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Main Equations of the Induction Motor LTV model

State space model of the induction motor is:
Xx(t) =A(t)x(t) + Bu(t),
y(t) =Cx(t),

where x, u and y are respectively the state, the input and the output vectors
defined as:

(W)

X = [isd isq wrd qu} T Yy = [isd isq] T U= [Usd usq] T ,

denoting direct and quadrature stator voltage us, and current is, and rotor flux

Yrs, and

—y 0 ap Buwre(t) 0 1 0]"
0= o, o Y el Fle= o

0 alm  we(t) —a 0 0 0 0
Parameters o, «, 8 and =y, are defined as:
UZl_LIjn:r € (0,1), a—%>0, ﬂ_Jier >0, fy:URLss

(PARS)
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With matrices

—y 0 af Bure(t) 0 1 0]"
|0 -y —PBuwre(t) af P = S (VI
Alt) = al, 0 -« —wre(t) B= 0 0 ¢ = 0 1|~
0 aln, wre(t) —« 0 0 0 0
the linear time-varying (LTV) equations (#), can be written as (with J =
[25]):
A Q(t) B
/—’1\
. _ -y ap 0 —Puwr(t) ol
X(t) _( {aLm fa} o+ [0 wre(t) ®J>X(t) + ( 0 ®I) u(t),

c
—
y(t) :( [1 O] ®l)x(t),
The simplified LTI model naturally arising from original LTV model is:
x(t) =Az(t) + Bu(t), y(t) = Cx(t). (#reduced)

Matrix A is Hurwitz and triple (A, B, C) is controllable and observable for any
value of the physical parameters satisfying (PARS).
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Observer design and main result

Let us consider the following LTV observer dynamics:

?:[Z\®/+Q(t)®J]>?+(é®l)u+{E®/+{ }@J](y—y).

pwre(t)

Theorem (Main)

Consider any constant gain L such that A — LC is Hurwitz and any pair of

positive definite matrices P =[5 P12], @ such that:

He (P(A - LC)) = (B(A-L0)) + (F(A-IC))" < -Q@<0.  (#)

Then, selecting p = B‘ﬂﬁffzp”, and denoting the estimation error as e = x — X,
the following quadratic Lyapunov conditions hold:

P12 p2 0
0 pi2 0 p22

V(e) = (VV(e),e) =—e" (Q®/)e,

along all solutions to (&), (V) for any time-varying t — wre(t).

1 _ pi1 0 p12 O
V(e) = 5eT (Pel)e=e' | 2 P 0 P2l e s positive definite
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Interpretations of Theorem Main

We can design the gain L for the 2x 2 LTI model (#reduced) and then we obtain
the same features for the 4 x 4 LTV model ().

Clearly, the error variables e depend on w,. and exhibit a peculiar time-varying
transient, but the upper bound on V/(e) is a simple exponential function.

Tight upper bound by solving the convex optimization with a, being the spectral

abscissa of A— LC (namely oy = — max; (Re{\i(A— LC)}) ),
min_k, subject to:
k,P=PT
He (B(A—LC)) < —2aeP, (= —Q)
I <P <Kk,

to obtain the lifted bound:

le(t)] < Vke ®*|e(0)], Vt>0

This result follows from Theorem 2 applied with Q = 2a,P.
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Observer gain L selection for £, gain minimization

Gain L can be chosen to minimize the £> gain between a disturbance d (acting
on the current measurement) and the estimation error e.

Theorem Main can be applied with p = 0, which leads to the following error

dynamics:
e=(A-LOeI+Qt)e)e+ (Lal)d. (ERR)

An upper bound i on the £> gain from d to e for dynamics (ERR) can be
minimized by solving the LMI formulation of the Bounded Real Lemma [1]*

min p, subject to:

,P,X
— | P11 Bpuw
- [Bpu P22 ] >0,
PA-XC —X 0
He o -5 0 | <0,
1 0 —%I

He (IB/_\ — )?C) < —2ad6515,

and then selecting L= P 1X, where ages > 0 is any desired convergence rate

1[1] G. Dullerud, F. Paganini, ACourse in Robust Control: Theory. Springer;-2000:
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Explicit selections of observer gain L and certificate P

A few relevant explicit selections of L can be given for Theorem Main:

1 (Open-loop observer) Selection:
L= 0 O]T, P= [kt 9] >0, Q=2 [“’ULsL’ ﬂ:fﬂ > 0, (Lzero)

is such that A — LC is Hurwitz and P, Q satisfy (é).

2 (Speed of convergence «) Selection:

—1 23

_ _ 1 _
L:[qu aLm}TA P:{“O’f}>04 Q:{%7,1}>0,

is such that A— [C is Hurwitz and assigns both eigenvalues of A — LC
at —a. Moreover selections P, @ satisfy (&).

3 (Arbitrary speed of convergence (« + 7)). Given any scalar > 0,

selection:
o[ e 1 s [20428) <30 5o
L= aLm+%(1+2£)]’ P*[ iy g | Q =2(at+n)P

o o (Lspeed)
is such that A — LC is Hurwitz and P, Q satisfy ().
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Reduced order observer

Given any gain L and any matrices P = [ 52] > 0, @ = [311 2] > 0 satisfying
Theorem Main, we introduce the reduced order observer [2, Lemma 3.1]*:

X _ 1
b —Au(t) m T paton (A,-m m + ) (Dred)
b=d—palpay,  A(t)= |24 ] = [t |

Proposition (Reduced Order Observer)

If matrices (P, Q), and gain L satisfy (&), then the flux estimation error

ey = 1 — 1 satisfies the following quadratic Lyapunov conditions:

1 ..
Vi(ep) = Ee/uT(pm ® I)ey is positive definite

Vi(ey) = —a (1 - ﬂpz_zlplz) Vi (ey),

along dynamics (&), (Vred).

2[2] G. Besancon, Remarks on nonlinear adaptive observer design. Systems &
control letters, 41(4), pp 271-280, 2000.
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Comparison with works presented in the literature

With selection (Lspeed), if n = Bac = py,'p12 = —c,
— the reduced observer coincides with [3, Equation (3.33)]*:

= ([7a(1+ﬁc) alm+c(y—a—ap)| ® I+

el 4 8)  cwnle)(1+ 6e)] @ J) [ﬂf 4,

i ols

+ ci.

ASSY

=

With selection (Lzero), = py'p12 = 0,
= the reduced-order observer coincides with observer [3, equation (3.8)]*:

<[7u alm]) @1+ [we(t) 0] ®J> {ﬂ ’

!

S
1

b,

<

)
D

3[3] Riccardo Marino, Patrizio Tomei, and Cristiano M Verrelli. Induction motor
control design. Springer, 2010.
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Simulations show improved results with £, optimized gains
Parameters corresponding to a 0.75 KW induction motor
Flux (left) and Current (right) error with (Lspeed) (top) and with £, optimal (bottom)
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Reduced-order solution: deteriorated flux estimation

Parameters corresponding to a 0.75 KW induction motor

Left: same as before, Right: flux estimation error with reduced observer
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Experimental results confirm advantage of £, optimization

Field Oriented Control law on an experimental 0.75 KW induction motor

L, optimal gain selection (left) vs explicit (Lspeed) selection (right) for the same ges
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Conclusions and perspectives

Conclusions

@ Compact representation of the LTV dynamics of the IM

o Full-order Luenberger observer for the IM rotor flux estimation
featuring

e arbitrary global uniform exponential bounds on the estimation
error, regardless of the rotor speed
e Optimal observer gains selection by £, optimization

@ Reduced-order observer covers existing results as special cases

@ Simulation and experimental tests show the effectiveness of
the proposed approach.

Future Work
@ Follow the same approach for the dual control problem

@ Can Kronecker-based “liftings” lead to novel ideas in motor
control /estimation?
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