Optimizing shifted equilibria for enlarged basins of attraction in quadratically stabilizing saturated feedback

Luca Zaccarian

LAAS-CNRS, Université de Toulouse, Toulouse, France Department of Industrial Engineering, University of Trento, Italy

In Collaboration with:

- P. Braun: School of Engineering, Australian National University, Canberra, Australia
- A. Bhardwaj: School of Engineering, Australian National University, Canberra, Australia
- G. Giordano: Department of Industrial Engineering, University of Trento, Trento, Italy
- M. Jungers: CNRS, University of Lorraine, Nancy, France
- C. M. Kellett: School of Engineering, Australian National University, Canberra, Australia
- M. Saveriano: Department of Industrial Engineering, University of Trento, Italy
- I. Shames: School of Engineering, Australian National University, Canberra, Australia

42nd Benelux Meeting on Systems and Control, March 21, 2023

• Saturated linear systems:

 $\dot{x} = Ax + B \operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$

• (Asymmetric) actuator saturation: $(u^-, u^+ \in \mathbb{R}^m_{>0})$

$$\operatorname{sat}_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$$

• Deadzone: dz(u) = u - sat(u)

• Saturated linear systems:

 $\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$

- (Asymmetric) actuator saturation: $(u^-, u^+ \in \mathbb{R}^m_{>0})$ $\operatorname{sat}_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$
- Deadzone: dz(u) = u sat(u)

Local stabilization of the origin:

• Closed loop dynamics for u = Kx:

$$\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(Kx)$$

• If $A_{cl} = A + BK$ Hurwitz, then 0 is locally asymp. stable.

• Lyapunov function:
$$V(x) = x^T P x$$
 $[A_{cl}^T P + P A_{cl} < 0]$

• Estimate of the basin of attraction: (sublevel set)

$$\{x \in \mathbb{R}^n | x^T P x \le c\}, \quad c = \frac{\lambda_{\min}(P)}{\|K\|_2^2} \cdot \min\{\min\{u^-, u^+\}\}$$

1/17

• Saturated linear systems:

 $\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$

- (Asymmetric) actuator saturation: $(u^-, u^+ \in \mathbb{R}^m_{>0})$ sat $_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$
- Deadzone: dz(u) = u sat(u)

Subspace of induced equilibria:

$$\Gamma = \{ (x_e, u_e) \in \mathbb{R}^n \times \mathbb{R}^m | \ 0 = Ax_e + Bu_e \}$$

Local stabilization of the origin:

• Closed loop dynamics for u = Kx:

$$\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(Kx)$$

• If $A_{cl} = A + BK$ Hurwitz, then 0 is locally asymp. stable.

• Lyapunov function:
$$V(x) = x^T P x$$
 $[A_{cl}^T P + P A_{cl} < 0]$

• Estimate of the basin of attraction: (sublevel set)

$$\{x \in \mathbb{R}^n | x^T P x \le c\}, \quad c = \frac{\lambda_{\min}(P)}{\|K\|_2^2} \cdot \min\{\min\{u^-, u^+\}\}$$

• Saturated linear systems:

 $\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$

- (Asymmetric) actuator saturation: $(u^-, u^+ \in \mathbb{R}^m_{>0})$ sat $_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$
- Deadzone: dz(u) = u sat(u)

- Subspace of induced equilibria:
 - $\Gamma = \{ (x_e, u_e) \in \mathbb{R}^n \times \mathbb{R}^m | \ 0 = Ax_e + Bu_e \}$
- Stab. of induced equilibria: $\tilde{x} = x x_e$, $\tilde{u} = u u_e$

$$\dot{x} = \dot{\tilde{x}} = A(x - x_e) + B(\operatorname{sat}_{[u^-, u^+]}(u) - u_e)$$
$$= A\tilde{x} + B\operatorname{sat}_{[u^- + u_e, u^+ - u_e]}(\tilde{u})$$

Local stabilization of the origin:

• Closed loop dynamics for u = Kx:

$$\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(Kx)$$

- If $A_{cl} = A + BK$ Hurwitz, then 0 is locally asymp. stable.
- Lyapunov function: $V(x) = x^T P x$ $[A_{cl}^T P + P A_{cl} < 0]$
- Estimate of the basin of attraction: (sublevel set)

$$\{x \in \mathbb{R}^n | x^T P x \leq c\}, \quad c = \frac{\lambda_{\min}(P)}{\|K\|_2^2} \cdot \min\{\min\{u^-, u^+\}\}$$

1/17

Summary: Stabilizing controller design & Maximization of the basin of attraction

• Saturated linear systems:

 $\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$

- (Asymmetric) actuator saturation: $(u^-, u^+ \in \mathbb{R}^m_{>0})$
- Subspace of induced equilibria:

 $\Gamma = \{ (x_e, u_e) \in \mathbb{R}^n \times \mathbb{R}^m | \ 0 = Ax_e + Bu_e \}$

• Estimate of the basin of attraction: (sublevel set)

$$\{ x \in \mathbb{R}^n | (x - x_e)^T P(x - x_e) \le c \}; c = \frac{\lambda_{\min}(P)}{\|K\|_2^2} \cdot \min\{\min\{u^- + u_e, u^+ - u_e\} \}$$

Goal:

- Stabilize x = 0
- Maximize the estimate of the basin of attraction Idea:
 - Stabilize reference points x_e
 - Pull/Shift x_e to the origin
 - Use forward invariance of sublevel sets of Lyapunov functions

Assumptions and definitions

Saturated linear systems:

- $\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$
- (Asymmetric) Saturation:

$$\operatorname{sat}_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$$

- Saturation limits: $u^-, u^+ \in \mathbb{R}^m_{>0}$.
- Subspace of induced equilibria:

$$\Gamma = \{(x_e, u_e) | 0 = Ax_e + Bu_e\}$$

• Average saturation range & average saturation center:

$$\bar{u} = \frac{1}{2}(u^+ + u^-), \qquad u_\circ = \frac{1}{2}(u^+ - u^-)$$

- Assumptions:
 - $\bar{u} = \mathbb{1} \in \mathbb{R}^m$ (\rightsquigarrow Scaling of B)
 - (A, B) is stabilizable

Assumptions and definitions

Saturated linear systems:

$$\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$$

• (Asymmetric) Saturation:

$$\operatorname{sat}_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$$

- Saturation limits: $u^-, u^+ \in \mathbb{R}^m_{>0}$.
- Subspace of induced equilibria:

$$\Gamma = \{(x_e, u_e) \mid 0 = Ax_e + Bu_e\}$$

• Average saturation range & average saturation center:

$$\bar{u} = \frac{1}{2}(u^+ + u^-), \qquad u_\circ = \frac{1}{2}(u^+ - u^-)$$

- Assumptions:
 - $\bar{u} = \mathbb{1} \in \mathbb{R}^m (\rightsquigarrow \text{ Scaling of } B)$
 - ► (A, B) is stabilizable

Unique representation of equilibrium pairs:

• Let
$$\begin{bmatrix} A^{\perp} \\ B^{\perp} \end{bmatrix}$$
 represent the kernel of $\begin{bmatrix} A & B \end{bmatrix}$

• Then:
$$\Gamma = \{ (A^{\perp}\delta, B^{\perp}\delta) | \delta \in \mathbb{R}^q \}$$

$$x_e(\delta) = A^{\perp}\delta, \quad u_e(\delta) = B^{\perp}\delta, \quad \delta \in \mathbb{R}^q$$

Assumptions and definitions

Saturated linear systems:

$$\dot{x} = Ax + B\operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m)$$

• (Asymmetric) Saturation:

$$\operatorname{sat}_{[u^-, u^+]}(u) = \max\{-u^-, \min\{u^+, u\}\}$$

- Saturation limits: $u^-, u^+ \in \mathbb{R}^m_{>0}$.
- Subspace of induced equilibria:

$$\Gamma = \{(x_e, u_e) \mid 0 = Ax_e + Bu_e\}$$

• Average saturation range & average saturation center:

$$\bar{u} = \frac{1}{2}(u^+ + u^-), \qquad u_\circ = \frac{1}{2}(u^+ - u^-)$$

Assumptions:

•
$$\bar{u} = \mathbb{1} \in \mathbb{R}^m \iff \mathbf{Scaling of } B$$
)

► (A, B) is stabilizable

Unique representation of equilibrium pairs:

• Let $\begin{bmatrix} A^{\perp} \\ B^{\perp} \end{bmatrix}$ represent the kernel of $\begin{bmatrix} A & B \end{bmatrix}$ • Then: $\Gamma = \{(A^{\perp}\delta, B^{\perp}\delta) | \ \delta \in \mathbb{R}^q\}$ $x_e(\delta) = A^{\perp}\delta, \quad u_e(\delta) = B^{\perp}\delta, \quad \delta \in \mathbb{R}^q$

Maximal sublevel sets: $\beta : \mathbb{R}^q \to \mathbb{R}$

• $\beta(\delta) = \min\{\min\{u^- + u_e(\delta), u^+ - u_e(\delta)\}\}\$ = $\min\{\min\{u^- + B^{\perp}\delta, u^+ - B^{\perp}\delta\}\}$

•
$$\beta(\delta) \in [0,1] \quad \forall \ \delta \in \Delta := \{\delta | -u^- \le B^{\perp} \delta \le u^+\}$$

Symmetric stabilizer & basin of attraction

Assumption (Symmetric Stabilizer)

Consider $\dot{x} = Ax + B \operatorname{sat}_{[u^-, u^+]}(u)$

$$(A, B)$$
 stabilizable, $\overline{u} = 1$ and let $\alpha \in \mathbb{R}_{>0}$.

Consider the LMI:

$$\begin{array}{ll} \max_{Q,W,Y,U} & \log \det(Q) \\ \text{subject to} & U > 0 \ \text{diagonal}, \ Q = Q^\top > 0 \\ & \text{He} \left[\begin{array}{cc} (A + \alpha I)Q + BW & -BU \\ W + Y & -U \end{array} \right] < 0 \\ & \left[\begin{array}{cc} 1 & Y_{[k]} \\ Y_{[k]}^\top & Q \end{array} \right] \geq 0, \quad k = 1, \dots, m. \end{array}$$

 \rightsquigarrow Solution: Q, W, Y, U.

Define:

$$K = WQ^{-1}, \quad P = Q^{-1}$$

Notation: $\operatorname{He} M = M + M^{\top}$

Proposition (Symmetric Stabilizer)

• The feedback law

$$u = k(x, \delta) := u_e(\delta) + K(x - x_e(\delta))$$

locally exponentially stabilizes $x_e(\delta)$

• Local Lyapunov function:

 $V_{\delta}(x) = |x - x_e(\delta)|_P^2 = (x - x_e(\delta))^T P(x - x_e(\delta))$

 $rac{d}{dt}V_{\delta}(x(t)) \leq -2lpha V_{\delta}(x(t))$ (\rightsquigarrow exponential stability)

• Estimate of the basin of attraction:

 $\mathcal{E}_{\delta}(P) = \{ x \in \mathbb{R}^n | |x - x_e(\delta)|_P \le \frac{\beta(\delta)}{\delta} \}$

Recall:
$$\beta(\delta) = \min\{\min\{u^- + u_e(\delta), u^+ - u_e(\delta)\}\}$$

• Consider: Induced equilibrium pair

$$x_e(\delta) = A^{\perp}\delta, \qquad u_e(\delta) = B^{\perp}\delta$$

for
$$\delta \in \Delta = \{\delta | -u^- \le u_e(\delta) \le u^+\}$$

• Estimate of the basin of attraction (BA) of $x_e(\delta)$:

$$\mathcal{E}_{\delta}(P) = \{x \in \mathbb{R}^n : |x - x_e(\delta)|_P \le \beta(\delta)\}$$

• Union of all the estimates of the BA:

$$\mathcal{R} = \bigcup_{\delta \in \operatorname{int}(\Delta)} \mathcal{E}_{\delta}(P), \qquad \overline{\mathcal{R}} = \text{closure of } \mathcal{R}$$

• Consider: Induced equilibrium pair

$$x_e(\delta) = A^{\perp}\delta, \qquad u_e(\delta) = B^{\perp}\delta$$

for
$$\delta \in \Delta = \{\delta | -u^- \le u_e(\delta) \le u^+\}$$

• Estimate of the basin of attraction (BA) of $x_e(\delta)$:

$$\mathcal{E}_{\delta}(P) = \{x \in \mathbb{R}^n : |x - x_e(\delta)|_P \le \beta(\delta)\}$$

• Union of all the estimates of the BA:

$$\mathcal{R} = \bigcup_{\delta \in \operatorname{int}(\Delta)} \mathcal{E}_{\delta}(P), \qquad \overline{\mathcal{R}} = \text{closure of } \mathcal{R}$$

• For $x \in \overline{\mathcal{R}}$ consider:

$$\begin{split} \delta^{\star}(x) &\in \operatorname*{argmin}_{\delta \in \Delta} \delta^{T} \delta \\ \text{subject to } &|x - x_{e}(\delta)|_{P} \leq \beta(\delta) \end{split}$$

~ optimal equilibrium pair

$$(x_e^{\star}, u_e^{\star}) = (x_e(\delta^{\star}(x)), u_e(\delta^{\star}(x))) \text{ with } x \in \mathcal{E}_{\delta^{\star}(x)}(P)$$

• Corresponding feedback law:

$$u = k(x, \delta^{\star}(x)) := u_e(\delta^{\star}(x)) + K(x - x_e(\delta^{\star}(x)))$$

• Consider: Induced equilibrium pair

$$x_e(\delta) = A^{\perp}\delta, \qquad u_e(\delta) = B^{\perp}\delta$$

or
$$\delta \in \Delta = \{\delta | -u^- \le u_e(\delta) \le u^+\}$$

• Estimate of the basin of attraction (BA) of $x_e(\delta)$:

$$\mathcal{E}_{\delta}(P) = \{x \in \mathbb{R}^n : |x - x_e(\delta)|_P \le \beta(\delta)\}$$

- Union of all the estimates of the BA:
 - $\mathcal{R} = \bigcup_{\delta \in \operatorname{int}(\Delta)} \mathcal{E}_{\delta}(P), \qquad \overline{\mathcal{R}} = \text{closure of } \mathcal{R}$
- For $x \in \overline{\mathcal{R}}$ consider:

f

$$\begin{split} \delta^{\star}(x) &\in \underset{\delta \in \Delta}{\operatorname{argmin}} \ \delta^{T} \delta \\ \text{subject to } \ |x - x_{e}(\delta)|_{P} \leq \beta(\delta) \end{split} \tag{(A)}$$

 \leadsto optimal equilibrium pair

$$(x_e^\star, u_e^\star) = (x_e(\delta^\star(x)), u_e(\delta^\star(x))) \ \text{with} \ x \in \mathcal{E}_{\delta^\star(x)}(P)$$

Corresponding feedback law:

$$u = k(x, \delta^{\star}(x)) := u_e(\delta^{\star}(x)) + K(x - x_e(\delta^{\star}(x)))$$

Lemma (Optimization problem properties)

- 1. For all $x \in \overline{\mathcal{R}}$, (**(**) is convex and for all $x \in \mathcal{R}$, the interior of the feasible set is nonempty;
- 2. The feasible set $F: \overline{\mathcal{R}} \rightrightarrows \Delta$ is continuous

 $F(x) = \{\delta \in \Delta | |x - x_e(\delta)|_P \le \beta(\delta)\}$

3. $\delta^*(x) \in \Delta$ is unique for all $x \in \overline{\mathcal{R}}$; and4. $\delta^*(\cdot) : \operatorname{int}(\mathcal{R}) \to \operatorname{int}(\Delta)$ is Lipschitz continuous.5. $\delta^*(x)$ satisfies $\delta^*(x) = 0, \quad \forall x \in \mathcal{E}_0(P),$

$$|x - x_e(\delta^*(x))|_P = \beta(\delta^*(x)), \quad \forall x \in \overline{\mathcal{R}} \setminus \mathcal{E}_0(P)$$

• Consider: Induced equilibrium pair

$$x_e(\delta) = A^{\perp}\delta, \qquad u_e(\delta) = B^{\perp}\delta$$

or
$$\delta \in \Delta = \{\delta | -u^- \le u_e(\delta) \le u^+\}$$

• Estimate of the basin of attraction (BA) of $x_e(\delta)$:

$$\mathcal{E}_{\delta}(P) = \{x \in \mathbb{R}^n : |x - x_e(\delta)|_P \le \beta(\delta)\}$$

- Union of all the estimates of the BA:
 - $\mathcal{R} = \bigcup_{\delta \in \operatorname{int}(\Delta)} \mathcal{E}_{\delta}(P), \qquad \overline{\mathcal{R}} = \text{closure of } \mathcal{R}$
- For $x \in \overline{\mathcal{R}}$ consider:

f

$$\begin{split} \delta^{\star}(x) &\in \underset{\delta \in \Delta}{\operatorname{argmin}} \ \delta^{T} \delta \\ \text{subject to } \ |x - x_{e}(\delta)|_{P} \leq \beta(\delta) \end{split} \tag{(A)}$$

 \leadsto optimal equilibrium pair

$$(x_e^{\star},u_e^{\star}) = (x_e(\delta^{\star}(x)), u_e(\delta^{\star}(x))) \text{ with } x \in \mathcal{E}_{\delta^{\star}(x)}(P)$$

• Corresponding feedback law:

 $u = k(x, \delta^{\star}(x)) := u_e(\delta^{\star}(x)) + K(x - x_e(\delta^{\star}(x)))$

Lemma (Optimization problem properties)

- 1. For all $x \in \overline{\mathcal{R}}$, (**(**) is convex and for all $x \in \mathcal{R}$, the interior of the feasible set is nonempty;
- 2. The feasible set $F:\overline{\mathcal{R}} \rightrightarrows \Delta$ is continuous

 $F(x) = \{\delta \in \Delta | |x - x_e(\delta)|_P \le \beta(\delta)\}$

3. $\delta^*(x) \in \Delta$ is unique for all $x \in \overline{\mathcal{R}}$; and 4. $\delta^*(\cdot) : \operatorname{int}(\mathcal{R}) \to \operatorname{int}(\Delta)$ is Lipschitz continuous. 5. $\delta^*(x)$ satisfies $\delta^*(x) = 0, \quad \forall x \in \mathcal{E}_0(P),$ $|x - x_e(\delta^*(x))|_P = \beta(\delta^*(x)), \quad \forall x \in \overline{\mathcal{R}} \setminus \mathcal{E}_0(P)$

 \leadsto The feedback law $u=k(x,\delta^\star(x))$ is Lipschitz continuous

Stabilization with scheduled shifted coordinates

Saturated linear systems:

 $\dot{x} = Ax + B \operatorname{sat}_{[u^-, u^+]}(u), \qquad u \in [-u^-, u^+]$

For $x \in int(\mathcal{R})$ consider:

$$\begin{split} \delta^{\star}(x) &= \underset{\delta \in \operatorname{int}(\Delta)}{\operatorname{argmin}} \, \delta^{T} \delta \\ & \text{subject to } |x - x_{e}(\delta)|_{P} \leq \beta(\delta) \end{split}$$

Corresponding feedback law:

$$u = k(x, \delta^{\star}(x)) := u_e(\delta^{\star}(x)) + K(x - x_e(\delta^{\star}(x)))$$

Theorem

The control law

- is Lipschitz continuous for all $x \in int(\mathcal{R})$;
- locally preserves performance around the origin;
- asymptotically stabilizes the origin x = 0 with basin of attraction containing $int(\mathcal{R})$.

Stabilization with scheduled shifted coordinates

Saturated linear systems:

 $\dot{x} = Ax + B \operatorname{sat}_{[u^-, u^+]}(u), \qquad u \in [-u^-, u^+]$

For $x \in int(\mathcal{R})$ consider:

$$\begin{split} \delta^{\star}(x) &= \operatorname*{argmin}_{\delta \in \operatorname{int}(\Delta)} \delta^{T} \delta \\ & \text{subject to } |x - x_{e}(\delta)|_{P} \leq \beta(\delta) \end{split}$$

Corresponding feedback law:

$$u = k(x, \delta^{\star}(x)) := u_e(\delta^{\star}(x)) + K(x - x_e(\delta^{\star}(x)))$$

Theorem

The control law

- is Lipschitz continuous for all $x \in int(\mathcal{R})$;
- locally preserves performance around the origin;
- asymptotically stabilizes the origin *x* = 0 with basin of attraction containing int(*R*).

Potential Challenge:

• (**(**) needs to be solved in real time

Lemma (Recall from the earlier result) 5. $\delta^*(x)$ satisfies $\delta^*(x) = 0, \quad \forall x \in \mathcal{E}_0(P),$ $|x - x_e(\delta^*(x))|_P = \beta(\delta^*(x)), \quad \forall x \in \overline{\mathcal{R}} \setminus \mathcal{E}_0(P)$

• For $\dim(\delta) = 1, \, \delta^{\star}$ can be calculated (semi) explicitly through

$$|x+A^{\perp}\delta^{\star}|_P^2=\beta(\delta^{\star})^2$$

• For $\dim(\delta) > 1$ use a sample-and-hold update of δ^* \rightsquigarrow Next slides

Numerical illustration (for $dim(\delta) = 1$)

Linear system:

$$\dot{x} = \left[\begin{array}{cc} 0.6 & -0.5 \\ 0.3 & 1.0 \end{array} \right] x + \left[\begin{array}{c} 1 \\ 3 \end{array} \right] u$$

Saturation levels: $u^{-} = 1.5, u^{+} = 0.5$

Linear system:

$$\dot{x} = Ax + Bu = \begin{bmatrix} 0.6 & -0.8 & 0.3\\ 0.8 & 0.6 & 0.5\\ 1.0 & 0.3 & -1.0 \end{bmatrix} x + \begin{bmatrix} 1\\ 4\\ 2 \end{bmatrix} u$$

Saturation levels: $u^- = 1.5$, $u^+ = 0.5$

A hybrid systems (or sample-and-hold) solution (for $\dim(\delta) > 1$)

Augmented state:

$$\xi = \left[\begin{array}{c} x \\ \chi \\ \delta \\ \tau \end{array} \right] \in \overline{\Xi}$$

- \leftarrow state of the plant
- \leftarrow sample-and-hold version of x
- \leftarrow defines induced equilibrium pair

$$\leftarrow \text{ trigger to update } \delta \ (\tau \in [\underline{\tau}, \overline{\tau}])$$

Augmented state:

$$\overline{z} = \begin{bmatrix} x \\ \chi \\ \delta \\ \tau \end{bmatrix} \in \overline{\Xi}$$

 $\leftarrow \text{ state of the plant} \\ \leftarrow \text{ sample-and-hold version of } x \\ \leftarrow \text{ defines induced equilibrium pair} \\ \leftarrow \text{ trigger to update } \delta (\tau \in [\tau, \overline{\tau}])$

Domain of interest:

$$\Xi := \mathcal{E}_{\delta}(P) \times \mathcal{E}_{\delta}(P) \times \operatorname{int}(\Delta) \times [0, \overline{\tau}]$$

Flow set and jump set:

$$\mathcal{C} = \overline{\Xi}, \qquad \mathcal{D} = \mathcal{E}_{\delta}(P) \times \mathcal{E}_{\delta}(P) \times \Delta \times [\underline{\tau}, \overline{\tau}],$$

Flow map and jump map:

$$\dot{\xi} = \begin{bmatrix} \dot{x} \\ \dot{\chi} \\ \dot{\delta} \\ \dot{\tau} \end{bmatrix} = F(\xi) := \begin{bmatrix} Ax + B \operatorname{sat}(k(x, \delta)) \\ 0 \\ 1 \end{bmatrix}, \ \xi \in \mathcal{O}$$
$$\xi^+ = \begin{bmatrix} x^+ \\ \chi^+ \\ \delta^+ \\ \tau^+ \end{bmatrix} = G(\xi) := \begin{bmatrix} x \\ x \\ \pi(x, \delta, \delta^*(\chi)) \\ 0 \end{bmatrix}, \ \xi \in \mathcal{D}$$

Main idea:

- Update δ (i.e., shifted eq x_e) at discretely (non-periodic)
- Update δ when solution of optimization problem becomes available
- Retraction: Convex combination of δ and $\delta^*(\chi)$ so that

$$x \in \mathcal{E}_{\delta^+}(P), \qquad [\delta^+ = \pi(x, \delta, \delta^*(\chi))]$$

Augmented state:

$$\xi = \begin{bmatrix} x \\ \chi \\ \delta \\ \tau \end{bmatrix} \in \overline{\Xi}$$

 $\leftarrow \text{ state of the plant} \\ \leftarrow \text{ sample-and-hold version of } x \\ \leftarrow \text{ defines induced equilibrium pair} \\ \leftarrow \text{ trigger to update } \delta (\tau \in [\tau, \overline{\tau}])$

Domain of interest:

$$\Xi := \mathcal{E}_{\delta}(P) \times \mathcal{E}_{\delta}(P) \times \operatorname{int}(\Delta) \times [0, \overline{\tau}]$$

Flow set and jump set:

$$\mathcal{C} = \overline{\Xi}, \qquad \mathcal{D} = \mathcal{E}_{\delta}(P) \times \mathcal{E}_{\delta}(P) \times \Delta \times [\underline{\tau}, \overline{\tau}],$$

Flow map and jump map:

$$\dot{\xi} = \begin{bmatrix} \dot{x} \\ \dot{\chi} \\ \dot{\delta} \\ \dot{\tau} \end{bmatrix} = F(\xi) := \begin{bmatrix} Ax + B \operatorname{sat}(k(x, \delta)) \\ 0 \\ 1 \end{bmatrix}, \ \xi \in \mathcal{C}$$
$$\xi^+ = \begin{bmatrix} x^+ \\ \chi^+ \\ \delta^+ \\ \tau^+ \end{bmatrix} = G(\xi) := \begin{bmatrix} x \\ x \\ \pi(x, \delta, \delta^*(\chi)) \\ 0 \end{bmatrix}, \ \xi \in \mathcal{D}$$

Main idea:

- Update δ (i.e., shifted eq x_e) at discretely (non-periodic)
- Update δ when solution of optimization problem becomes available
- Retraction: Convex combination of δ and $\delta^*(\chi)$ so that

$$x \in \mathcal{E}_{\delta^+}(P), \qquad [\delta^+ = \pi(x, \delta, \delta^*(\chi))]$$

Extension:

- Update δ based on suboptimal solution of opt. problem
- Interplay between continuous time system and iterative (discrete time) optimization algorithm

February 23

Numerical Example

Extensions: Anti-windup controller design

Setting:

Plant dynamics

$$\dot{x}_p = A_p x_p + B_p \operatorname{sat}_{[u^-, u^+]}(u)$$

 $y = C_p x_p + D_p \operatorname{sat}_{[u^-, u^+]}(u)$

• Linear dynamic output feedback:

 $\dot{x}_c = A_c x_c + B_c y$ $u = C_c x_c + D_c y$

Extensions: Anti-windup controller design

Setting:

- Plant dynamics
 - $\dot{x}_p = A_p x_p + B_p \operatorname{sat}_{[u^-, u^+]}(u)$ $y = C_p x_p + D_p \operatorname{sat}_{[u^-, u^+]}(u)$
- Linear dynamic output feedback:
 - $\dot{x}_c = A_c x_c + B_c y + v_1$ $u = C_c x_c + D_c y + v_2$
- Static anti-windup gain D_{aw} :

$$\begin{bmatrix} \mathbf{v_1} \\ \mathbf{v_2} \end{bmatrix} = \begin{bmatrix} D_{aw,1}(u - \operatorname{sat}_{[u^-, u^+]}(u)) \\ D_{aw,2}(u - \operatorname{sat}_{[u^-, u^+]}(u)) \end{bmatrix}$$
$$= D_{aw}(u - \operatorname{sat}_{[u^-, u^+]}(u))$$

• Overall static anti-windup closed loop: $x = [x_p^\top \; x_c^\top]^\top$

$$\begin{split} \dot{x} &= A_{cl} x + (B_{cl,q} + B_{cl,v} D_{aw}) \, \mathrm{dz}_{[u^-, u^+]}(u) \\ u &= C_{cl} x + (D_{cl,q} + D_{cl,v} D_{aw}) \, \mathrm{dz}_{[u^-, u^+]}(u) \end{split}$$

Extensions: Anti-windup controller design

Setting:

- Plant dynamics
 - $\dot{x}_p = A_p x_p + B_p \operatorname{sat}_{[u^-, u^+]}(u)$ $y = C_p x_p + D_p \operatorname{sat}_{[u^-, u^+]}(u)$
- Linear dynamic output feedback:
 - $\dot{x}_c = A_c x_c + B_c y + v_1$ $u = C_c x_c + D_c y + v_2$
- Static anti-windup gain D_{aw} :

$$\begin{bmatrix} \mathbf{v}_1\\ \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} D_{aw,1}(u - \operatorname{sat}_{[u^-, u^+]}(u))\\ D_{aw,2}(u - \operatorname{sat}_{[u^-, u^+]}(u)) \end{bmatrix} + \begin{bmatrix} \eta_1\\ \eta_2 \end{bmatrix}$$
$$= D_{aw}(u - \operatorname{sat}_{[u^-, u^+]}(u)) + \eta$$

• Overall static anti-windup closed loop: $x = [x_p^\top \; x_c^\top]^\top$

$$\begin{split} \dot{x} &= A_{cl}x + (B_{cl,q} + B_{cl,v}D_{aw}) \, \mathrm{dz}_{[u^-,u^+]}(u) + B_{cl,\eta}\eta \\ u &= C_{cl}x + (D_{cl,q} + D_{cl,v}D_{aw}) \, \mathrm{dz}_{[u^-,u^+]}(u) + D_{cl,\eta}\eta \end{split}$$

Anti-windup gain selection

Overall static anti-windup closed loop: $x = [x_p^{\top} \ x_c^{\top}]^{\top}$

$$\begin{split} \dot{x} &= A_{cl}x + (B_{cl,q} + B_{cl,v} \mathbf{D}_{aw}) \operatorname{dz}_{[u^-, u^+]}(u) \\ u &= C_{cl}x + (D_{cl,q} + D_{cl,v} \mathbf{D}_{aw}) \operatorname{dz}_{[u^-, u^+]}(u) \end{split}$$

Anti-windup gain selection

Overall static anti-windup closed loop: $x = [x_p^{\top} \ x_c^{\top}]^{\top}$

$$\begin{split} \dot{x} &= A_{cl}x + (B_{cl,q} + B_{cl,v} \mathbf{D}_{aw}) \operatorname{dz}_{[u^-, u^+]}(u) \\ u &= C_{cl}x + (D_{cl,q} + D_{cl,v} \mathbf{D}_{aw}) \operatorname{dz}_{[u^-, u^+]}(u) \end{split}$$

For $\alpha > 0$ consider the semidefinite program (SDP)

 $\min_{Q,Y,U,X} \log \det(Q)$ bsubject to

$$\begin{split} &Q = Q^{\top} > 0, \quad U > 0 \text{ diagonal}, \\ &\mathsf{He} \left[\begin{array}{cc} (A_{cl} + \alpha I)Q & B_{cl,q}U + B_{cl,v}X \\ C_{cl,u}Q - Y & D_{cl,q}U + D_{cl,v}X - U \end{array} \right] < 0 \\ &\left[\begin{array}{cc} 1 & Y_{[k]} \\ Y_{[k]}^{\top} & Q \end{array} \right] \geq 0, \quad k = 1, \dots, n_u. \end{split} \end{split}$$

Assumption (♡)

The linear closed loop is exponentially stable, $B_p \neq 0$ and the average saturation range satisfies $\bar{u} = \frac{1}{2}(u^+ + u^-) = \mathbb{1} \in \mathbb{R}^m.$ \diamond

Proposition

Consider the overall system, define

 $\alpha > 0$ and $c = \min\{\min\{u^{-}, u^{+}\}\}.$

Let Assumption (\heartsuit) be satisfied and assume that (SDP) is feasible. Then, selecting the static anti-windup gain as

 $D_{aw} = XU^{-1},$

the algebraic loop is well posed and the set

 $\{x \in \mathbb{R}^n : |x|_{Q^{-1}} := \sqrt{x^\top Q^{-1} x} \le c\}$

is contained in the basin of attraction of the origin. Moreover, $V:\mathbb{R}^n\to\mathbb{R}_{\geq 0},$

 $V(x) = x^\top Q^{-1} x$

is a Lyapunov function satisfying

 $\langle \nabla V(x), \dot{x} \rangle \leq -2\alpha V(x) \qquad \forall x \in \{x \in \mathbb{R}^n : |x|_{Q^{-1}} \leq c\}.$

Anti-windup augmentation (Construction of η)

Plant controller dynamics:

$$\begin{split} \dot{x}_p &= A_p x_p + B_p u & \dot{x}_c &= A_c x_c + B_c y + \eta_1 \\ y &= C_p x_p + D_p u & u &= C_c x_c + D_c y + \eta_2 \end{split}$$

Induced equilibria for fixed η :

$$\begin{bmatrix} A_p & B_p \\ C_p & D_p \end{bmatrix} \begin{bmatrix} x_{p_e} \\ u_e \end{bmatrix} = \begin{bmatrix} 0 \\ y_e \end{bmatrix}$$
$$\begin{bmatrix} A_c & B_c \\ C_c & D_c \end{bmatrix} \begin{bmatrix} x_{c_e} \\ y_e \end{bmatrix} = \begin{bmatrix} 0 \\ u_e \end{bmatrix} + \begin{bmatrix} -\eta_1 \\ -\eta_2 \end{bmatrix}$$

Anti-windup augmentation (Construction of η)

Plant controller dynamics:

$$\begin{aligned} \dot{x}_p &= A_p x_p + B_p u & \dot{x}_c &= A_c x_c + B_c y + \eta_1 \\ y &= C_p x_p + D_p u & u &= C_c x_c + D_c y + \eta_2 \end{aligned}$$

Induced equilibria for fixed η :

$$\begin{bmatrix} A_p & B_p \\ C_p & D_p \end{bmatrix} \begin{bmatrix} x_{p_e} \\ u_e \end{bmatrix} = \begin{bmatrix} 0 \\ y_e \end{bmatrix}$$
$$\begin{bmatrix} A_c & B_c \\ C_c & D_c \end{bmatrix} \begin{bmatrix} x_{c_e} \\ y_e \end{bmatrix} = \begin{bmatrix} 0 \\ u_e \end{bmatrix} + \begin{bmatrix} -\eta_1 \\ -\eta_2 \end{bmatrix}$$

i.e.,

$$\underbrace{\left[\begin{array}{ccccc} A_p & 0 & 0 & B_p & 0 & 0\\ 0 & A_c & B_c & 0 & I & 0\\ C_p & 0 & -I & D_p & 0 & 0\\ 0 & C_c & D_c & -I & 0 & I \end{array}\right]}_{M} \left[\begin{array}{c} x_{p_e} \\ x_{c_e} \\ y_e \\ u_e \\ \eta_1 \\ \eta_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right]$$

Kernel of M (i.e., $M \cdot M^{\perp} = 0$):

$$M^{\perp} = \left[M_{x_p}^{\perp \top}, M_{x_c}^{\perp \top}, M_y^{\perp \top}, M_u^{\perp \top}, M_{\eta_1}^{\perp \top}, M_{\eta_2}^{\perp \top} \right]^{\top}$$

Representation of 'equilibria':

$$\begin{aligned} x_e(\delta) &= \left[\begin{array}{c} x_{p_e}(\delta) \\ x_{c_e}(\delta) \end{array} \right] = \left[\begin{array}{c} M_x^{\perp} \delta \\ M_{x_c}^{\perp} \delta \end{array} \right] & y_e(\delta) &= M_y^{\perp} \delta, \\ u_e(\delta) &= M_u^{\perp} \delta, \\ \eta(\delta) &= \left[\begin{array}{c} \eta_1(\delta) \\ \eta_2(\delta) \end{array} \right] = \left[\begin{array}{c} M_{\eta_1}^{\perp} \delta \\ M_{\eta_2}^{\perp} \delta \end{array} \right] \end{aligned}$$

Anti-windup augmentation (Construction of η)

Plant controller dynamics:

$$\dot{x}_p = A_p x_p + B_p u \qquad \qquad \dot{x}_c = A_c x_c + B_c y + \eta_1 y = C_p x_p + D_p u \qquad \qquad u = C_c x_c + D_c y + \eta_2$$

Induced equilibria for fixed η :

$$\left[\begin{array}{c} A_p & B_p \\ C_p & D_p \end{array} \right] \left[\begin{array}{c} x_{p_e} \\ u_e \end{array} \right] = \left[\begin{array}{c} 0 \\ y_e \end{array} \right]$$
$$\left[\begin{array}{c} A_c & B_c \\ C_c & D_c \end{array} \right] \left[\begin{array}{c} x_{c_e} \\ y_e \end{array} \right] = \left[\begin{array}{c} 0 \\ u_e \end{array} \right] + \left[\begin{array}{c} -\eta_1 \\ -\eta_2 \end{array} \right]$$

i.e.,

$$\underbrace{\begin{bmatrix} A_p & 0 & 0 & B_p & 0 & 0\\ 0 & A_c & B_c & 0 & I & 0\\ C_p & 0 & -I & D_p & 0 & 0\\ 0 & C_c & D_c & -I & 0 & I \end{bmatrix}}_{M} \begin{bmatrix} x_{p_e} \\ y_e \\ u_e \\ \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Kernel of M (i.e., $M \cdot M^{\perp} = 0$):

$$\boldsymbol{M}^{\perp} = \left[\boldsymbol{M}_{x_p}^{\perp\top}, \boldsymbol{M}_{x_c}^{\perp\top}, \boldsymbol{M}_{y}^{\perp\top}, \boldsymbol{M}_{u}^{\perp\top}, \boldsymbol{M}_{\eta_1}^{\perp\top}, \boldsymbol{M}_{\eta_2}^{\perp\top}\right]^{\top}$$

Representation of 'equilibria':

$$\begin{aligned} x_e(\delta) &= \left[\begin{array}{c} x_{p_e}(\delta) \\ x_{c_e}(\delta) \end{array} \right] = \left[\begin{array}{c} M_x^{\perp} \delta \\ M_{x_c}^{\perp} \delta \end{array} \right] & y_e(\delta) &= M_y^{\perp} \delta, \\ u_e(\delta) &= M_u^{\perp} \delta, \\ \eta(\delta) &= \left[\begin{array}{c} \eta_1(\delta) \\ \eta_2(\delta) \end{array} \right] = \left[\begin{array}{c} M_{\eta_1}^{\perp} \delta \\ M_{\eta_2}^{\perp} \delta \end{array} \right] \end{aligned}$$

 δ -optimization:

$$\begin{split} \delta^\star(x) &:= \mathop{\mathrm{argmin}}_{\delta \in \Delta} |\delta|^2 \\ &\text{subject to } |x - x_e(\delta)|_{Q^{-1}} \leq \beta(\delta). \end{split}$$

where

$$\Delta = \{ \delta \in \mathbb{R}^q | -u^- \le M_u^\perp \delta \le u^+ \}$$

$$\beta(\delta) = \min\{ \min\{u^- + u_e(\delta), u^+ - u_e(\delta) \} \}$$

Static anti-windup controller (state feedback!!):

$$v_1 = D_{aw,1}(u(x) - \operatorname{sat}_{[u^-, u^+]}(u(x))) + \eta_1(\delta^*(x))$$

$$v_2 = D_{aw,2}(u(x) - \operatorname{sat}_{[u^-, u^+]}(u(x))) + \eta_2(\delta^*(x))$$

Anti-windup correction: Main result

Representation of 'equilibria':

$$\begin{aligned} x_e(\delta) &= \begin{bmatrix} x_{p_e}(\delta) \\ x_{c_e}(\delta) \end{bmatrix} = \begin{bmatrix} M_{x_p}^{\perp}\delta \\ M_{x_c}^{\perp}\delta \end{bmatrix} \quad \begin{array}{l} y_e(\delta) &= M_y^{\perp}\delta, \\ u_e(\delta) &= M_u^{\perp}\delta, \\ \eta(\delta) &= \begin{bmatrix} \eta_1(\delta) \\ \eta_2(\delta) \end{bmatrix} = \begin{bmatrix} M_{\eta_1}^{\perp}\delta \\ M_{\eta_2}^{\perp}\delta \end{bmatrix} \end{aligned}$$

 δ -optimization:

 δ^{\star}

$$\begin{split} &(x):= \mathop{\mathrm{argmin}}_{\delta\in\Delta} |\delta|^2 \\ &\text{subject to } |x-x_e(\delta)|_{Q^{-1}} \leq \beta(\delta). \end{split}$$

where

$$\Delta = \{ \delta \in \mathbb{R}^q | -u^- \le M_u^\perp \delta \le u^+ \}$$

$$\beta(\delta) = \min\{ \min\{u^- + u_e(\delta), u^+ - u_e(\delta) \} \}$$

Static anti-windup controller correction:

$$\begin{split} v_1 &= D_{aw,1}(u(x) - \operatorname{sat}_{[u^-, u^+]}(u(x))) + \eta_1(\delta^{\star}(x)) \\ v_2 &= D_{aw,2}(u(x) - \operatorname{sat}_{[u^-, u^+]}(u(x))) + \eta_2(\delta^{\star}(x)) \end{split}$$

Recall

$$\mathcal{E}_{\delta}(Q^{-1}) = \left\{ x \in \mathbb{R}^n : |x - x_e(\delta)|_{Q^{-1}} \le \beta(\delta) \right\}$$

Overall closed-loop plant-controller pair:

$$\begin{split} \dot{x} &= A_{cl}x + (B_{cl,q} + B_{cl,v}D_{aw}) \, \mathrm{dz}_{[u^-,u^+]}(u) + B_{cl,\eta}\eta(\delta) \\ u &= C_{cl}x + (D_{cl,q} + D_{cl,v}D_{aw}) \, \mathrm{dz}_{[u^-,u^+]}(u) + D_{cl,\eta}\eta(\delta) \end{split}$$

Theorem

Consider the overall closed-loop plant-controller pair. Then, the algebraic loop is well posed and the origin $x_e = 0$ is asymptotically stable with basin of attraction containing the set

$$\mathcal{R} := \bigcup_{\delta \in \operatorname{int}(\Delta)} \mathcal{E}_{\delta}(Q^{-1})$$

Segway dynamics (inverted pendulum):

$$\begin{split} \ddot{s} &= \frac{j_1 \dot{\vartheta}^2 - m_b gl\cos(\vartheta)}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} m_b lr^2 \sin(\vartheta) - v_f \dot{s} + \frac{j_1 + m_b lr\cos(\vartheta)}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} r K_u u \\ \ddot{\vartheta} &= \frac{gj_2 - m_b lr^2 \cos(\vartheta) \dot{\vartheta}^2}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} m_b l \sin(\vartheta) - \frac{j_2 + m_b lr\cos(\vartheta)}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} K_u u \end{split}$$

• s: position; ϑ : angle;

Plant state:

$$x_p = \begin{bmatrix} x_{p1}, x_{p2}, x_{p3}, x_{p4} \end{bmatrix}^\top = \begin{bmatrix} s & \vartheta & \dot{s} & \dot{\vartheta} \end{bmatrix}^\top$$

Segway dynamics (inverted pendulum):

$$\begin{split} \ddot{s} &= \frac{j_1 \dot{\vartheta}^2 - m_b gl \cos(\vartheta)}{j_1 j_2 - (m_b l^r \cos(\vartheta))^2} m_b lr^2 \sin(\vartheta) - v_f \dot{s} + \frac{j_1 + m_b l^r \cos(\vartheta)}{j_1 j_2 - (m_b l^r \cos(\vartheta))^2} r K_u u \\ \ddot{\vartheta} &= \frac{gj_2 - m_b lr^2 \cos(\vartheta) \dot{\vartheta}^2}{j_1 j_2 - (m_b l^r \cos(\vartheta))^2} m_b l \sin(\vartheta) - \frac{j_2 + m_b l^r \cos(\vartheta)}{j_1 j_2 - (m_b l^r \cos(\vartheta))^2} K_u u \end{split}$$

• s: position; ϑ : angle;

Plant state:

$$x_p = \begin{bmatrix} x_{p1}, x_{p2}, x_{p3}, x_{p4} \end{bmatrix}^\top = \begin{bmatrix} s & \vartheta & \dot{s} & \dot{\vartheta} \end{bmatrix}^\top$$

PID controller:

$$u = k_1 s + k_2 \vartheta + k_3 \dot{s} + k_4 \dot{\vartheta} + k_5 \int s + k_6 \int \vartheta$$

.e.,
$$\dot{x}_c = k_5 s + k_6 \vartheta$$

 $u = x_c + k_1 s + k_2 \vartheta + k_3 \dot{s} + k_4 \dot{\vartheta}$

Segway dynamics (inverted pendulum):

$$\begin{split} \ddot{s} &= \frac{j_1 \dot{\vartheta}^2 - m_b gl\cos(\vartheta)}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} m_b lr^2 \sin(\vartheta) - v_f \dot{s} + \frac{j_1 + m_b lr\cos(\vartheta)}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} r K_u u \\ \ddot{\vartheta} &= \frac{gj_2 - m_b lr^2 \cos(\vartheta) \dot{\vartheta}^2}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} m_b l \sin(\vartheta) - \frac{j_2 + m_b lr\cos(\vartheta)}{j_1 j_2 - (m_b lr\cos(\vartheta))^2} K_u u \end{split}$$

• s: position; ϑ : angle;

Plant state:

$$x_p = \begin{bmatrix} x_{p1}, x_{p2}, x_{p3}, x_{p4} \end{bmatrix}^{\top} = \begin{bmatrix} s & \vartheta & \dot{s} & \dot{\vartheta} \end{bmatrix}^{\top}$$

PID controller:

$$u = k_1 s + k_2 \vartheta + k_3 \dot{s} + k_4 \dot{\vartheta} + k_5 \int s + k_6 \int \vartheta$$

i.e.,

 $\dot{x}_c = k_5 s + k_6 artheta$ $u = x_c + k_1 s + k_2 artheta + k_3 \dot{s} + k_4 \dot{artheta}$

Linearized plant-controller pair:

$$\begin{split} \dot{x}_p &= A_p x_p + B_p u & \dot{x}_c &= A_c x_c + B_c y \\ y &= I x_p & u &= C_c x_c + D_c y \end{split}$$

Plant state:

$$x_p = \begin{bmatrix} x_{p1}, x_{p2}, x_{p3}, x_{p4} \end{bmatrix}^\top = \begin{bmatrix} s & \vartheta & \dot{s} & \dot{\vartheta} \end{bmatrix}^\top$$

Linearized plant-controller pair:

$$\dot{x}_p = A_p x_p + B_p u$$
 $\dot{x}_c = A_c x_c + B_c y$
 $y = I x_p$ $u = C_c x_c + D_c y$
Linearized plant dynamics:

$$A_p = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -2.16 & -0.1 & 0 \\ 0 & 11.01 & 0 & 0 \end{bmatrix}, \quad B_p = \begin{bmatrix} 0 & 0 \\ 0 \\ 5.87 \\ -7.20 \end{bmatrix}$$

Controller selection & anti-windup gain:

$$A_{c} = 0 \qquad B_{c} = \begin{bmatrix} 1 & 10 & 0 & 0 \end{bmatrix}$$
$$C_{c} = I \qquad D_{c} = \begin{bmatrix} 1.70 & 12.90 & 1.95 & 3.83 \end{bmatrix}$$

Saturation limits: $u^- = u^+ = 1$.

Plant state:

$$x_p = \begin{bmatrix} x_{p1}, x_{p2}, x_{p3}, x_{p4} \end{bmatrix}^{\top} = \begin{bmatrix} s & \vartheta & \dot{s} & \dot{\vartheta} \end{bmatrix}^{\top}$$

Linearized plant-controller pair:

$$\begin{split} \dot{x}_p &= A_p x_p + B_p u & \dot{x}_c &= A_c x_c + B_c y \\ y &= I x_p & u &= C_c x_c + D_c y \\ \text{Linearized plant dynamics:} \end{split}$$

$$A_p = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -2.16 & -0.1 & 0 \\ 0 & 11.01 & 0 & 0 \end{bmatrix}, \quad B_p = \begin{bmatrix} 0 & 0 \\ 0 \\ 5.87 \\ -7.20 \end{bmatrix}$$

Controller selection & anti-windup gain:

Saturation limits: $u^- = u^+ = 1$.

.

Concluding remarks

Setting:

• Saturated linear systems:

 $\dot{x} = Ax + B \operatorname{sat}_{[u^-, u^+]}(u), \quad (x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ u^-, u^+ \in \mathbb{R}^m_{>0})$

Summary:

 Increase the estimate of the basin of attraction of the origin by stabilizing shifted reference points.

Observation:

- Estimate of the basin of attraction is unbounded if A is singular
- (Example: stabilization of the inverted pendulum on a cart; segway) Related controller design techniques:
 - Reference governors

Extensions:

- Antiwindup controller designs
 - Design an output feedback
- Discrete-time systems

References:

P. Braun, M. Saveriano and L. Zaccarian. Static anti-windup with shifted equilibria on the example of a Segway-like vehicle, (in preparation)