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Main Equations of the Induction Motor LTV model

State space model of the induction motor is:

ẋ(t) =A(t)x(t) + Bu(t),

y(t) =Cx(t),
(♠)

where x , u and y are respectively the state, the input and the output vectors
defined as:

x =
[
isd isq ψrd ψrq

]T
; y =

[
isd isq

]T
; u =

[
usd usq

]T
,

denoting direct and quadrature stator voltage us? and current is? and rotor flux
ψr?, and

A(t) =


−γ 0 αβ βωre(t)
0 −γ −βωre(t) αβ
αLm 0 −α −ωre(t)

0 αLm ωre(t) −α

 ;B =


1
σLs

0

0 1
σLs

0 0
0 0

 ;C =


1 0
0 1
0 1
0 0


T

.

Parameters σ, α, β and γ, are defined as:

σ = 1− L2
m

LsLr
∈ (0, 1), α =

Rr

Lr
> 0, β =

Lm

σLsLr
> 0, γ =

Rs

σLs
+ βαLm > 0.

(PARS)
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With matrices

A(t) =


−γ 0 αβ βωre(t)
0 −γ −βωre(t) αβ
αLm 0 −α −ωre(t)

0 αLm ωre(t) −α

 ;B =


1
σLs

0

0 1
σLs

0 0
0 0

 ;C =


1 0
0 1
0 1
0 0


T

,

the linear time-varying (LTV) equations (♠), can be written as (with J =[
0 −1
1 0

]
):

ẋ(t) =
( Ā︷ ︸︸ ︷[
−γ αβ
αLm −α

]
⊗I +

Ω(t)︷ ︸︸ ︷[
0 −βωre(t)
0 ωre(t)

]
⊗J
)
x(t) +

( B̄︷ ︸︸ ︷[
1
σLs

0

]
⊗I
)
u(t),

y(t) =
( C̄︷ ︸︸ ︷[

1 0
]
⊗I
)
x(t),

The simplified LTI model naturally arising from original LTV model is:

˙̄x(t) =Āx̄(t) + B̄u(t), ȳ(t) = C̄ x̄(t). (♠reduced)

Lemma

Matrix Ā is Hurwitz and triple (Ā, B̄, C̄ ) is controllable and observable for any
value of the physical parameters satisfying (PARS).
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Observer design and main result

Let us consider the following LTV observer dynamics:

˙̂x =
[
Ā⊗ I + Ω(t)⊗ J

]
x̂ +

(
B̄ ⊗ I

)
u +

[
L̄⊗ I +

[
0

ρωre(t)

]
⊗ J

]
(y − ŷ).

(♥)

Theorem (Main)

Consider any constant gain L̄ such that Ā− L̄C̄ is Hurwitz and any pair of
positive definite matrices P̄ = [ p11 p12

p12 p22 ], Q̄ such that:

He
(
P̄(Ā− L̄C̄)

)
=
(
P̄(Ā− L̄C̄)

)
+
(
P̄(Ā− L̄C̄)

)T ≤ −Q̄ < 0. (♣)

Then, selecting ρ = βp11−p12
p22

, and denoting the estimation error as e = x − x̂ ,
the following quadratic Lyapunov conditions hold:

V (e) =
1

2
eT
(
P̄ ⊗ I

)
e = eT

[
p11 0 p12 0
0 p11 0 p12
p12 0 p22 0
0 p12 0 p22

]
e is positive definite

V̇ (e) = 〈∇V (e), ė〉 = −eT
(
Q̄ ⊗ I

)
e,

along all solutions to (♠), (♥) for any time-varying t 7→ ωre(t).
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Interpretations of Theorem Main

We can design the gain L̄ for the 2×2 LTI model (♠reduced) and then we obtain
the same features for the 4× 4 LTV model (♠).

Clearly, the error variables e depend on ωre and exhibit a peculiar time-varying
transient, but the upper bound on V (e) is a simple exponential function.

Tight upper bound by solving the convex optimization with α` being the spectral
abscissa of Ā− L̄C̄ (namely α` = −maxi

(
Re{λi (Ā− L̄C̄)}

)
),

min
k,P̄=P̄T

k, subject to:

He
(
P̄(Ā− L̄C̄)

)
≤ −2α`P̄, (= −Q̄)

I ≤ P̄ ≤ kI ,

to obtain the lifted bound:

|e(t)| ≤
√
k e−α`t |e(0)|, ∀t ≥ 0

This result follows from Theorem 2 applied with Q̄ = 2α`P̄.
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Observer gain L̄ selection for L2 gain minimization

Gain L̄ can be chosen to minimize the L2 gain between a disturbance d (acting
on the current measurement) and the estimation error e.

Theorem Main can be applied with ρ = 0, which leads to the following error
dynamics:

ė =
(
(Ā− L̄C̄)⊗ I + Ω(t)⊗ J

)
e +

(
L̄⊗ I

)
d . (ERR)

An upper bound µ on the L2 gain from d to e for dynamics (ERR) can be
minimized by solving the LMI formulation of the Bounded Real Lemma [1]1

min
µ,P̄,X̄

µ, subject to:

P̄ =
[

p11 βp11
βp11 p22

]
> 0,

He

[
P̄Ā−X̄ C̄ −X̄ 0

0 −µ
2
I 0

I 0 −µ
2
I

]
< 0,

He
(
P̄Ā− X̄ C̄

)
≤ −2αdesP̄,

and then selecting L̄ = P̄−1X̄ , where αdes > 0 is any desired convergence rate

1[1] G. Dullerud, F. Paganini, ACourse in Robust Control Theory. Springer, 2000.
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Explicit selections of observer gain L̄ and certificate P̄

A few relevant explicit selections of L̄ can be given for Theorem Main:

1 (Open-loop observer) Selection:

L̄ =
[
0 0

]T
, P̄ =

[
σLsLr 0

0 1

]
> 0, Q̄ = 2

[
γσLsLr −αLm
−αLm α

]
> 0, (Lzero)

is such that Ā− L̄C̄ is Hurwitz and P̄, Q̄ satisfy (♣).

2 (Speed of convergence α) Selection:

L̄ =
[
α− γ αLm

]T
, P̄ =

[
1
αβ

0

0 β
α

]
> 0, Q̄ =

[
2
β

−1

−1 2β

]
> 0,

is such that Ā− L̄C̄ is Hurwitz and assigns both eigenvalues of Ā− L̄C̄
at −α. Moreover selections P̄, Q̄ satisfy (♣).

3 (Arbitrary speed of convergence (α + η)). Given any scalar η > 0,
selection:

L̄ =

[
α− γ + 2η

αLm + η
β

(
1 + 2 η

α

)] , P̄ =

[
η
α

(
1 + 2 η

α

)
− β
α
η

− β
α
η β2

]
, Q̄ = 2(α+η)P̄

(Lspeed)
is such that Ā− L̄C̄ is Hurwitz and P̄, Q̄ satisfy (♣).
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Reduced order observer

Given any gain L̄ and any matrices P̄ = [ p11 p12
p12 p22 ] > 0, Q̄ = [ q11 q12

q12 q22 ] > 0 satisfying
Theorem Main, we introduce the reduced order observer [2, Lemma 3.1]2:

˙̂φ =Aψ(t)

[
y

ψ̂

]
+ p−1

22 p12

(
Ai (t)

[
y

ψ̂

]
+

1

σLs
u

)
(♥red)

ψ̂ =φ̂− p−1
22 p12y , A(t) =

[
Ai (t)
Aψ(t)

]
=
[

−γI αβI−βωre (t)J
αLm I −αI+ωre (t)J

]
Proposition (Reduced Order Observer)

If matrices (P̄, Q̄), and gain L̄ satisfy (♣), then the flux estimation error
eψ = ψ − ψ̂ satisfies the following quadratic Lyapunov conditions:

Vψ(eψ) =
1

2
eψ

T (p22 ⊗ I )eψ is positive definite

V̇ψ(eψ) = −α
(

1− βp−1
22 p12

)
Vψ(eψ),

along dynamics (♠), (♥red).

2[2] G. Besancon, Remarks on nonlinear adaptive observer design. Systems &
control letters, 41(4), pp 271-280, 2000.
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Comparison with works presented in the literature

With selection (Lspeed), if η = βαc =⇒ p−1
22 p12 = −c,

=⇒ the reduced observer coincides with [3, Equation (3.33)]3:

˙̂φ =

([
−α(1 + βc) αLm + c(γ − α− αβ)

]
⊗ I+

+
[
ωre(t)(1 + βc) cωre(t)(1 + βc)

]
⊗ J

)[
φ̂
i

]
− c

σLs
u,

ψ̂ = φ̂+ ci .

With selection (Lzero), =⇒ p−1
22 p12 = 0,

=⇒ the reduced-order observer coincides with observer [3, equation (3.8)]3:

˙̂φ =

([
−α αLm

]
⊗ I +

[
ωre(t) 0

]
⊗ J

)[
φ̂
i

]
,

ψ̂ = φ̂,

3[3] Riccardo Marino, Patrizio Tomei, and Cristiano M Verrelli. Induction motor
control design. Springer, 2010.
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Simulations show improved results with L2 optimized gains
Parameters corresponding to a 0.75 KW induction motor

Flux (left) and Current (right) error with (Lspeed) (top) and with L2 optimal (bottom)
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Reduced-order solution: deteriorated flux estimation eψ
Parameters corresponding to a 0.75 KW induction motor

Left: same as before, Right: flux estimation error with reduced observer
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Experimental results confirm advantage of L2 optimization

Field Oriented Control law on an experimental 0.75 KW induction motor

L2 optimal gain selection (left) vs explicit (Lspeed) selection (right) for the same αdes
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Conclusions and perspectives

Conclusions

Compact representation of the LTV dynamics of the IM

Full-order Luenberger observer for the IM rotor flux estimation
featuring

arbitrary global uniform exponential bounds on the estimation
error, regardless of the rotor speed
Optimal observer gains selection by L2 optimization

Reduced-order observer covers existing results as special cases

Simulation and experimental tests show the effectiveness of
the proposed approach.

Future Work

Follow the same approach for the dual control problem

Can Kronecker-based “liftings” lead to novel ideas in motor
control/estimation?
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