Luca Zaccarian

LAAS-CNRS and University of Trento

Thanks to many senior collaborators, junior colleagues/students and collaborators from industry/applied research centers: A.R. Teel, S. Galeani, E. Weyer, A. Alessandri, F. Forni, Y. Li, F. Morabito, G. Panzani, S. Donnarumma, J. Marcinkovski, S. Podda, V. Vitale, F. Todeschini, L. Burlion,

Australian National University, ENGN3223/ENGN6223 - Control Systems - Sem 2 2021, October 11, 2021

Outline

Model recovery anti-windup solution

Applications using Linear Model Recovery Anti-Windup

3 Applications using Nonlinear Model Recovery Anti-Windup

Active control provides extreme vibration isolation

Newport Corporation's Elite 3TM vibration isolation table

- Useful, for example, in
 - high-precision microscopy
 - semiconductor manufacturing
- Actuators: piezoelectric stack
- Sensors: geophones

Input saturation confuses the base control algorithm

• Extreme vibration suppression (40 dB) up to $t=23\ s$

Outline

000

• At t = 23 s someone walks close to the table

Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

Model Recovery Anti-Windup (MRAW)

- Framework for **nonlinear** AW:
 - ullet \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- AW is controller-independent:
 - ullet any (nonlinear) ${\mathcal C}$ allowed
- Useful feature of MRAW:
 - $\mathcal C$ "receives" linear plant output y_ℓ
 - ullet \Rightarrow ${\cal C}$ "delivers" linear plant input $y_{c\ell}$

Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

ullet Plant ${\cal P}$

$$\left\{ \begin{array}{ll} \dot{x} & = & Ax + B_d \, d + B_u \, \mathrm{sat}(u) \\ z & = & C_z \, x + D_{dz} \, d + D_{uz} \, \mathrm{sat}(u) \\ y & = & C_y \, x + D_{dy} \, d + D_{uy} \, \mathrm{sat}(u) \end{array} \right.$$

Model Recovery Anti-Windup (MRAW)

- Framework for **nonlinear** \mathcal{AW} :
 - $\mathcal{A}\mathcal{W}$ is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- AW is controller-independent:
 - ullet any (nonlinear) ${\mathcal C}$ allowed
- Useful feature of MRAW:
 - ullet C "receives" linear plant output y_ℓ
 - ullet \Rightarrow ${\cal C}$ "delivers" linear plant input $y_{c\ell}$
 - ullet Anti-windup filter $\hat{\mathcal{P}}$

$$\begin{cases} \dot{x}_{aw} = A x_{aw} + B_u (y_c - \text{sat}(u)) \\ y_{aw} = C_y x_{aw} + D_{uy} (y_c - \text{sat}(u)) \end{cases}$$

• Unconstrained dynamics
$$\mathcal{P} + \hat{\mathcal{P}}$$
:
$$\begin{cases} \dot{x}_{\ell} = Ax_{\ell} + B_{d} d + B_{u} y_{c} \\ y_{\ell} = C_{y} x_{\ell} + D_{dy} d + D_{uy} y_{c} \end{cases}$$

Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

Model Recovery Anti-Windup (MRAW)

- Framework for **nonlinear** \mathcal{AW} :
 - \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- AW is controller-independent:
 - ullet any (nonlinear) ${\mathcal C}$ allowed
- Useful feature of MRAW:
 - $\mathcal C$ "receives" linear plant output y_ℓ
 - ullet \Rightarrow ${\cal C}$ "delivers" linear plant input $y_{c\ell}$
- $x_{\mathsf{aw}} = x_\ell x$ stores useful information about the mismatch response
- Unconstrained recovery: **stabilize** x_{aw} to zero using v
- ullet Anti-windup filter $\hat{\mathcal{P}}$ stabilized by $oldsymbol{v}$ through time-varying saturation

$$\begin{cases} \dot{x}_{aw} = A x_{aw} - B_u \left(\operatorname{sat}[y_{c\ell}(t) + k(x_{aw})] - y_{c\ell}(t) \right) \\ z_{aw} = C_z x_{aw} - D_{uz} \left(\operatorname{sat}[y_{c\ell}(t) + k(x_{aw})] - y_{c\ell}(t) \right) \end{cases}$$

Pagnotta et al. [2007], Zaccarian and Teel [2005], Forni et al. [2012, 2010], Zaccarian et al. [2005]

Model Recovery Anti-Windup (MRAW)

- Framework for **nonlinear** \mathcal{AW} :
 - AW is a model \hat{P} of P
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- AW is controller-independent:
 - ullet any (nonlinear) ${\mathcal C}$ allowed
- Useful feature of MRAW:
 - ullet ${\cal C}$ "receives" linear plant output y_ℓ
 - ullet \Rightarrow ${\cal C}$ "delivers" linear plant input $y_{c\ell}$

Several **extensions** are possible:

- Reduced order $\hat{\mathcal{P}}$ possible (tested on adaptive noise suppression)
- MRAW allows for bumpless transfer among controllers
- MRAW generalizes to rate and curvature saturation
- MRAW generalizes to **dead time** plants (Smith predictor)

Base control algorithm confused (recall)

• Extreme vibration suppression (40 dB) up to t = 23 s

• At t = 23 s someone walks close to the table

MRAW dramatically reduces isolation recovery time Teel et al. [2006], Zaccarian et al. [2000]

• Effect of a footstep at the side of the table (recovery \approx 4 s)

Even a bat strike does not confuse the MRAW controller Teel et al. [2006], Zaccarian et al. [2000]

 $^{\prime}$ Hitting with a baseball bat the table leg (recovery pprox 5 s)

Bumpless transfer enables smooth controller activation Teel et al. [2006], Zaccarian et al. [2000]

• Controller is gradually activated in bumpless transfer scheme

Anti-windup for open-water irrigation channels

Zaccarian et al. [2007]

- Open Water Channels: rivers are broken into pools for water saving
- Gate saturation problems:
 - bumpless transfer from manual control to avoid startup transients
 - with small flows in the pools bad lower saturation effects
 - with large disturbances (rain, etc) with overflow to downstream pool
- **Challenge**: plant is not exponentially stable (poles in 0)

Simulations save days of transient response

Zaccarian et al. [2007]

Rate Saturated McDonnell Douglas TAFA dynamics Barbu et al. [2005]

• Linearized longitudinal dynamics (α =angle of attack; q=pitch rate)

$$\dot{z} := \begin{bmatrix} \dot{\alpha} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} Z_{\alpha} & Z_{q} \\ M_{\alpha} & M_{q} \end{bmatrix} z + \begin{bmatrix} 0 \\ M_{\delta} \end{bmatrix} \delta
=: Az + B_{u} \delta$$

• Saturation: M = 20 deg, R = 40 deg/s.

$$\dot{\delta} = R \operatorname{sgn} \left[M \operatorname{sat} \left(\frac{u}{M} \right) - \delta \right],$$

Study a flight trim condition with one exp unstable mode

$$\dot{x} := \left[\begin{array}{c} \dot{x}_s \\ \dot{x}_u \end{array} \right] \quad = \quad \left[\begin{array}{cc} -4 & 0 \\ 0 & 1 \end{array} \right] \, x + \left[\begin{array}{c} b_s \\ b_u \end{array} \right] \, \delta$$

Magnitude saturation and exponential instability Galeani et al. [2007], Teel [1999]

- Unconstrained trajectory may exit the null-controllability region
- To prevent this, AW scheme uses $v = \bar{k}(x_{aw}, x_u)$

• Unconstrained (--), possible desired trajectories (- and $-\cdot -)$

Problems due to magnitude+rate saturation

• Unconstrained trajectory may exit the null-controllability region

• Unconstrained (--), possible desired trajectories (- and $-\cdot -)$

Close the position loop using a pilot model Barbu et al. [2005]

• Use a simple crossover model

- Study the maneuverability of the aircraft with anti-windup
- Study the possible occurrence of PIOs (Pilot Induced Oscillations)
- Compare with static command limiting (saturating q_d)
- Use a step reference $\theta_d = 40 \ deg$

Piloted flight simulation

Barbu et al. [2005]

(unconstrained --, anti-windup -, static limiting $-\cdot-$)

Speed and Heading Control of Ships: approximate models Donnarumma et al. [2016]

- u = surge speed, $n_r = (\text{commanded})$ shaft speed
- $\psi =$ heading angle, $\delta_r =$ rudder angle

200

- Two indepedent loops on nonlinearly coupled plant
- Anti-windup model is linear and decentralized
- Robustness of MRAW provides strong improvement

Time [s]

Surge Speed

Nonlinear anti-windup for a Brake By Wire System

Todeschini et al. [2016]

• Brake-by-wire system in motorcycles corresponds to a nonlinear plant

• The main nonlinear effect can be easily isolated in the model:

BBW solution uses nonlinear MRAW

- "Deadzone compensation" scheme provides **nonlinear** baseline controller
- Fully Nonlinear anti-windup addresses saturation with nonlinear plant and nonlinear controller

- Step response reveals successful anti-windup action
- Driver would get confused by large overshoots
- Alternative existing solutions (nonlinear IMC-based anti-windup) are unacceptably slow (black)

Image-based visual servoing

- Relevant for plane landing
 - follow reference glide slope
 - position measurement scaled by unknown factor
- **Challenge**: plant is uncertain (need robust approach)

Small signal nonlinearity compensation in high-power circulating current amps

- Thyristors have a min current threshold:
 - below the treshold: circulating current
 - this generates a undesired nonlinearity
 - possibly destabilizing outer feedback
- Challenge: reverse anti-windup problem

References

Summary of the proposed Model Recovery Anti-Windup in Galeani et al. [2009], Zaccarian and Teel [2011]

▶ Model-Recovery anti-windup schemes

- Baseline ideas Teel and Kapoor [1997], Zaccarian and Teel [2
- Bumpless transfer extensions Zaccarian and Teel [2005]
- Generalizations to rate and curvature saturations Forni
- Dead-time plants (input delays) Zaccarian et al. [2005]

> MRAW Applications discussed in this talk:

- Linear MRAW: Flight Control Barbu et al. [2005], Vibration isolation Teel et al. [2006], Open Water Channels Zaccarian et al. [2007], Control of power converters Vitelli et al. [2010], Ship control Donnarumma et al. [2016].
- Nonlinear MRAW: Control of Euler-Lagrange systems Morabito et al. [2004], control of Break-by-wire systems Todeschini et al. [2016], Image-based servoing Burlion et al. [2019].

Modern Anti-windup Synthesis Control Augmentation for Actuator Saturation

Luca Zaccarian an

Nonlinear MRAW Applications

Bibliography I

- C. Barbu, S. Galeani, A.R. Teel, and L. Zaccarian. Nonlinear anti-windup for manual flight control. Int. J. of Control, 78(14):1111–1129, September 2005.
- L. Burlion, L. Zaccarian, H. de Plinval, and S. Tarbouriech. Discontinuous model recovery anti-windup for image based visual servoing. Automatica, 104:41-47, 2019.
- S. Donnarumma, L. Zaccarian, A. Alessandri, and S. Vignolo. Anti-windup synthesis of heading and speed regulators for ship control with actuator saturation. In European Control Conference, pages 1284–1290, Aalborg, Denmark, June 2016.
- F. Forni, S. Galeani, and L. Zaccarian. An almost anti-windup scheme for plants with magnitude, rate and curvature saturation. In American Control Conference, pages 6769-6774, Baltimore (MD), USA, June 2010.
- F. Forni, S. Galeani, and L. Zaccarian. Model recovery anti-windup for continuous-time rate and magnitude saturated linear plants. Automatica, 48 (8):1502-1513, 2012.

- S. Galeani, A.R. Teel, and L. Zaccarian, Constructive nonlinear anti-windup design for exponentially unstable linear plants. Systems and Control Letters, 56(5):357-365, 2007.
- S. Galeani, S. Tarbouriech, M.C. Turner, and L. Zaccarian. A tutorial on modern anti-windup design. European Journal of Control, 15(3-4):418-440. 2009
- F. Morabito, A.R. Teel, and L. Zaccarian. Nonlinear anti-windup applied to Euler-Lagrange systems. IEEE Trans. Rob. Aut., 20(3):526-537, 2004.
- L. Pagnotta, L. Zaccarian, A. Constantinescu, and S. Galeani. Anti-windup applied to adaptive rejection of unknown narrow band disturbances. In European Control Conference, pages 150-157, Kos (Greece), July 2007.
- A.R. Teel. Anti-windup for exponentially unstable linear systems. Int. J. of Robust and Nonlinear Control, 9:701-716, 1999.
- A.R. Teel and N. Kapoor. The \mathcal{L}_2 anti-windup problem: Its definition and solution. In European Control Conference, Brussels, Belgium, July 1997.
- A.R. Teel, L. Zaccarian, and J. Marcinkowski. An anti-windup strategy for active vibration isolation systems. *Control Engineering Practice*, 14(1): 17-27, 2006.

Bibliography III

- F. Todeschini, S. Formentin, G. Panzani, M. Corno, S. Savaresi, and L. Zaccarian. Nonlinear pressure control for BBW systems via dead zone and anti-windup compensation. *IEEE Transactions on Control Systems Technology*, 24(4):1419–1431, 2016.
- R. Vitelli, L. Boncagni, F. Mecocci, S. Podda, V. Vitale, and L. Zaccarian. An anti-windup-based solution for the low current nonlinearity compensation on the FTU horizontal position controller. In *Conference on Decision and Control*, pages 2735–2740, Atlanta (GA), USA, December 2010.
- L. Zaccarian and A.R. Teel. A common framework for anti-windup, bumpless transfer and reliable designs. *Automatica*, 38(10):1735–1744, 2002.
- L. Zaccarian and A.R. Teel. The \mathcal{L}_2 (l_2) bumpless transfer problem: its definition and solution. *Automatica*, 41(7):1273–1280, 2005.
- L. Zaccarian and A.R. Teel. Modern anti-windup synthesis: control augmentation for actuator saturation. Princeton University Press, Princeton (NJ), 2011.

Bibliography IV

- L. Zaccarian, A.R. Teel, and J. Marcinkowski. Anti-windup for an active vibration isolation device: theory and experiments. In *Proceedings of the* American Control Conference, pages 3585-3589, Chicago (IL), USA, June 2000.
- L. Zaccarian, D. Nešić, and A.R. Teel. \mathcal{L}_2 anti-windup for linear dead-time systems. Systems and Control Letters, 54(12):1205-1217, 2005.
- L. Zaccarian, E. Weyer, A.R. Teel, Y. Li, and M. Cantoni. Anti-windup for marginally stable plants and its application to open water channel control systems. Control Engineering Practice, 15(2):261-272, 2007.