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Motivation: Obstacle avoidance & target set stabilization
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Motivation: Obstacle avoidance & target set stabilization

Setting:
(Linear) Dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) ∈ Rn, (u ∈ R1)

Obstacle: Bδ(x̂) ⊂ Rn\{0}
Target set: 0 ∈ Rn

Problem formulation:
Define u : R≥0 → R such that

1. limt→∞ x(t;u(t)) = 0

2. x(t;u(t)) /∈ Bδ(x̂) ∀ t ∈ R≥0 (and δ > 0)
Assume

(A,B) controllable, i.e.,
∀x1, x2 ∈ Rn, ∀ε > 0 ∃ u : [0, ε] → R :
x(0;u(t)) = x1 & x(ε;u(t)) = x2.

However
It is easy to address 1. & 2. separately.
How to ensure 1. & 2. simultaneously?

How to define a (state dependent)
feedback law (i.e., u(x(t)) instead of
u(t))?
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Outline

• Related control settings

• Difficulties in the combined
avoidance/stabilization problem

• Hybrid controller design for the combined
control problem

Rn

x̂

0



Related Settings, Applications and Solutions

Setting:
Obstacle avoidance & target set stabilization; a special case of
constrained control

Applications:
Obstacle avoidance, collision avoidance, safety

Navigation of mobile robots

Control Solutions:
Artificial potential fields and navigation functions

(Control) Lyapunov functions and (control) barrier functions

Model predictive control
▶ (Motion planning and reference tracking)



Artificial potential fields & navigation functions

Figures borrowed from: K. M. Lynch, F. C. Park, Modern Robotics: Mechanics, planning, and control,
Cambridge University Press, 2017

x1

x2

u1

ϕ

u2

Mobile robot (nonholonomic integrator):

ẋ1 = u1 cos(ϕ),

ẋ2 = u1 sin(ϕ),

ϕ̇ = u2.

Simplified mobile robot: ẋ = u
Artificial potential fields:

Use gradient to guarantee a decrease with
respect to the target set

Local minima? (⇝ Navigation functions)

Potential fields necessarily have saddle points



(Control) Lyapunov and (control) barrier functions

Nonlinear system: ẋ = f(x, u), (x ∈ Rn, u ∈ Rm)
Obstacle: D ⊂ Rn.

Definition (Control Lyapunov function (CLF))
A continuously differentiable function V : Rn → R is called Control Lyapunov function (CLF)
if there exist α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|)
∀x ∈ Rn\{0} ∃u ∈ Rm such that ⟨∇V (x), f(x, u)⟩ < 0

⇝ Guarantees global asymptotic stability of the origin

Definition (Control Barrier Function (CBF))
A continuously differentiable function B : Rn → R is called control barrier function (CBF) if

B(x) > 0 ∀ x ∈ D and B(x) = 0 ∀ x ∈ ∂D
∀x ∈ Rn\D ∃u ∈ Rm such that ⟨∇B(x), f(x, u)⟩ ≤ 0

⇝ Guarantees avoidance of D



Our motivation

Many control approaches in the literature on obstacle avoidance and target set stabilization:
Consider a given dynamical system ẋ = f(x) + g(x)u and obstacles Di ⊂ Rn, i = 1, 2, . . .

Implicitly assume the existence of functions or implicitly assume feasibility of optimization
problems

Then:
Then obstacle avoidance and target set stabilization for almost all initial conditions is
concluded

The controller design is applied to systems without drift, i.e., f(x) = 0, in general

Our setting/motivation:
Consider controllable/stabilizable linear systems ẋ = Ax+Bu and obstacle centroids
x̂i ∈ Rn, i = 1, 2, ...

Consider a stabilizing controller . . .
Then:

Explicitly derive a controller which guarantees robust stabilization of the origin and robust
avoidance of a neighborhood around the centroids for all initial conditions.

Explicitly derive a (maximal) size around the centroids which can be robustly avoided

. . . augment the stabilizing controller to additionally ensure avoidance.
(⇝ Minimally invasive avoidance controller.)
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The combined avoidance/stabilization problem: Ex. 1
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Systems with nontrivial drift

Consider

ẋ =

[
0 −1
1 0

]
x+

[
1
0

]
u

▶ The system is controllable
▶ The influence of u is limited (only horizontal)

(⇝ Behind the obstacle, u can only be used to
stall time)



The combined avoidance/stabilization problem: Ex. 2
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The location of the obstacle:

Consider

ẋ =

[
−1 3

2
− 3

2
−1

]
x+

[
0
1

]
u

(The system is controllable)

Subspace of induced equilibria: (B ∈ Rn)

E = {y ∈ Rn : 0 = Ay +Bν, ν ∈ R}

Obstacle D with D ∩ E = 0

▶ Use the natural drift Ax to ‘leave the obstacle
behind’ and use Bu to avoid the obstacle

Obstacle D with D ∩ E ̸= 0

▶ Use u to destabilize a point x̂ ∈ D ∩ E to
avoid the obstacle



The combined avoidance/stabilization problem: Ex. 2
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The combined avoidance/stabilization problem: Ex. 3
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The shape of the obstacle

Consider again (ẋ = Ax+Bu)

ẋ =

[
−1 3

2
− 3

2
−1

]
x+

[
0
1

]
u

Consider an obstacle D ⊂ Rn with a smooth
boundary
⇝ There exists a point x ∈ ∂D such that

⋆ B and the tangent T (x) of ∂D are linearly
dependent

⋆ Ax points inside D



Problem formulation & hybrid controller framework

Setting:

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn

Obstacles: p ∈ N

x̂i ∈ Rn\{0}, i = 1, . . . , p ⇒ X̂ :=

p⋃
i=1

{x̂i}

Problem
Consider the linear system and a robustly
stabilizing feedback law

us = Ksx.

For given ε2 > ε1 > 0, construct an avoidance
(safety) controller γ(x) such that

(i) the origin x = 0 is robustly globally
asymptotically stable

(ii) γ(x) satisfies

γ(x) = Ksx ∀x ∈ Rn \ Bε2 (X̂ )

=⇒ Robust Semiglobal Preservation

(iii) the closed loop solution x(·; γ) satisfies

x(t; γ) /∈ Bε1 (X̂ ), ∀t ∈ R≥0, ∀x0 /∈ Bε2 (X̂ )

=⇒ Robust Semiglobal x̂-avoidance

Rn

x̂

0
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x(t; γ) /∈ Bε1 (X̂ ), ∀t ∈ R≥0, ∀x0 /∈ Bε2 (X̂ )

=⇒ Robust Semiglobal x̂-avoidance

Hybrid controller design
Given: Controller selection

γ(x, q) = uq(x), q ∈ {−p, . . . ,−1, 0, 1, . . . , p}︸ ︷︷ ︸
Q

.

Orchestrate the controller selection through
the flow map:

ξ̇ =

[
ẋ
q̇

]
=

[
Ax+Bγ(x, q)

0

]
, ξ ∈ C

and the jump map

ξ+ =

[
x+

q+

]
∈

[
x

{i ∈ N|ξ ∈ Di}

]
, ξ ∈ D

where

D =
p⋃

i=1
Di ⊂ Rn ×Q (Jump set)

C ⊂ Rn × {1, . . . , p} (Flow set)



Obstacle avoidance (x̂ /∈ E): Problem formulation and assumptions

Setting:

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn.

Just one Obstacle:

x̂ ∈ Rn\E

Problem
Consider the linear system and a robustly
stabilizing feedback law

us = Ksx.

For given ε2 > ε1 > 0, construct an avoidance
(safety) controller γ(x) such that

(i) the origin x = 0 is globally asymptotically
stable

(ii) γ(x) satisfies

γ(x) = Ksx ∀x ∈ Rn \ Bε2 (x̂)

=⇒ Robust Semiglobal Preservation

(iii) the closed loop solution x(·; γ) satisfies
x(t;x0) /∈ Bε1 (x̂)∀t ∈ R≥0, ∀x0 /∈ Bε2 (x̂)

=⇒ Robust Semiglobal x̂-avoidance

Set of induced equilibria:

E = {y ∈ Rn : 0 = Ay +Bν, ν ∈ R}

Basic Assumption

(a) Matrix As := A+BKs is Hurwitz. ✓

(b) |B| = 1. ✓

(c) The norm x 7→ |x|2 is contractive under
the stabilizer us = Ksx (i.e.,
V (x) = xT x is a Lyapunov function.) ✓

Discussion:
(a) (A,B) stabilizable

(Controllability is not necessary)

(b) Coordinate transformation: B◦ = B/|B|,
u◦ = |B|u.

(c) Lyapunov function: V◦(x) = xTST
◦ S◦x.

Coordinate transformation: x◦ = S◦x.



Design of feedback γ: The wipeout property

Remark
• For each x ∈ Bη(x̂) we have

Ḣ(x) = ⟨∇H(x), Ax+Bu⟩ ≥ 0, ∀u ∈ R

• For each η̄ < η, there exists h > 0 such that

⟨∇H(x), Ax+Bu⟩ ≥ h, ∀u ∈ R, ∀x ∈ Bη̄(x̂)

Remark
• A solution x(·) such that x(t) ∈ Bη̄(x̂)
∀ t ∈ [0, T ], satisfies

⟨wx̂, x(T )− x(0)⟩ ≥ T h
|∇H(x)| .

• A solution x(·) such that x(t) ∈ Bη(x̂)
∀ t ∈ [0, T ], satisfies

⟨wx̂, x(t2)− x(t1)⟩ ≥ 0 ∀0 ≤ t1 ≤ t2 ≤ T.

• Distance to induced equilibria:

η2 := min
y∈{y|∃u,Ay+Bu=0}

|x̂− y|2

• Linear “wipeout” function/direction:

H(x) = x̂TAT
Bx = x̂TAT (I −BBT )x

wx̂ =
∇H(x)
|∇H(x)| = AB x̂√

x̂TAT
B
AB x̂

• Visualization:
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Design of feedback γ: The avoidance shell S(δ)
• Design parameters of the shell S(δ):

δ ∈ R>0

µ ∈ (0, 2)

• Definitions: (q ∈ {1,−1})

δµ := δ
(

1
µ
− µ

4

)
Oq := B(

µδ
2

+δµ

)(x̂− qδµB)

S(δ) := O1
⋂

O−1

• Hysteresis parameter: h ∈ (0, 1)

Oh,q = B
hµδ

2
+δµ

(x̂− qδµB)

Sh(δ) = Oh,1 ∩ Oh,−1

S/q = S(δ)∩

{x ∈ Rn : qBT (x− x̂) ≥ 0}

• Repulsive Avoidance law: ua(x, q, kr)

- Robust “above” avoidance (q = 1)
- Robust “below” avoidance (q = −1)
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Nominal and Robust Avoidance and Stabilization Theorems
Theorem (Nominal avoidance+GAS theorem)
For any robustness gain kr ≥ 0 the closed-loop enjoys,
• (Nominal shell avoidance) For any initial condition outside the outer p shells,

all nominal solutions remain outside the inner p shells
• (Nominal GAS) The origin is UGAS for the nominal dynamics

Theorem (Robust-in-the-small avoidance+GAS theorem)
For any robustness gain kr > 0 there exists a (small enough) positive definite
continuous perturbation σ(·) such that the closed-loop enjoys,
• (S-Robust shell avoidance) For any initial condition outside the outer p shells,

all S-perturbed solutions remain outside the inner p shells
• (S-robust GAS) The origin is UGAS for the S-perturbed dynamics

Theorem (Robust-in-the-large avoidance theorem – No GAS!)

For any non-negative definite perturbation σ(·) there exists a (large enough)
robustness gain kr such that the closed-loop enjoys,
• (L-Robust shell avoidance) For any initial condition outside the outer p shells,

all L-perturbed solutions remain outside the inner p shells
• (L-robust GAS) Cannot be guaranteed with a large σ

unless extra assumptions hold on the stabilizer



Numerical example

System parameters:

ẋ =

[
−1.0 1.5
−1.5 −1.0

]
x+

[
0
1

]
u, x̂ =

[
0
1

]
;

σ(A) = {−1 + 1.5i,−1− 1.5i}
σ(A+AT ) = {−2,−2}

us = 0, µ = 1.15, η = 0.8321, ζ = 1.8028, δ∗ = 0.2455



Multiple Obstacles and multiple inputs

Use one input for avoidance and the other inputs for the wipeout property
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The construction is independent of the state dimension x ∈ Rn
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Obstacle avoidance (x̂ ∈ E): Problem formulation and assumptions

Setting:
(Linear) Dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) ∈ Rn, (u ∈ R1)

(A,B) controllable (stabilizability is not
enough)

Subspace of induced equilibria: (B ∈ Rn)
E = {y ∈ Rn|0 = Ay +Bν, ν ∈ R}
(W.l.o.g.) E = span(A−1B)

Remember:
Let x̂ ∈ E and 0 = Ax̂+Bνx̂. Then

ż =

·︷ ︸︸ ︷
x− x̂ = A(x− x̂) +B(u− νx̂)

= Az +Bv

where z = x− x̂ and v = u− νx̂.

Example:

ẋ =

[
−1 3

2
− 3

2
−1

]
x+

[
0
1

]
u
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Obstacle centroid such that

x̂ ∈ E

Target set 0 ∈ Rn



Intuitive controller design
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Controller design:
In 1 & 2: γ(ξ) = us(x) = Ks(x) (asymptotically stabilize 0)

In 3: γ(ξ) = ud(x) = Kd(x− x̂) + νx̂ (completely destabilize x̂)

In 4: γ(ξ) = (1− λ(x))usa(x) + λ(x)ud(x), (λ(x) ∈ [0, 1]) (stay away from x̂)

(Dashed lines: avoid Zeno behavior)



Obstacle avoidance & target set stabilization (x̂ ∈ E)
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Controller design:
In 1 & 2: γ(ξ) = us(x) = Ks(x)

In 3: γ(ξ) = ud(x) = Kd(x− x̂) + νx̂

In 4:
γ(ξ) = (1− λ(x))usa(x)+λ(x)ud(x),
(λ(x) ∈ [0, 1])

(Dashed lines: avoid Zeno behavior)

Assumptions:
ẋ = Ax+Bu, x ∈ Rn, u ∈ R1

(A,B) controllable
((A,B) stabilizable is not enough)

x̂ ∈ E = span(A−1B)

Results:
∀ n ≥ 2 : Obstacle avoidance

n = 2 : Obstacle avoidance & global
asymptotic stability

∀ n > 2 odd: No global asymptotic stability

∀ n ≥ 4 even: Obstacle avoidance &
maybe global asymptotic stability
(We cannot exclude the existence of
periodic orbits)



Conclusion & discussion
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x̂ ∈ E x̂ /∈ E
Linear system: ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

Assumption:
• (A,B) controllable • (A,B) stabilizable

If m > 1:
• x̂ ∈ {y|0 = Ay +Bu, u ∈ Rm}\{0} • x̂ ∈ Rn\{0}

Closed-loop properties:
• Only applicable if n ≥ 2 is even • Independent of n ∈ N, n ≥ 2
• Guarantees only for n = 2

How to enlarge the avoidance neighborhood? Nonlinear dynamical systems?


