allows to minimize γγγ over all frequencies.

If v acts on some known frequencies ω ∈ [ω, ω̄], minimize the gain

G(jω) =
[
jωI − (A− LLLC)

]−1
LLL .

Kalman filter for optimal gain design

...
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Observer design for nonlinear systems

✓ Exploring some structural properties of the system, many different designs exist

Property Observer Technique
Detectability Kazantis-Kravaris Luenberger (KKL) observers
Uniform observability High-gain (HGO) observers
Lipschitz systems LMI or circle-criterion approach
Input-affine systems Riccati-like approach
Local observability extended Kalman filters
. . . . . .

✗ [Shim, Seo, & Teel, Automatica 2003, p. 890] and reference therein
pointed out the fragility (lack of ISS) of certain nonlinear observers

✗ Few tools to analyze the effect of noises in the nonlinear framework:

ISS gains based on Lyapunov analysis [Alessandri, Mathematics 2020];

analysis of measurement noise in high-gain observers [Sanfelice & Praly,
Automatica 2011], [Astolfi, Marconi, Praly, & Teel, NOLCOS 2016].

✗ Techniques to improve sensitivity to measurement noise are developed ad hoc
(i.e. for specific classes of systems and/or observers)

L. Zaccarian

Stubborn and Dead-Zone Redesign for State Observers and Dynamic Output Feedback 7 / 49



Introduction Observer Class Stubborn Redesign Dead-Zone Redesign Synchronization Dynamic Output Feedback Conclusions

Plan of the talk

We follow a redesign approach.

We focus on two special classes of measurement-noise perturbations v :

1) outliers (i.e. sporadic impulsive noise);

2) persistent “small” noise.

Two techniques will be developed:

1) dynamic saturation redesign (“stubborn redesign”);

2) dynamic dead-zone redesign.

We will provide sufficient conditions to apply a general paradigm for the purpose
of redesign of

1) state observers for linear and nonlinear systems;

2) static output feedback for synchronization of multi-agent systems;

3) dynamic output feedback of linear plants.
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Main Assumptions

ẋ = f (x , u) +www

y = h(x) + vvv

System Σ

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gddd

x̂ = ψ(z)

Observer Σ̂

x̂y , uu

state x ∈ Rn

known external input u ∈ U

measured output y ∈ Rm

unknown perturbation www ∈ W

observer state z ∈ Rϱ, ϱ ≥ n

state estimate x̂ ∈ Rn

unknown measurement noise vvv ∈ V

unknown perturbation ddd ∈ D

G is a selection matrix

κ is the correction term

ψ maps the state of the observer z in the actual estimate x̂

We will use D+ to denote the (upper-right) Dini derivative

D+V (t) := lim sup
h→0

V (t + h)− V (t)

h
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Main Assumptions

ẋ = f (x , u) + w

y = h(x) + v

System Σ

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gd

x̂ = ψ(z)

Observer Σ̂

x̂y , uu

Assumption 1 (ISS Observer with ISS Lyapunov function)

There exists V : X × Z → R≥0, a function ψ−R : X → Z , α, ᾱ ∈ K∞, and c, κ̄
cv , cw > 0 such that

1 x = ψ(ψ−R(x)) (pseudo-right-inverse)

2 ∥G∥ ≤ 1, |κ(z, y1)− κ(z, y2)| ≤ κ̄|y1 − y2| (Lipschizianity)

3 α(|x − ψ(z)|) ≤ V (x , z) ≤ ᾱ(|ψ−R(x)− z|) (“sandwich”)

4 D+V ≤ −cV (x , z) + cv |v |+ cw |w |+ cd |d | (“ISS bound”)

for all x ∈ X , u ∈ U, z ∈ Z , y1, y2 ∈ Rm, (v ,w , d) ∈ V ×W × D.

The observer is supposed to be ISS also with respect to system disturbances w
and observer perturbations d .
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Main Assumptions
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Assumption 2 (output-growth condition)

There exists ℓ0, ℓ1, ℓv , ℓw , ℓd > 0 such that

5 |h(x)− h(x̂)| ≤ ℓ0V (x , z)

6 |D+(h(x)− h(x̂))| ≤ ℓ1V (x , z) + ℓv |v |+ ℓw |w |+ ℓd |d |

for all x ∈ X , u ∈ U, z ∈ Z , y1, y2 ∈ Rm, (v ,w , d) ∈ V ×W × D.

Recall that V (x , z) ≥ α(|x − ψ(z)|). Hence condition 5 holds if

|h(x)− h(x̂)| = |h(x)− h(ψ(z))| ≤ k0 α(|x − ψ(z)|), k0 > 0 .

Condition 6 imposes a growth on the derivative of y − ŷ , with ŷ := h(x̂).
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Example: Input-affine systems (Besançon et al, 1996)

Σ :

{
ẋ = A(u)x + Bu

y = Cx
Σ̂ :

{
˙̂x = A(u)x̂ + Bu + P−1C⊤(y − Cx̂)

Ṗ = −2µP − A(u)⊤P − PA(u) + 2C⊤C

Observer with Lipschitz output injection term

ż = φ(z, u) + Gκ(z, y − h(x̂)), x̂ = ψ(z)

1 x = ψ(ψ−R(x))

2 |G | ≤ 1, |κ(z, y1)− κ(z, y2)| ≤ κ̄|y1 − y2|

✓ z = (x̂ , vec(P)), ψ(z) = [I 0](x̂ , vec(P)) = x̂ , ψ−R(x) = (x , 0)

✓ G = [I ; 0], κ(z, s) = P−1C⊤s

✓ Lipschizianity of κ follows from boundedness of P.
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Example: Input-affine systems (Sandwich and Directional Derivative)

Σ :

{
ẋ = A(u)x + Bu +www

y = Cx + vvv
Σ̂ :

{
˙̂x = A(u)x̂ + Bu + P−1C⊤(y − Cx̂) + ddd

Ṗ = −2µP − A(u)⊤P − PA(u) + 2C⊤C

Observer with ISS Lyapunov function

3 α(|x − ψ(z)|) ≤ VVV (x , z) ≤ ᾱ(|ψ−R(x)− z|)
4 D+VVV ≤ −cVVV (x , z) + cv |vvv |+ cw |www |+ cd |ddd |

• Suppose PE is verified =⇒ pI ≤ P(t) ≤ p̄I ∀ t ≥ 0.

• Select VVV (x , z) :=
√

W (z, x), W (z, x) := (x − x̂)⊤P(x − x̂).

✓
√
p|x − x̂ | ≤ VVV (z, x) ≤

√
p̄|x − x̂ | ≤

√
p̄|ψ−R(x)− z|,

{
ψ−R(x) = (x , 0)
z = (x , vec(P))

✓ Furthermore, Ẇ = −2µW + 2(x − x̂)⊤[P(www − ddd) + C⊤vvv ], which gives

D+VVV ≤ −µVVV + cv |vvv |+ cw |www |+ cd |ddd |.
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Example: Input-affine systems (Output Growth Condition)

Σ :

{
ẋ = A(u)x + Bu +www

y = Cx + vvv
Σ̂ :

{
˙̂x = A(u)x̂ + Bu + P−1C⊤(y − Cx̂) + ddd

Ṗ = −2µP − A(u)⊤P − PA(u) + 2C⊤C

Observer with ISS Lyapunov function and output growth-condition

5 |h(x)− h(x̂)| ≤ ℓ0VVV (x , z)

6 |D+(h(x)− h(x̂))| ≤ ℓ1VVV (x , z) + ℓv |vvv |+ ℓw |www |+ ℓd |ddd |

✓ |C(x − x̂)| ≤ |C |
√
p
VVV (x , z)

✓ |D+C(x − x̂)| ≤ |C(A(u)− P−1C⊤C)(x − x̂)− CP−1C⊤vvv + Cddd + Cwww |

≤ (|C | sup |A(u)|+ |C |3p−1)(
√

p)−1︸ ︷︷ ︸
ℓ1

VVV (x , z)+

+ p−1|C |2︸ ︷︷ ︸
ℓv

|vvv |+ |C |︸︷︷︸
ℓw

|www |+ |C |︸︷︷︸
ℓd

|ddd |
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Other examples

Assumptions 1-2 are verified by the following observer techniques:

[Astolfi, Alessandri & Zaccarian (2021)]

Kalman filter and extended Kalman filter [Kalman (1960), others]

Linear Luenberger observers [Luenberger (1971)]

Observers for Lipschitz systems based on LMI design or circle criterion
[Rajamani (1998), Arcak & Kokotovic (2001)]

[Zemouche & Boutayeb (2013)]

Observers for input-affine systems with Riccati design
[Besançon & Bornard & Hammouri (1996)]

High-gain observers [Tornambé (1991), Khalil (1992)]

[Gauthier & Kupka (2001)]

Kazantzis-Kravaris/Luenberger observer [Andrieu & Praly (2006)]

. . .
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How to deal with outliers?

Observer:

−
ż = φ(z, u) + Gκ(z,eyeyey )

x̂ = ψ(z)

y eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

We have y = h(x) + vvv where vvv is supposed to be an outlier (sporadic impulsive
perturbations).
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ŷ = h(x̂)

We have y = h(x) + vvv where vvv is supposed to be an outlier (sporadic impulsive
perturbations).

L. Zaccarian

Stubborn and Dead-Zone Redesign for State Observers and Dynamic Output Feedback 18 / 49



Introduction Observer Class Stubborn Redesign Dead-Zone Redesign Synchronization Dynamic Output Feedback Conclusions

How to deal with outliers?

Observer:

−
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ż = φ(z, u) + Gκ(z,eyeyey )

x̂ = ψ(z)

y eyeyey = y − ŷ x̂
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How to deal with outliers?

Observer:

−
ż = φ(z, u) + Gκ(z,eyeyey )

x̂ = ψ(z)

y eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

Main idea:
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How to deal with outliers?

Observer:

−
ż = φ(z, u) + Gκ(z,eyeyey )

x̂ = ψ(z)

y eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

Suppose eyeyey is very small for a long amount of time

=⇒ x and x̂ are close to each other

=⇒ we don’t want to use the correction term κ(z,eyeyey )

Suppose eyeyey is large but for a very short amount of time

=⇒ it could be an outlier!

=⇒ we don’t want to use the correction term κ(z,eyeyey )

If eyeyey is large for a long amount of time

=⇒ x and x̂ are far from each other

=⇒ we need to use the correction term κ(z,eyeyey )

L. Zaccarian

Stubborn and Dead-Zone Redesign for State Observers and Dynamic Output Feedback 19 / 49



Introduction Observer Class Stubborn Redesign Dead-Zone Redesign Synchronization Dynamic Output Feedback Conclusions

How to deal with outliers?

Observer:

−
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A Dynamic Saturation Scheme

We modify the previous structure by adding a dynamic saturation for eyeyey = y − ŷ , i.e.,

−
σ̇σσ = −λσσσ + θ|eyeyey |
ēȳeȳey = satσσσ(eyeyey )

Dynamic Saturation

ż = φ(z, u) + Gκ(z, ēȳeȳey )

x̂ = ψ(z)

ēȳeȳeyy eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

where satσσσ(s) := max{−σσσ,min{σσσ, s}} and λ, θ > 0 (from now on we consider a
scalar output to simplify the pictorial description).

What happens in the presence of an outlier?
If eyeyey is persistently small then σσσ becomes small.
If an outlier occurs, eyeyey becomes large but ēȳeȳey is saturated at the current (small)
value of σσσ, thus mitigating the outlier’s effect on the estimate.
If eyeyey is persistently large then σσσ becomes large and we desaturate
(avoids intrinsic limitations of saturated feedback).
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ż = φ(z, u) + Gκ(z, ēȳeȳey )
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Saturation Redesign: Main Result

Theorem 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system Σ and observer Σ̂

Σ :

{
ẋ = f (x , u) + w

y = h(x) + v
Σ̂ :

{
ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gd

x̂ = ψ(z)

Suppose that Σ̂ is an ISS Observer for Σ satisfying the output-growth condition.
Then, for any λ > 0 there exists a θ⋆ > 0 such that, for any θ > θ⋆, the observer

Σ̂sat :


ż = φ(z, u) + Gκ(z, satσ(y − h(x̂))) + Gd

σ̇ = −λσ + θ|y − h(x̂)|

x̂ = ψ(z)

is an ISS Observer for Σ with ISS Lyapunov function satisfying the output-growth
condition.

If y ∈ Rm, m ≥ 1, then Σ̂sat reads

ż = φ(z, u) + Gκ
(
z,
[
satσ1 (y1 − h1(x̂)), . . . , satσm (ym − hm(x̂))

])
σ̇i = −λiσi + θi |yi − hi (x̂)| i = 1, . . . ,m,

In general, λ ≤ θ
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ż = φ(z, u) + Gκ(z, satσ(y − h(x̂))) + Gd

σ̇ = −λσ + θ|y − h(x̂)|

x̂ = ψ(z)

is an ISS Observer for Σ with ISS Lyapunov function satisfying the output-growth
condition.

If y ∈ Rm, m ≥ 1, then Σ̂sat reads
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Sketch of Proof of Theorem 1

Rewrite the observer Σ̂sat as
σ̇σσ = −λσσσ + θ|y − h(x̂)|

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gδδδ

δδδ = κ(z, satσσσ(y − h(x̂)))− κ(z, y − h(x̂)) .

In light of the Lipschitz properties of κ and saturation function, we have

|δδδ| ≤ κ̄
∣∣satσσσ(y − h(x̂))− (y − h(x̂))

∣∣ ≤ κ̄|y − h(x̂)| .

Use the Lyapunov function

(x , z,σσσ) 7→ W (x , z, σ) = VVV (x , z) + ζσσσ + (ζ + η)max{|y − h(x̂)| − σσσ, 0}

with ζ, η > 0.
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(x , z,σσσ) 7→ W (x , z, σ) = VVV (x , z) + ζσσσ + (ζ + η)max{|y − h(x̂)| − σσσ, 0}

with ζ, η > 0.

When |y − h(x̂)| ≤ σ, then δδδ = 0, and we have

D+W ≤ −cV (x , z)− ζλσ + ζθ|y − h(x̂)|

using the output-growth condition we obtain

D+W ≤ −(c − ζθℓ0)V (x , z)− ζλσ ≤ 0

for ζ small enough.
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with ζ, η > 0.

When |y − h(x̂)| > σ, then δδδ ̸= 0, and we have

D+W ≤− cV (x , z) + cd |δ|+ (ζ + η)|D+(y − h(x̂))|+ ηλσ − ηθ|y − h(x̂)|) .

By using the output-growth condition we obtain

D+W ≤ −
[
c − (ζ + η)(ℓ1 + ℓ0κ̄ℓd )

]
V (x , z)− (θη − λη + cd κ̄ℓ0)|y − h(x̂)|

≤ 0

for ζ, η small enough and θ large enough.
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(x , z,σσσ) 7→ W (x , z, σ) = VVV (x , z) + ζσσσ + (ζ + η)max{|y − h(x̂)| − σσσ, 0}

with ζ, η > 0.

✓ We conclude that D+W ≤ −εW for some ε > 0.

✓ The analysis can be done with www ,vvv ,ddd to show the desired ISS properties.

✓ It is not to hard to verify also the other properties for the redesigned observer.
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Noise effect analysis for linear systems

Consider the linear case

Σ :

{
ẋ = Ax + Bu

y = Cx + vvv ∈ R
Σ̂ : ˙̂x = Ax̂ + Bu + LLL(y − Cx̂)

and the (nonlinear) redesigned observer

Σ̂sat :

{
˙̂x = Ax̂ + Bu + LLL satσ(y − Cx̂)

σ̇ = −λλλσ + θθθ|y − Cx̂ | .

Consider the error variables

x̃0 := x − x̂ , x̂ ∈ Σ̂,

x̃sat := x − x̂ , x̂ ∈ Σ̂sat.

We are interested in analyzing the effect of two types of measurement noise vvv :

• impulsive noise (outlier);

• constant noise.
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Effect of outliers in the linear case

Proposition 1 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Suppose vvv is a piecewise constant perturbation of the form

vvv(t) = δτττ (t) =

{ 1

τττ
0 ≤ t ≤ τττ

0 t > τττ .

Suppose A is non-singular.

Consider the solutions of Σ̂ and Σ̂sat with x̃0(0) = x̃sat(0) = 0 and σ(0) = 0.

Then, as τττ tends to 0+, we have

|x̃sat(τττ)| ≤ 2τττ θθθ|x̃0(τττ)| .

Furthermore, |x̃sat(t)| converges to zero if τττ → 0+.

✓ The performance in the presence of outliers is improved.

✓ If the outlier is instantaneous (τττ = 0), its effect is completely erased!

After t ≥ τττ , there are no more perturbations vvv = 0

=⇒ the observers evolves with initial conditions such that |x̃sat(0)| < |x̃0(0)|.
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Effect of constant noise in the linear case

Proposition 2 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Suppose vvv is constant.

Suppose (A− LLLC) is Hurwitz.

For any θθθ ≥ λλλ the disturbance-to-error DC -gains between vvv and |x̃0|, and between vvv
and |x̃sat|, coincide.

For constant vvv , the redesigned observer cannot do worse than the nominal one.
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A Numerical Example

Σ :

{
ẋ = Ax + Bu
y = Cx + vvv

Σ̂sat :

{
˙̂x = Ax̂ + Bu + LLL satσ(y − Cx̂)
σ̇ = −λλλσ + θθθ|y − Cx̂ |

A =

(
0 1
−1 0

)
, B =

(
0
0

)
, C = ( 1 0) , LLL =

(
1
1

)
, x(0) =

(
0
1

)
, x̂(0) =

(
1
−1

)

vvv(t) =

 0 0 ≤ t ≤ 20,
δτ (t) 20 ≤ t ≤ 40, τ = 0.01
1 40 ≤ t ≤ 60,

• |x̃0|(t) of Σ̂ • |x̃sat(t)| of Σ̂sat with λλλ = θθθ = 10 • |x̃sat(t)| of Σ̂sat with
λλλ = θθθ = 1
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Another scenario: persistent small measurement noise

−
ż = φ(z, u) + Gκ(z,eyeyey )

x̂ = ψ(z)

y eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

Suppose y = h(x) + vvv , with vvv a small persistent measurement noise.

When eyeyey is persistently small, we have eyeyey ≃ vvv :

=⇒ the information given by eyeyey is not reliable

=⇒ we want to trim out eyeyey .
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A Dynamic Dead-Zone Scheme

We modify the previous structure by adding a dynamic dead-zone for eyeyey = y − ŷ , i.e.,

−
σ̇σσ = −λσσσ + θ|eyeyey |
ēȳeȳey = dzσσσ(eyeyey )

Dynamic Dead-zone

ż = φ(z, u) + Gκ(z, ēȳeȳey )

x̂ = ψ(z)

ēȳeȳeyy eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

where dzσσσ(s) := s − satσσσs and λ, θ > 0.
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A Dynamic Dead-Zone Scheme

We modify the previous structure by adding a dynamic dead-zone for eyeyey = y − ŷ , i.e.,

−
σ̇σσ = −λσσσ + θ|eyeyey |
ēȳeȳey = dzσσσ(eyeyey )

Dynamic Dead-zone

ż = φ(z, u) + Gκ(z, ēȳeȳey )

x̂ = ψ(z)

ēȳeȳeyy eyeyey = y − ŷ x̂

h(x̂)

ŷ = h(x̂)

where dzσσσ(s) := s − satσσσs and λ, θ > 0.

The level of the dead-zone is selected as the current value of σσσ.

If |eyeyey | > σσσ then |dzσσσ(eyeyey )| = |eyeyey |
(
1−

σσσ

|eyeyey |

)
≤ |eyeyey |.

If |eyeyey | < σσσ then dzσσσ(eyeyey ) = 0.

We obtain a trimming effect of eyeyey .
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Dead-Zone Redesign: Main Result

Theorem 2 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Consider a given system Σ and observer Σ̂

Σ :

{
ẋ = f (x , u) + w

y = h(x) + v
Σ̂ :

{
ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gd

x̂ = ψ(z) .

Suppose that Σ̂ is an ISS observer for Σ satisfying the output-growth condition. Then,
for any θ > 0 there exists a λ⋆ > 0 such that, for any λ > λ⋆, the observer

Σ̂dz :


ż = φ(z, u) + Gκ(z, dzσ(y − h(x̂))) + Gd

σ̇ = −λσ + θ|y − h(x̂)|

x̂ = ψ(z)

is an ISS observer for Σ with ISS Lyapunov function satisfying the output-growth
condition.

If y ∈ Rm, m ≥ 1, then Σ̂dz reads

ż = φ(z, u) + Gκ
(
z,
[
dzσ1 (y1 − h1(x̂)), . . . , dzσm (ym − hm(x̂))

])
σ̇i = −λiσi + θi |yi − hi (x̂)| i = 1, . . . ,m.

In general, λ ≥ θ.
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Sketch of Proof of Theorem 2

Rewrite the observer Σ̂dz as
σ̇σσ = −λσσσ + θ|y − h(x̂)|

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gδδδ

δδδ = κ(z, dzσσσ(y − h(x̂)))− κ(z, y − h(x̂)) .

In light of the Lipschitz properties of κ and the dead-zone function, we have

|δδδ| ≤ κ̄
∣∣dzσσσ(y − h(x̂))− (y − h(x̂))

∣∣ ≤ κ̄σσσ .

Use the Lyapunov function

(x , z,σσσ) 7→ W (x , z,σσσ) = V (x , z) + ζ σσσ

with ζ > 0.
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Sketch of Proof of Theorem 2

Rewrite the observer Σ̂dz as
σ̇σσ = −λσσσ + θ|y − h(x̂)|

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gδδδ

δδδ = κ(z, dzσσσ(y − h(x̂)))− κ(z, y − h(x̂)) .

In light of the Lipschitz properties of κ and the dead-zone function, we have

|δδδ| ≤ κ̄
∣∣dzσσσ(y − h(x̂))− (y − h(x̂))

∣∣ ≤ κ̄σσσ .

Use the Lyapunov function

(x , z,σσσ) 7→ W (x , z,σσσ) = V (x , z) + ζ σσσ

with ζ > 0.

When |y − h(x̂)| > σ then δδδ = 0 and we have

D+W ≤ −cV (x , z)− ζλσ + ζθ|y − h(x̂)|

using the output-growht condition

D+W ≤ −(c − ζθℓ0)V (x , z)− ζλσ ≤ 0

for ζ small enough (θ is fixed).
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Sketch of Proof of Theorem 2

Rewrite the observer Σ̂dz as
σ̇σσ = −λσσσ + θ|y − h(x̂)|

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gδδδ

δδδ = κ(z, dzσσσ(y − h(x̂)))− κ(z, y − h(x̂)) .

In light of the Lipschitz properties of κ and the dead-zone function, we have

|δδδ| ≤ κ̄
∣∣dzσσσ(y − h(x̂))− (y − h(x̂))

∣∣ ≤ κ̄σσσ .

Use the Lyapunov function

(x , z,σσσ) 7→ W (x , z,σσσ) = V (x , z) + ζ σσσ

with ζ > 0.

When |y − h(x̂)| ≤ σ then δδδ ̸= 0 and we have

D+W ≤ −cV (x , z) + cd |δ| − ζλσ + ζθ|y − h(x̂)|

using the output-growth condition

D+W ≤ −cV (x , z)− (ζλ− ζθ − κ̄cd )σ ≤ 0

for λ large enough (ζ, θ are fixed).
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Sketch of Proof of Theorem 2

Rewrite the observer Σ̂dz as
σ̇σσ = −λσσσ + θ|y − h(x̂)|

ż = φ(z, u) + Gκ(z, y − h(x̂)) + Gδδδ

δδδ = κ(z, dzσσσ(y − h(x̂)))− κ(z, y − h(x̂)) .

In light of the Lipschitz properties of κ and the dead-zone function, we have

|δδδ| ≤ κ̄
∣∣dzσσσ(y − h(x̂))− (y − h(x̂))

∣∣ ≤ κ̄σσσ .

Use the Lyapunov function

(x , z,σσσ) 7→ W (x , z,σσσ) = V (x , z) + ζ σσσ

with ζ > 0.

✓ We conclude that D+W ≤ −εW for some ε > 0.

✓ The analysis can be done with www ,vvv ,ddd to show the desired ISS properties.

✓ It is not to hard to verify also the other properties for the redesigned observer.
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Noise effect analysis for linear systems

Consider the linear case

Σ :

{
ẋ = Ax + Bu

y = Cx + v ∈ R
Σ̂ : ˙̂x = Ax̂ + Bu + LLL(y − Cx̂)

and the (nonlinear) redesigned observer

Σ̂dz :

{
˙̂x = Ax̂ + Bu + LLL dzσ(y − Cx̂)

σ̇ = −λλλσ + θθθ|y − Cx̂ | .

Consider the error variables

x̃0 := x − x̂ , x̂ ∈ Σ̂,

x̃dz := x − x̂ , x̂ ∈ Σ̂dz.

We are interested in analyzing the effect of constant perturbations
(approximation of persistently small noise).
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Effect of constant noise in the linear case

Proposition 3 [Astolfi, Alessandri & Zaccarian, IEEE TAC 2021]

Suppose vvv is constant.

Suppose (A− LLLC) is Hurwitz and CA−1LLL < 1.

The disturbance-to-error DC -gains between vvv and |x̃0|, denoted as k0, and between vvv
and |x̃dz|, denoted as kdz, satisfy

kdz ≤
[
1− k̃

(
θθθ

λλλ

)]
k0

for any λλλ > θθθ ≥ 0 and for some k̃ ∈ K.

The DC-gain is always reduced thus improving the rejection to measurement
noise.

The condition CA−1LLL < 1 is always verified if both A and (A− LLLC) are Hurwitz.
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A Numerical Example

Σ :

{
ẋ = Ax + Bu
y = Cx + vvv

Σ̂sat :

{
˙̂x = Ax̂ + Bu + LLL dzσ(y − Cx̂)
σ̇ = −λλλσ + θθθ|y − Cx̂ |

A =

(
0 1
−1 0

)
, B =

(
0
0

)
, C = ( 1 0) , LLL =

(
1
1

)
, x(0) =

(
0
1

)
, x̂(0) =

(
1
−1

)

vvv(t) =

 0 0 ≤ t ≤ 20,
1 20 ≤ t ≤ 40
sin(50t) 40 ≤ t ≤ 60,

• sup∞ |x̃0(t)| ≤ 0.028
• sup∞ |x̃dz(t)| ≤ 0.022
• sup∞ |x̃dz(t)| ≤ 0.016

• |x̃0(t)| of Σ̂
• |x̃dz(t)| of Σ̂sat with λλλ = 4, θθθ = 1 • |x̃dz(t)| of Σ̂sat with λλλ = 2, θθθ = 1

L. Zaccarian

Stubborn and Dead-Zone Redesign for State Observers and Dynamic Output Feedback 33 / 49



Introduction Observer Class Stubborn Redesign Dead-Zone Redesign Synchronization Dynamic Output Feedback Conclusions

Application to vehicle lateral speed estimation

linear parameter-varying model (parameter r = yaw rate){
ẋ = A(r)x + u

y = Cx ,
A(r) :=

[
0 r
−r 0

]
, C :=

[
1 0

]
.

yaw-rate dependent kinematic observer{
˙̂x = A(r)x̂ + u + L(r)(ŷ − y)

ŷ = Cx̂ ,
L(r) :=

[
−2α|r |

(1− α2)r

]
,

deadzonated observer reduces the sensitivity to noise

Starting point banked road
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A synchronization problem for multi-agent systems

Consider a synchronization problem among N identical agents

ẋi = Axi + ϕ(xi ) + ui i = 1, . . . ,N,

yi = Cxi i = 1, . . . ,N,

xi ∈ Rn, ui ∈ R, yi ∈ R .

We want to achieve consensus among all the states

lim
t→∞

|xi (t)− xj (t)| = 0 ∀ i , j ∈ {1, . . . ,N} .

We want to use a distributed control law.

A typical solution is to use a diffusive coupling

ui = −KKK
N∑
j=1

ℓij yj ℓij ∈ L

where L is the Laplacian matrix of the graph.
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Perturbations in networks

What happens in the presence of perturbations?

ẋi = Axi + ϕ(xi ) + ui

yi = Cxi + vvv i

If we have some ISS property then

lim sup
t→∞

|xi (t)− xj (t)| ≤ γγγ

(
N∑
i=1

|vvv i |
)

∀ i , j ∈ {1, . . . ,N} γγγ ∈ K .
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Perturbations in networks

What happens in the presence of perturbations?

ẋi = Axi + ϕ(xi ) + ui

yi = Cxi + vvv i

✗ Design of diffusing coupling for nonlinear systems in the presence of output
perturbations vvv i?
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Saturation and Dead-Zone Redesign for Diffusing Coupling

In the presence of impulsive disturbances (e.g. outliers, switching topologies, . . .)
we use a dynamic saturation redesign

σ̇σσi = −λσσσi + θi

∣∣∣∣∣
N∑
i=1

ℓij yj

∣∣∣∣∣ i = 1, . . . ,N

ui = −KKK satσσσi

(
N∑
i=1

ℓij yj

)
i = 1, . . . ,N .

In the presence of persistent disturbances (communication networks noise) we use
a dynamic dead-zone redesign

σ̇σσi = −λσσσi + θi

∣∣∣∣∣
N∑
i=1

ℓij yj

∣∣∣∣∣ i = 1, . . . ,N

ui = −KKK dzσσσi

(
N∑
i=1

ℓij yj

)
i = 1, . . . ,N .

Synchronization in nominal conditions vvv i = 0 is preserved.

Performance in the presence of noise is improved.

Proofs and philosophy design are very similar to the observer design.
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Simulation Example for Saturation Redesign

Consider a network of N = 6 linear oscillators

ẋi =

(
0 1
−1 0

)
xi + ui , yi =

(
1 0

)
xi + vvv i

in the presence of outliers vvv i .
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Simulation Example for Saturation Redesign

Consider a network of N = 6 linear oscillators
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1 0
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in the presence of outliers vvv i .
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Simulation Example for Dead-Zone Redesign

Consider a network of N = 5 Van der Pol oscillators

ẋi =

(
0 1
−1 µ

)
xi +

(
0

−µ x2i1xi2

)
+ ui , yi =

(
1 0

)
xi + vvv i

in the presence of white noise vvv i .
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Simulation Example for Dead-Zone Redesign
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Dynamic Output Feedback

ẋp = Apxp + Bpu + Bpww

y = Cpxp + Dpww

w

yu

Plant

state xp ∈ Rnp

known external input u ∈ Rm

measured output y ∈ Rp

unknown system and measurement
disturbances w ∈ Rnd

Controller

state z ∈ Rnc

ż = Fz + Gy

u = Hz + Ny

ẋp = Apxp + Bpu + Bpww

y = Cpxp + Dpww

w

u y

Assumption 1

The linear closed-loop system with w ≡ 0 is globally exponentially stable to the origin.
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Stubborn Redesgin to handle Measurment Outliers

The controller dynamics is augmented with a new non-negative state σσσ ∈ R≥0:

ż = F z + G sat√σσσv (y)

u = H z + N sat√σσσv (y)

σ̇σσ = −λσσσ + y⊤R y
where

√
σσσv are the componentwise square-roots of the elements of the

non-negative vector v scaled by σσσ; λ > 0; R is a symmetric, positive definite
matrix; satσσσ(s) := max{−σσσ,min{σσσ, s}}.

ż = F z + G sat√σv (y)

u = H z + N sat√σv (y)

σ̇ = −λσ + y⊤R y

ẋp = Apxp + Bpu + Bpww

y = Cpxp + Dpww

w

u y

Notice:
✓ The level of the saturation is a scaled square root of the current value of σσσ.
✓ The value of σσσ is dynamically adapted according to y⊤R y .

What happens in presence of an outlier?
✓ If y is persistently constant, then σσσ tends to a constant value.
✓ If an outlier occurs, y becomes large but the effect of y on the loop is saturated on the

current (small) value of
√
σσσv , mitigating its effect on the closed-loop system.

✓ If y grows or is persistently affected by outliers, then σσσ increases, thus generating
desaturation.
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Closed-Loop Input-to-State Stability After Redesign

Theorem 3 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Assume that there exist a scalar λ > 0, a symmetric positive definite matrix P ∈ Rn×n,
a symmetric positive semi-definite matrix R ∈ Rp×p , two diagonal positive definite
matrices Ug ∈ Rp×p , Uℓ ∈ Rp×p , and a matrix Y ∈ Rp×n such that inequalities

Mg := He

[
PA− 1

2
λC⊤RC + 1

2
λP −PB

UgC −Ug

]
< 0

Mℓ := He

[
PA −PB

UℓC + Y −Uℓ

]
< 0[

P Y⊤
(i)

Y(i) λ−1uℓ,i

]
≥ 0, ∀i = 1, ..., p,

are satisfied, where He(⋆) := ⋆+ ⋆⊤. Then, the closed loop system with dynamically
saturated output regulator having entries with a vector v as the inverse of the
diagonal elements of Uℓ (namely diag(v) = U−1

ℓ ), is finite-gain exponentially ISS from
w to x , namely there exist positive scalars M, α > and γ such that all solutions satisfy∣∣∣(x(t),√σ(t))∣∣∣ ≤ Me−αt

∣∣∣(x(0),√σ(0))∣∣∣+ γ sup
τ∈[0,t]

|w(τ)|,

for all t ≥ 0.
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Sketch of Proof and Feasibility

The proof of Theorem 3 follows from using the Lyapunov function

V(x , σ) = x⊤Px + ζσ + µmax{x⊤Px − λσ, 0}

with P symmetric positive semi-definite matrix and constants ζ, µ > 0 to be
suitably chosen.

It is an ISS Lyapunov function and it is not continuosly differentiable.

For an overview on nonsmooth Lyapunov functions, see [Della Rossa, Goebel,

Tanwani, Zaccarian, "Piecewise structure Lyapunov functions and

densely checked decrease conditions for hybrid systems," MCSS 2021].

The LMIs involved by Theorem 3 are homogeneus, thus they can be solved with
the additional condition P > I for increased numerical robustness

Proposition 4 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS

2022]

Under Assumption 1 there exist parameters P, R, Uℓ, Ug , Y and λ satisfying the
conditions of Theorem 3.
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Simulation Case Study

Linearization about an equilibrium point of the longitudinal dynamics of
fixed-wing aircrafts flying at high speed [Astolfi, Praly, "Integral action

in output feedback for multi-input multi-output nonlinear systems,"

IEEE TAC, 2017]:
v̇ = e − g sin(γ) + w1

γ̇ = ℓv sin(θ − γ)−
g cos(γ)

v
θ̇ = q

where v is the modulus of the speed, γ is the flight path angle, θ is the pitch
angle, q is the pitch rate, e is the propulsive balance, g is the standard
gravitational acceleration, ℓ is an aerodynamic lift coefficient, w1 is a wind
perturbation.
The signals e, q are regarded as control inputs and γ, θ as measured outputs.
The measurement noises w2, w3 affect the outputs.
The linearization around an equilibrium (v0, 0, 0) of this model provides matrices
Ap ,Bp ,Cp as follows:

[
Ap Bp Bpw

Cp Dpw

]
=


0 −g 0 1 0 1 0 0

gv−2
0 −ℓv0 ℓv0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .
We choose g = 1, v0 = 2, ℓ = 0.1 and used pole placement to select closed-loop
poles having real part in [−3,−0.1].
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Simulation Results
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60  (t) of the stubborn redesigned regulator

Integrals of |x(t)|, t ∈ [0, 60]
Standard reg. Stubborn reg.

42.4572 39.4415

✓ The adpaptive saturation attenuates the effect
of the outliers upon their sudden rise.

✗ Small noises are not reduced at steady state.
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Deadzone Redesign to handle persistent measurement noise

The controller dynamics, augmented
with a new non-negative state
σσσ ∈ R≥0, is given by

ż = F z + G dz√σσσv (y)

u = H z + N dz√σσσv (y)

σ̇σσ = −λσσσ + y⊤R y ,

where we modify the original structure
by adding a dynamic dead-zone.

ż = F z + G dz√σv (y)

u = H z + N dz√σv (y)

σ̇ = −λσ + y⊤R y

ẋp = Apxp + Bpu + Bpww

y = Cpxp + Dpww

w

u y

✓ The dead-zone provides a trimming effect on y , which denoises the feedback loop
when the output is close enough to zero.
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Closed-Loop Input-to-State Stability After Redesign

Theorem 5 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS 2022]

Assume that there exist a scalar λ > 0, a symmetric positive definite matrix
P ∈ Rn×n, a symmetric positive semi-definite matrix R ∈ Rp×p , a diagonal positive
definite matrices Ug ∈ Rp×p such that

Mg := He

[
PA+ 1

2
C⊤RC −PB

UgC −Ug (1 + λ)

]
< 0,

is satisfied, where He(⋆) := ⋆+ ⋆⊤. Then, the closed loop system with dynamically
dead-zonated output regulator having entries with a vector v as the inverse of the
diagonal elements of Ug (namely diag(v) = U−1

g ), is finite-gain exponentially ISS from
w to x , namely there exist positive scalars M, α > and γ such that all solutions satisfy∣∣∣(x(t),√σ(t))∣∣∣ ≤ Me−αt

∣∣∣(x(0),√σ(0))∣∣∣+ γ sup
τ∈[0,t]

|w(τ)|,

for all t ≥ 0.

The proof of Theorem 5 follows from using the Lyapunov function
V(x , σ) = x⊤Px + 2σ with P = P⊤ > 0 to be suitably chosen.

Proposition 6 [Tarbouriech, Alessandri, Astolfi, Zaccarian, IEEE LCSS

2022]

Under Assumption 1 there exist parameters P, R, Ug , and λ satisfying the conditions
of Theorem 5.
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Simulation Results
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Integrals of |x(t)|, t ∈ [60, 100]
Standard reg. Dead-zone reg.

3.6459 2.5558

✓ The dead-zone adaptation attenuates the effect
of small noises at steady state.

✗ Outliers deteriorate performance.
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Conclusions

Summary

Adaptive nonlinearities such as saturation and dead-zone can improve the
performance of state observers and controllers in the presence of measurement
noise.

General and flexible approach to redesign ISS observers and output feedback
regulators while preserving ISS.

The effectiveness of the redesign approach follows from devising the appropriate
ISS Lyapunov functions.

For linear systems, design conditions based on LMIs are established that can be
treated by means of convex optimization tools.

Next Goals

redesign in output feedback control for nonlinear continuous-time systems;

extension of the redesign approach for estimation and control of discrete-time
systems;

experimental validation of the approach on suitable case studies.

L. Zaccarian

Stubborn and Dead-Zone Redesign for State Observers and Dynamic Output Feedback 49 / 49


	Introduction
	Introduction

	Observer Class
	Observer Class

	Stubborn Redesign
	Stubborn redesign

	Dead-Zone Redesign
	Dead-zone redesign

	Synchronization
	Synchronization

	Dynamic Output Feedback
	Dynamic Output Feedback

	Conclusions
	Conclusions


