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Motivation: Obstacle avoidance & target set stabilization
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Figure borrowed from: E. D. Sontag, Nonlinear Feedback Stabilization Revisited, volume 25 of Progress in
Systems and Control Theory, pages 223-262. Birkhauser, 1999



Motivation: Obstacle avoidance & target set stabilization

Setting:
@ (Linear) Dynamical system
z(t) = Az(t) + Bu(t), z(0) € R”, (u €RY)
@ Obstacle: Bs(z) Cc R™\{0}
@ Target set: 0eR™

Problem formulation:
Define u : R>o — R such that

1. lim¢— oo z(t;u(t)) =0

2. x(t;u(t)) ¢ Bs(z) Vt € Rxo (and 6 > 0)
Assume

@ (A, B) controllable, i.e.,

Vzi,22 ER™, Ve >0 Ju:[0,e] > R:
z(0;u(t)) = z1 & z(e;u(t)) = x2.
However
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Motivation: Obstacle avoidance & target set stabilization

Setting:
@ (Linear) Dynamical system
z(t) = Az(t) + Bu(t), z(0) € R”, (u €RY)

@ Obstacle: Bs(&) C R™\{0}
@ Target set: 0eR™

Problem formulation:
Define u : R™ — R such that

1. lim¢— oo (8 u(z)) =0
2. x(t;u(x)) ¢ Bs(Z) Vt € Rxp (and 6 > 0)
Assume
@ (A, B) controllable, i.e.,
Vzi,22 ER™, Ve >0 Ju:[0,e] > R:
z(0;u(t)) = z1 & z(e;u(t)) = x2.
However

@ ltis easy to address 1. & 2. separately.
How to ensure 1. & 2. simultaneously?

@ How to define a (state dependent)
feedback law (i.e., u(z(t)) instead of
u(t))?




Outline

o Related control settings

o Difficulties in the combined
avoidance/stabilization problem

o Hybrid controller design for the combined
control problem




Related Settings, Applications and Solutions

Setting:

@ Obstacle avoidance & target set stabilization; a special case of
constrained control

Applications:
@ Obstacle avoidance, collision avoidance, safety
@ Navigation of mobile robots

Control Solutions:
@ Artificial potential fields and navigation functions
@ (Control) Lyapunov functions and (control) barrier functions
@ Model predictive control
> (Motion planning and reference tracking)




Artificial potential fields & navigation functions

Figures borrowed from: K. M. Lynch, F. C. Park, Modern Robotics: Mechanics, planning, and control,

Cambridge University Press, 2017

Mobile robot (nonholonomic integrator):
&1 = uy cos(¢),
o = ug sin(¢),
& = us.
Simplified mobile robot: & =
Artificial potential fields:

@ Use gradient to guarantee a decrease with
respect to the target set

@ Local minima? (~ Navigation functions)
@ Potential fields necessarily have saddle points



(Control) Lyapunov and (control) barrier functions

Nonlinear system: z = f(z,u), (x € R™, u € R™)
Obstacle: D C R"™.

Definition (Control Lyapunov function (CLF))

A continuously differentiable function V : R™ — R is called Control Lyapunov function (CLF)
if there exist a1, a2 € K such that

a1(|z]) < V(z) < az(|=))
Vz € R"\{0} 3u € R™ such that (VV (z), f(z,u)) <0

~» Guarantees global asymptotic stability of the origin

Definition (Control Barrier Function (CBF))
A continuously differentiable function B : R™ — R is called control barrier function (CBF) if

B(xz) >0 VzeD and B(z)=0 VzeoD
Vz € R"\D Ju € R™ suchthat (VB(z), f(z,u)) <0

~~ Guarantees avoidance of D



Our motivation

Many control approaches in the literature on obstacle avoidance and target set stabilization:
@ Consider a given dynamical system ¢ = f(x) 4+ g(z)u and obstacles D; C R™, i =1,2,...

@ Implicitly assume the existence of functions or implicitly assume feasibility of optimization
problems

Then:

@ Then obstacle avoidance and target set stabilization for almost all initial conditions is
concluded

@ The controller design is applied to systems without drift, i.e., f(x) = 0, in general
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Our setting/motivation:

@ Consider controllable/stabilizable linear systems ¢ = Az + Bu and obstacle centroids
Z; €R™,i=1,2,...

Then:

@ Explicitly derive a controller which guarantees robust stabilization of the origin and robust
avoidance of a neighborhood around the centroids for all initial conditions.

@ Explicitly derive a (maximal) size around the centroids which can be robustly avoided



Our motivation

Many control approaches in the literature on obstacle avoidance and target set stabilization:
@ Consider a given dynamical system ¢ = f(x) 4+ g(z)u and obstacles D; C R™, i =1,2,...

@ Implicitly assume the existence of functions or implicitly assume feasibility of optimization
problems

Then:

@ Then obstacle avoidance and target set stabilization for almost all initial conditions is
concluded

@ The controller design is applied to systems without drift, i.e., f(x) = 0, in general

Our setting/motivation:
@ Consider controllable/stabilizable linear systems ¢ = Az + Bu and obstacle centroids
Z; €R™,i=1,2,...
@ Consider a stabilizing controller ...
Then:

@ Explicitly derive a controller which guarantees robust stabilization of the origin and robust
avoidance of a neighborhood around the centroids for all initial conditions.

@ Explicitly derive a (maximal) size around the centroids which can be robustly avoided

@ ...augment the stabilizing controller to additionally ensure avoidance.
(~ Minimally invasive avoidance controller.)



The combined avoidance/stabilization problem: Ex. 1

Systems with nontrivial drift

@ Consider
. 0 -1 1
= [0 e )
» The system is controllable
» The influence of w is limited (only horizontal)
(~ Behind the obstacle, u can only be used to
stall time)



The combined avoidance/stabilization problem: Ex. 2
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The location of the obstacle:

@ Consider
) -1 8 0
x:{_% _21}1+{ 1 }u
(The system is controllable)
@ Subspace of induced equilibria: (B € R™)
E={yeR":0=Ay+ By, v € R}
@ Obstacle DwithDNE =0

» Use the natural drift Az to ‘leave the obstacle
behind’ and use Bu to avoid the obstacle

@ Obstacle DwithDNE #0

> Use u to destabilize a point z € DN E to
avoid the obstacle



The combined avoidance/stabilization problem: Ex. 2
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The location of the obstacle:

@ Consider
3
=[5 AT )
(The system is controllable)
@ Subspace of induced equilibria: (B € R™)
E={yeR":0=Ay+ By, v € R}

@ Obstacle DwithDNE =0
» Use the natural drift Az to ‘leave the obstacle
behind’ and use Bu to avoid the obstacle
@ Obstacle DwithDNE #0

> Use u to destabilize a point z € DN E to
avoid the obstacle



The combined avoidance/stabilization problem: Ex. 3
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The shape of the obstacle

@ Consider again (& = Az + Bu)
_ 3
T = { ; 2 } T+ { (1) }u
-3 -
@ Consider an obstacle D C R™ with a smooth
boundary
~ There exists a point x € 9D such that

* B and the tangent T'(z) of D are linearly
dependent
* Az points inside D



Problem formulation & hybrid controller framework

Setting:
& = Az + Bu, AeR"™™ BecR"

Problem

Consider the linear system and a robustly
stabilizing feedback law

us = Ksx.

For givenex > €1 > 0, construct an avoidance
(safety) controller v(x) such that

(i) the origin x = 0 is robustly globally
asymptotically stable

(i) ~(x) satisfies
v(z) = Ksz Vo € R™\ Be, (X)
— Robust Semiglobal Preservation
(iii) the closed loop solution x(-;~y) satisfies

z(t; ) & Bey (X),Vt € R0, V2o ¢ Bey ()
— Robust Semiglobal z-avoidance

Obstacles:

Z; € RM\{0},i=1,...

R™

peN
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Problem formulation & hybrid controller framework

Setting:

#=Az+Bu, A€ER"™" BeR"

Problem

Consider the linear system and a robustly
stabilizing feedback law

us = Kgx.

For givenex > 1 > 0, construct an avoidance
(safety) controller v(x) such that

(i) the origin z = 0 is robustly globally
asymptotically stable

(i) ~v(x) satisfies
v(z) = Ksz Vo € R™\ Be, (X)
— Robust Semiglobal Preservation
(iii) the closed loop solution x(-;~y) satisfies

z(t;7) ¢ Bey (X),Vt € Rsq, Vo ¢ Bey (X)
— Robust Semiglobal 3-avoidance

Obstacles: pe N

P

& €R™M{0}i=1,...,p = X:=|J{a:}
Hybrid controller design

Given: Controller selection

,—1,0,1,...

v(z,q) = uq(z), ¢ € {—p;... s D} -

Q

Orchestrate the controller selection through
the flow map:

éz{z}:[AerBgv(:v,q) } cec

and the jump map

.’17+ x
e =] € [aenieny ] €c?
where

p
@ D=JD;, CR*"x Q

=1

@ CCR"x{1,...,p}

(Jump set)

(Flow set)

v




Obstacle avoidance (& ¢ £): Problem formulation and assumptions

Setting:
i = Ax + Bu, A ER™™ B €R".
Problem

Consider the linear system and a robustly
stabilizing feedback law

us = Ksx.

For giveney > €1 > 0, construct an avoidance
(safety) controller ~(x) such that

(i) the origin x = 0 is globally asymptotically
stable

(i) v(z) satisfies
v(z) = Ksx Vo € R™\ Be,(2)
— Robust Semiglobal Preservation

(iii) the closed loop solution x(-;~y) satisfies
@(t;0) ¢ Bey (3)Vt € Ro,Vao & Be, (2)
— Robust Semiglobal z-avoidance

Just one Obstacle:
& ER™ME
Set of induced equilibria:
E={yeR":0=Ay+ By, v € R}

Basic Assumption

(a) Matrix As := A + BK, is Hurwitz. v/
(b) [B|=1.v

(c) The norm z + |x|? is contractive under
the stabilizer us = Kz (i.e.,
V(z) = 2Tz is a Lyapunov function.) v

Discussion:
(a) (A, B) stabilizable
(Controllability is not necessary)
(b) Coordinate transformation: B, = B/|B]|,
uo = |Blu.
(c) Lyapunov function: Vo (z) = 27 ST Sox.
Coordinate transformation: zo, = Sox.



Design of feedback ~: The wipeout property

e Distance to induced equilibria:
2

n =

= min |z — y|?
y€{y|Fu,Ay+Bu=0}

e Linear “wipeout” function/direction:

H(z) =27 ALz = 2T AT (1 — BBz
B

Wa = VH(z) _ ApZ
v IVH(z)] \/iTAgABi

o Visualization:
2
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Design of feedback ~: The wipeout property

e Distance to induced equilibria:

2
Remark n

e For each = € B, (&) we have

= min |& —y|?
y€{y|3u,Ay+Bu=0}

e Linear “wipeout” function/direction:

H(z) = (VH(z), Az + Bu) >0, Yu€eR H(z) = 7 ALz = 4T AT(I — BBT )z
e For each 71 < 7, there exists h > 0 such that

VH(z), Az + Bu) > h, Yu € R,Vz € Br (& s = YH() _ _ Ap?
W) e = ) 2 0y i @ € By(2) Yo = VAT T T azaps

o Visualization:

2 ‘ ‘
Remark 1 | | :
o A solution z(-) such that z(t) € By (&) 15 i i | i
Vvt € [0,T], satisfies ! ! b\
1 | 4 |
h ) J
(wz, z(T) — z(0)) > T i@ 3 ! @ L
0.5 I I I Lo
e A solution z(+) such that z(t) € B, (%) | | L
Vvt € [0,T], satisfies 0 ! g !
I L. I |
(wg,z(t2) —x(t1)) >0 VO<t; <ty <T. e ! !
o - (e 1 1 I
05 05 0 05 1



Design of feedback ~: The avoidance shell S(0)

e Design parameters of the shell S(§):

5€R>0
p€(0,2)



Design of feedback ~: The avoidance shell S(0)

e Design parameters of the shell S(§):
= R>0
p€(0,2)
o Definitions: (¢ € {1, —1})
8y =8 (% - %)
Oq = B(%’S“réu) (Cf? — qJHB)
S(0) =01 N0_1




Design of feedback ~: The avoidance shell S(0)

e Design parameters of the shell S(§):
d eR>o
w € (0,2)

o Definitions: (¢ € {1, —1})

5H::5(%—%)

Oq = B( ;i:fqéuB)

“754“5#)(
S(8) = 01 NO_1

o Hysteresis parameter: h € (0, 1)

Oh,q = Bh%-&-éu (& — g6, B)
Sp(6) = 0r1 N Ok, 1
8, = S(6)n

{x eR": ¢BT(z —2) >0}

o Repulsive Avoidance law: uq (z, g, kr)

- Robust “above” avoidance (¢ = 1)
- Robust “below” avoidance (¢ = —1)



Nominal and Robust Avoidance and Stabilization Theorems

Theorem (Nominal avoidance+GAS theorem)

For any robustness gain k, > 0 the closed-loop enjoys,

e (Nominal shell avoidance) For any initial condition outside the outer p shells,
all nominal solutions remain outside the inner p shells

e (Nominal GAS) The origin is UGAS for the nominal dynamics

Theorem (Robust-in-the-small avoidance+GAS theorem)

For any robustness gain k, > 0 there exists a (small enough) positive definite

continuous perturbation o (-) such that the closed-loop enjoys,

e (S-Robust shell avoidance) For any initial condition outside the outer p shells,
all S-perturbed solutions remain outside the inner p shells

e (S-robust GAS) The origin is UGAS for the S-perturbed dynamics

Theorem (Robust-in-the-large avoidance theorem — No GAS!)

For any non-negative definite perturbation o (-) there exists a (large enough)
robustness gain k, such that the closed-loop enjoys,
e (L-Robust shell avoidance) For any initial condition outside the outer p shells,
all L-perturbed solutions remain outside the inner p shells
e (L-robust GAS) Cannot be guaranteed with a large o
unless extra assumptions hold on the stabilizer




Numerical example

1.5 —
g1
=D 0.5
-2 1 0 1 2 0.5 0 0.5
1 g4t

System parameters:
.| —1.0 1.5 " 0 L1 0. o(A) {-1+1.5¢,—1—1.5¢}
=1 15 —10 |” 1% Tl 1 |7 oAa+4T) = {-2-2}

us =0, p=115 n=08321, (=18028 & =0.2455



Multiple Obstacles and multiple inputs

Use one input for avoidance and the other inputs for the wipeout property
5

2 ——

Uy, Uz

0.5 1



The construction is independent of the state dimension = € R"




Obstacle avoidance (& € £): Problem formulation and assumptions

Setting:
@ (Linear) Dynamical system Example:
&(t) = Az(t) + Bu(t), z(0) € R", (ueR!)
@ (A, B) controllable (stabilizability is not
enough)
Subspace of induced equilibria: (B € R™)
@ £E={yeR"0=Ay+ Bv, v € R}
@ (W.lo.g.) & =span(A~1B)

Remember:
Letz € £and 0 = Az + By;. Then

—~
t=x—&=A(x—2)+ Blu—v;)

Obstacle centroid such that
= Az + Bv

zeé&
Target set 0 € R™

where z =z —zandv =u — v;.



Intuitive controller design
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Controller design:
@ In1&2: v(¢) = us(z) = Ks(x)
° N3 4(6) = ua(e) = Kalw — &) +v5

@ Ind: (&) = (1 - A@)usa(z) + Mz)ua(z), (A(z) € [0,1])
@ (Dashed lines: avoid Zeno behavior)

(asymptotically stabilize 0)
(completely destabilize z)
(stay away from z)



Obstacle avoidance & target set stabilization (z € &)

| Assumptions:
0 | @ i =Ax+ Bu,z € R*,u € R!
Tosp | @ (A, B) controllable
P L ((A, B) stabilizable is not enough)
i “‘\ @ &€& =span(A~1B)
72,3 2 1 0 1 Results:
. . @ V n > 2: Obstacle avoidance
Controller design: o 2 : Obstacl y & global
] B . n = 2 : Obstacle avoidance & globa
0 In1&2:v(§) = us(z) = Ks(2) asymptotic stability
@ In3:y(§) = ua(z) = Ka(z — ) + vz @ Y n > 2 odd: No global asymptotic stability
@ In4: .
@ V n > 4 even: Obstacle avoidance &
7(&) = (1 — AMx))usa (@) +A(@)ua(z), maybe global asymptotic stabilit
(A(@) € [0,1]) e Y y

(We cannot exclude the existence of

@ (Dashed lines: avoid Zeno behavior) periodic orbits)



Conclusion & discussion
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Linear system: & = Az + Bu, z €R" ueR™
Assumption:
e (A, B) controllable e (A, B) stabilizable
Ifm > 1:

o % € {y|0 = Ay + Bu,u € R™}\{0}
Closed-loop properties:

e Only applicable if n > 2 is even
e Guarantees only for n = 2

o i € R"\{0}

e Independentof n € N, n > 2

How to enlarge the avoidance neighborhood? Nonlinear dynamical systems?



