To stick or to slip: Lyapunov-based reset PID for positioning systems with Coulomb and Stribeck friction

Luca Zaccarian

LAAS-CNRS (Toulouse, France) and University of Trento (Italy)

XV International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy’s Conference)
ICS RAS, Moscow, Russia, June 3-5, 2020
1. Problem description and model

2. Coulomb Friction and Asymptotic Convergence

3. Reset PID with Coulomb friction for Transient Improvement

4. Hybrid Automaton and Exponential Convergence

5. Reset PID with Stribeck Effect for Stability Recovery

6. Conclusions and acknowledgments
Coulomb friction and discontinuous right-hand side

\[
\dot{s} = v
\]

\[
\dot{v} = \begin{cases}
 u - F_s & \text{if } v > 0 \text{ or } (v = 0, u \geq F_s) \\
 0 & \text{if } (v = 0, |u| < F_s) \\
 u + F_s & \text{if } v < 0 \text{ or } (v = 0, u \leq -F_s)
\end{cases}
\]

\[
u = -k_p s - k_v v - k_i e_i,
\]

\[
u_{PID}(t) := -\bar{k}_p s(t) - \bar{k}_i \int_0^t s(\tau)d\tau - \bar{k}_d \frac{ds(t)}{dt}
\equal{} -\bar{k}_p s(t) - \bar{k}_i e_i(t) - \bar{k}_d v(t),
\]

\[
f_f(u_{PID}, v) := \begin{cases}
 \bar{F}_s \text{sign}(v) + \alpha_v v, & \text{if } v \neq 0 \\
 u_{PID}, & \text{if } v = 0, \ |u_{PID}| < \bar{F}_s \\
 \bar{F}_s \text{sign}(u_{PID}), & \text{if } v = 0, \ |u_{PID}| \geq \bar{F}_s
\end{cases}
\]

\[
m \dot{v} = u_{PID} - f_f(u_{PID}, v)
\]

\[\triangleright\text{PID action and viscous force combined in } u := \frac{u_{PID} - \alpha_v v}{m} \quad \text{for } v = 0\]

\[\triangleright\text{normalize physical param's } \bar{k}_p, \bar{k}_i, \bar{k}_d, \bar{F}_s \text{ as } (k_p, k_v, k_i) := \left(\frac{\bar{k}_p}{m}, \frac{\bar{k}_d + \alpha_v}{m}, \frac{\bar{k}_i}{m}\right), \quad F_s := \frac{\bar{F}_s}{m}\]

\[
\dot{e}_i = s
\]

\[
\dot{s} = v
\]
The problem is industrially relevant with Coulomb effect.

Industrial High-precision motion control system (electron microscope) experiments:

- Graph showing position, control force, and time over a range.
- Diagram of a motor system with labeled parts (1-9).
- Graph showing friction force F_f against velocity v.

Measured friction nonlinearity points.
Experiments show instability with Stribeck effect

- Stribeck effect causes “hunting” instability with PID feedback

Same experimental device shows Stribeck with different ambient, lubrication and wear conditions
Reformulation as a suitable differential inclusion

\[\dot{e}_i = s \]
\[\dot{s} = v \]
\[u = -k_i e_i - k_p s - k_v v, \]
\[u - \dot{v} = \begin{cases}
+ F_s & \text{if } v > 0 \\
\text{sat}_{F_s}(u) & \text{if } v = 0 \\
- F_s & \text{if } v < 0
\end{cases} \]

\[\dot{e}_i = s \]
\[\dot{s} = v \]
\[\dot{v} \in -k_i e_i - k_p s - k_v v - F_s \text{SGN}(v) \]

- Physical model: intuitive, but hard to prove existence of solutions and stability properties with a discontinuous right hand side
- Differential inclusion: existence of solutions and \textit{ad hoc} Lyapunov tools

\textbf{Lemma BASIC (solutions are unique and complete)}

For any initial condition \(z(0) = (e_i(0), s(0), v(0)) \in \mathbb{R}^3 \), the green differential inclusion has a unique solution defined for all \(t \geq 0 \).
The interest in dynamics with friction had its peak in the 1990’s.

- **modeling direction**
 - **Dahl model:**
 - **models by Bliman and Sorine:**
 - **LuGre model:**
 - **Leuven model:**
Set-valued friction and PID control

- use of set-valued mapping for the friction force, and hence differential inclusions

- uncontrolled multi-degree-of-freedom mechanical systems:

- PD controlled 1 d.o.f. system:

- combination of set-valued friction laws and Lyapunov tools:

- stability of compact attractors

- for the same setting (point mass + PID controller), with Coulomb and viscous friction only it was proven that no stick-slip limit cycle (so-called hunting) exist:

Coulomb-only friction provides an initially simplified setting

- Coulomb friction experience suggests (slow) convergence and stability

State equations with $z = (e_i, s, v)$ are

\[
\begin{bmatrix}
\dot{e}_i \\
\dot{s} \\
\dot{v}
\end{bmatrix} \in
\begin{bmatrix}
s \\
v \\
v
\end{bmatrix} - k_i e_i - k_p s - k_v v - F_s \text{SGN}(v)
\]

\[
= \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-k_i & -k_p & -k_v
\end{bmatrix} z -
\begin{bmatrix}
0 \\
0 \\
F_s
\end{bmatrix} \text{SGN}(v)
\]

- Standing assumption about the PID gains is probably necessary for GAS

Assumption LIN

In the absence of friction ($F_s = 0$), the origin is globally asymptotically stable (GAS). Equivalently,

\[k_i > 0, \ k_p > 0, \ k_v k_p > k_i.\]
With Coulomb Friction the largest set of equilibria is GAS

Assumption LIN

In the absence of friction ($F_s = 0$), the origin is globally asymptotically stable (GAS). Equivalently,

$$k_i > 0, \quad k_p > 0, \quad k_v k_p > k_i.$$

- For $z = (e_i, s, v)$ and

 $$\dot{e}_i = s$$

 $$\dot{s} = v$$

 $$\dot{v} \in -k_i e_i - k_p s - k_v v - F_s \text{SGN}(v)$$

 the set of equilibria making $\dot{z} = 0$ are $s = v = 0$ and $|e_i| \leq \frac{F_s}{k_i}$.

- Denote the corresponding set (it depends on $k_i!!$)

 $$\mathcal{A} := \left\{ (e_i, s, v) : \ s = 0, \ v = 0, \ e_i \in \left[-\frac{F_s}{k_i}, \frac{F_s}{k_i} \right] \right\}.$$

Theorem C-GAS (Coulomb-GAS) Bisoffi et al. [2018]

With Coulomb friction, under Assumption LIN, set \mathcal{A} is 1) globally attractive and 2) Lyapunov stable $\Leftrightarrow \exists \beta \in KL$ such that $|z(t)|_{\mathcal{A}} \leq \beta(|z(0)|_{\mathcal{A}}, t), \ \forall t \geq 0.$
Illustration by simulation is informative

\[
f_c = 1 \text{ m/s}^2
\]

\[
(k_v, k_p, k_i) = (6.4, 3, 4)
\]

→ complex conjugate roots

\[
\dot{z} \in \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-k_i & -k_p & -k_v
\end{bmatrix}
\begin{bmatrix}
e_i \\
s \\
v
\end{bmatrix} - \begin{bmatrix}
0 \\
0 \\
f_c
\end{bmatrix} \text{SGN}(v)
\]

\[
(k_v, k_p, k_i) = (1.5, 0.66, 0.08)
\]

→ three distinct real roots
Change of coordinates simplifies A

- Apply change of coordinates

 \[
 \sigma := -k_i s \\
 \phi := -k_i e_i - k_p s \quad \text{to} \quad \dot{z} := \begin{bmatrix} \dot{e}_i \\ \dot{s} \\ \dot{v} \end{bmatrix} \in \begin{bmatrix} 0 & 1 & 0 \\ 0 & -k_i & -k_p \\ -k_i & -k_p & -k_v \end{bmatrix} z - \begin{bmatrix} 0 \\ F_s \end{bmatrix} \text{SGN}(v)
 \]

\[v := v \]

... and get dynamics

\[
\dot{x} := \begin{bmatrix} \dot{\sigma} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} \in \begin{bmatrix} -k_i v \\ \sigma - k_p v \\ \phi - k_v v - F_s \text{SGN}(v) \end{bmatrix} = \begin{bmatrix} 0 & 0 & -k_i \\ 1 & 0 & -k_p \\ 0 & 1 & -k_v \end{bmatrix} \begin{bmatrix} \sigma \\ \phi \\ v \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ F_s \end{bmatrix} \text{SGN}(v)
\]

\[= Ax - b \text{SGN}(v) =: F(x) \]

- Attractor (simpler expression independent of k_i)

 \[A = \{ (\sigma, \phi, v) : |\phi| \leq F_s, \sigma = 0, v = 0 \} \]

- Distance to attractor

 \[|x|_A^2 := \left(\inf_{y \in A} |x - y| \right)^2 = \sigma^2 + v^2 + dz_{F_s}(\phi)^2 \]
Lyapunov-like function is discontinuous!!

\[
V(x) := \left[\begin{array}{c} \sigma \\ v \end{array} \right]^T \left[\begin{array}{cc} \frac{k_v}{k_i} & -1 \\ -1 & k_p \end{array} \right] \left[\begin{array}{c} \sigma \\ v \end{array} \right] + \min_{f \in F_s \text{ SGN}(v)} |\phi - f|^2
\]

\[
= \min_{f \in F_s \text{ SGN}(v)} \left[\begin{array}{c} \sigma \\ \phi - f \end{array} \right]^T \left[\begin{array}{ccc} \frac{k_v}{k_i} & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & k_p \end{array} \right] \left[\begin{array}{c} \sigma \\ \phi - f \end{array} \right] = \min_{f \in F_s \text{ SGN}(v)} \left[\begin{array}{c} \sigma \\ \phi - f \end{array} \right]^T P \left[\begin{array}{c} \sigma \\ \phi - f \end{array} \right]
\]

- Immediate to check:
 - \(V(x) = 0 \text{ if and only if } x \in \mathcal{A} \)
 - \(V \) is not continuous
 for \(\{(\sigma_i, \phi_i, v_i)\}_{i=0}^{+\infty} = \{(0, 0, (\frac{1}{2})^i)\}_{i=0}^{+\infty} \), \(V \) converges to \(F_s^2 \) but \(V(0) = 0 \)
Properties of the Lyapunov-like function V

The Lyapunov-like function V is:

1. **lower semicontinuous (lsc)**
 \[V(\bar{x}) \leq \lim_{x \to \bar{x}} V(x), \quad \forall \bar{x} \in \mathbb{R}^3 \]
 (Regularity)

2. **lower bounded**: There exist $c_1, c_2 > 0$ such that
 \[c_1|x|_A^2 \leq V(x) \leq c_2|x|_A^2 + 2F_s^2 \quad \forall x \in \mathbb{R}^3 \]
 (Sandwich)

3. **decreasing along trajectories**: $\exists c > 0$: for each solution $x = (\sigma, \phi, v)$,
 \[\forall t_2 \geq t_1 \geq 0, \quad V(x(t_2)) - V(x(t_1)) \leq -c \int_{t_1}^{t_2} v(t)^2 dt. \]
 (Flow)

• Proof of Theorem C-GAS given in Bisoffi et al. [2018] using:
 • auxiliary function and state partition for **stability**
 • Integral invariance principle of E.P. Ryan (1999) for **attractivity**
A closer look at the slow transients reveals promising ideas

- Solutions show long stick phases in the band $\mathcal{E}_{\text{stick}} := \{ x \in \mathbb{R}^3 : v = 0, |\phi| \leq F_s \}$

- Lyapunov function suggests reversing the sign of ϕ (reset to $-\phi$) when $\phi v \leq 0$

 \[
 V(x) := \begin{bmatrix} \sigma \\ v \end{bmatrix}^T \begin{bmatrix} k_v \\ k_i \\ -1 \end{bmatrix} \begin{bmatrix} \sigma \\ v \end{bmatrix} + \min_{f \in F_s \text{ SGN}(v)} |\phi - f|^2
 \]

- Solutions would then jump across the band $\mathcal{E}_{\text{stick}}$

- Time-regularized solutions (with timer τ) imposes dwell time $t_{k+1} - t_k \geq \delta$
Reset PID Control Design Improves Coulomb Transient

- Overall state involves \(x = (\sigma, \phi, v) \) and \(\tau \in [0, 2\delta] \), that is \((x, \tau) \in \mathbb{R}^3 \times [0, 2\delta] \)

- Hybrid closed loop with reset PID (no knowledge of \(F_s \) required)

\[
\begin{aligned}
\dot{x} &\in F(x) : =
\begin{bmatrix}
0 & 0 & -k_i \\
1 & 0 & -k_p \\
0 & 1 & -k_v \\
\end{bmatrix}
\begin{bmatrix}
\sigma \\
\phi \\
v \\
\end{bmatrix} -
\begin{bmatrix}
0 \\
0 \\
F_s \\
\end{bmatrix}
\text{SGN}(v), \\
\dot{\tau} & = 1 - dz(\tau/\delta) \\
x^+ & = g(x) : =
\begin{bmatrix}
\sigma & -\alpha \phi & v \\
\end{bmatrix}^\top, \\
\tau^+ & = 0
\end{aligned}
\]

\((x, \tau) \in C : = \mathbb{R}^3 \times [0, 2\delta] \setminus D \)

\(C \) and \(D \) are the flow and jump sets.

- Explanation of the jump set \(D \):
 - \(\phi \sigma \leq 0 \) so the solution is overshoting
 - \(\phi v \leq 0 \) so the Lyapunov function does not increase

- Parameter \(\alpha \in [0, 1] \) tunes robustness \((\alpha = 0)\) vs performance \((\alpha = 1)\)
A closer look at the slow transients (recall)

- Solutions show long stick phases in the band \(\mathcal{E}_{\text{stick}} := \{ x \in \mathbb{R}^3 : v = 0, |\phi| \leq F_s \} \)

- Lyapunov function suggests reversing the sign of \(\phi \) (reset to \(-\alpha \phi \)) when \(\phi v \leq 0 \)

\[
V(x) := \begin{bmatrix} \sigma \\ v \end{bmatrix}^T \begin{bmatrix} k_v \\ k_i \\ -1 \\ -1 \\ k_p \end{bmatrix} \begin{bmatrix} \sigma \\ v \end{bmatrix} + \min_{f \in F_s SGN(v)} |\phi - f|^2
\]

- Solutions would then jump across the band \(\mathcal{E}_{\text{stick}} \)

- Time-regularized solutions (with timer \(\tau \)) imposes dwell time \(t_{k+1} - t_k \geq \delta \)
Reset PID (with $\alpha = 1$) successfully jumps across E_{stick}

- Lyapunov decrease, and decrease of $|x|_A$ suggests exponential convergence

- Bad solutions sequence from $x_k(0) = (\epsilon_k, 0, 0)$ satisfy:
 $$|x_k(t)|_A = |x_k(0)|_A = \epsilon_k \text{ for all } t \leq T_k,$$
 with $\lim_{k \to \infty} \epsilon_k = 0$ and $\lim_{k \to \infty} T_k = +\infty$.
 thus disproving exponential convergence

- However exponential convergence seems to often occur
The same Lyapunov function helps in the reset context

Recall the Lyapunov-like function:

\[V(x) := \begin{bmatrix} \sigma \\ \nu \end{bmatrix}^T \begin{bmatrix} k_v \\ -1 \\ k_p \end{bmatrix} \begin{bmatrix} \sigma \\ \nu \end{bmatrix} + \min_{f \in F_s \text{SGN(} \nu \text{)}} |\phi - f|^2 \]

Properties of \(V \) carry over from non-hybrid case

Function \(V \) is **lower semicontinuous** and there exist \(c_1, c_2, c > 0 \) such that:

\begin{align*}
 c_1 |x|_A^2 &\leq V(x) \leq c_2 |x|_A^2 + 2F_s^2 & \forall x \in \mathbb{R}^3 \\
 V(x(t_2,j)) - V(x(t_1,j)) &\leq -c \int_{t_1}^{t_2} \nu(t,j)^2 dt, & \forall \text{ solution } (x, \tau) \\
 V(g(x)) - V(x) &\leq 0, & \forall (x, \tau) \in D
\end{align*}

Theorem RC-GAS (Reset-Coulomb-GAS) Beerens et al. [2019]

With Coulomb friction, under Assumption LIN, set \(A \) is \(KL \)-GAS.

- **Stability proof**: same as before using extra (Jump) condition
- **Global attractivity proof**: uses meagre-limsup hybrid invariance principle
Experimental response confirms transient improvement

Beerens et al. [2019]
Without resets, alternative hybrid automaton model

Bisoffi et al. [2019]

- Extended state \(\bar{x} \) includes timer \(\bar{\tau} \) and logic variable \(\bar{q} \) such that \(\bar{q}\bar{v} \geq 0 \)
 \[\bar{x} := (\bar{\sigma}, \bar{\phi}, \bar{v}, \bar{q}, \bar{\tau}) \in \bar{\Xi} := \{\bar{x} \in \mathbb{R}^3 \times \{-1, 0, 1\} \times [0, 2\delta] \mid \bar{q}\bar{v} \geq 0\}, \]

- Hybrid automaton \(\mathcal{H}_\delta \) (Coulomb, no resets) – semiglobally correct
 \[\mathcal{H}_\delta : \begin{cases} \dot{\bar{x}} = \bar{f}(\bar{x}), & \bar{x} \in \bar{C} \\ \bar{x}^+ = \bar{g}(\bar{x}), & \bar{x} \in \bar{D} \end{cases} \]
 \[\bar{C} := \bar{C}_{\text{slip}} \cup \bar{C}_{\text{stick}} \]
 \[\bar{D} := \bar{D}_{-1} \cup \bar{D}_0 \cup \bar{D}_1 \]

- Smooth Lyapunov function certifies GAS of \(\bar{A} := \{\bar{x} : \bar{\sigma} = \bar{v} = 0, \bar{\phi} \in F_s \text{SGN}(\bar{q})\} \)
 \[\bar{V}(\bar{x}) := \begin{bmatrix} \bar{\sigma} \\ \bar{v} \end{bmatrix}^T \begin{bmatrix} k_v & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \bar{\sigma} \\ \bar{v} \end{bmatrix} + |\bar{q}|(\bar{\phi} - \bar{q}F_s)^2 + (1 - |\bar{q}|)dz^2_{F_s}(\bar{\phi}). \]
Alternative proof of Theorem C-GAS uses function \tilde{V}
Bisoffi et al. [2019]

- Same exact evolution for V (along original sol’ns x) and \tilde{V} (along sol’ns \tilde{x} to H_δ)

Properties of smooth \tilde{V} are convenient
- Function \tilde{V} is smooth and there exist $\alpha_1, \alpha_2 \in K_\infty$, $c > 0$ such that:
 \[
 \alpha_1(|\tilde{x}|_{\mathcal{A}}) \leq \tilde{V}(\tilde{x}) \leq \alpha_2(|\tilde{x}|_{\mathcal{A}}) \quad \forall \tilde{x} \in \bar{\Xi} \quad \text{(Sandwich)}
 \]
 \[
 \langle \nabla \tilde{V}(\tilde{x}), \bar{f}(\tilde{x}) \rangle = -cv^2, \quad \forall \tilde{x} \in C_{\text{slip}} \cup C_{\text{stick}} \quad \text{(Flow)}
 \]
 \[
 \tilde{V}(\bar{g}_i(\tilde{x})) - \tilde{V}(\tilde{x}) \leq 0, \quad \forall \tilde{x} \in D_i, i \in \{1, -1, 0\} \quad \text{(Jump)}
 \]

- Alternative proof of Theorem C-GAS given in Bisoffi et al. [2019] using:
 - auxiliary function and state partition for stability
 - proof of attractivity using the following arguments
 - Original solutions x are uniformly bounded
 - Solutions \tilde{x} of hybrid automaton H_δ semiglobally reproduces any original solution x evolving in a compact set $\mathcal{K}(\delta)$ such that $\lim_{\delta \to 0} \mathcal{K}(\delta) = \mathbb{R}^3$
 - Smooth Lyapunov function \tilde{V} certifies global attractivity for H_δ
 - Attract. for $H_\delta \Rightarrow$ semiglobal Attract. \Rightarrow Attract. of the original system
 - Interesting connections with (bi)simulation concepts found in computer science
With resets, extended automaton includes extra variable

- Extended state \(\bar{x} := (\bar{\sigma}, \bar{\phi}, \bar{v}, \bar{q}, \bar{\tau}, \bar{a}) \in \bar{\Xi} \) with logic variable \(\bar{a} \) such that \(\bar{a}\bar{v} \geq 0 \)

\[
\bar{\Xi} := \{ \bar{x} \in \mathbb{R}^3 \times \{-1, 0, 1\} \times [0, 2\delta] \times \{-1, 1\} \mid \bar{q}\bar{v} \geq 0, \bar{a}\bar{\phi} \geq 0, \bar{a}\bar{v} \geq 0 \},
\]

- Hybrid automaton for overshooting solutions, wherein \(\bar{\phi}\bar{v} \geq 0 \), then \(\bar{a} = \text{sign}(\phi) \)

\[
\mathcal{H}_\delta : \begin{cases}
\dot{\bar{x}} = \bar{f}(\bar{x}), & \bar{x} \in \bar{C} \\
\bar{x}^+ = \bar{g}(\bar{x}), & \bar{x} \in \bar{D}
\end{cases}
\]

\(\bar{C} := \bar{C}_{\text{slip}} \cup \bar{C}_{\text{stick}} \)

\(\bar{D} := D_{-1} \cup D_0 \cup D_1 \)

\(\bar{C}_{\text{slip}} := \{ \bar{x} \in \bar{\Xi} : |\bar{q}| = 1 \} \)

\(\bar{C}_{\text{stick}} := \{ \bar{x} \in \bar{\Xi} : \bar{q} = 0, \bar{v} = 0, \bar{a}\bar{\phi} \leq F_s \} \)

\(D_1 := \{ \bar{x} \in \bar{\Xi} : \bar{q} = 0, \bar{v} = 0, \bar{a}\bar{\phi} \geq F_s, \bar{\tau} \in [\delta, 2\delta] \} \)

\(D_{-1} := \{ \bar{x} \in \bar{\Xi} : \bar{q} = 0, \bar{v} = 0, \bar{a}\bar{\phi} \geq F_s, \bar{\tau} \in [\delta, 2\delta] \} \)

\(D_0 := \{ \bar{x} \in \bar{\Xi} : |\bar{q}| = 1, \bar{v} = 0, \bar{a}\bar{\phi} \leq F_s \}, \)
Homogeneous automaton explains exponential convergence

- State transformation provides homogeneous hybrid dynamics

\[\hat{x} := (\dot{\sigma}, \dot{\phi}, \dot{v}, \ddot{q}, \ddot{\tau}, \dddot{a}) \quad \mapsto \quad \hat{\hat{x}} := (\dot{\hat{\sigma}}, \dot{\hat{\phi}}, \dot{\hat{v}}, \ddot{\hat{q}}, \ddot{\hat{\tau}}, \dddot{\hat{a}}) = (\sigma, \phi - \ddot{a} F_s, \dot{v}, q, \tau, \dddot{a}). \]

- With \(\alpha = 1 \), denoting \(\hat{x}_0 = (\hat{\sigma}, \hat{\phi}, \hat{v}) \), we get partial homogeneity in \(\hat{x}_0 \)

\[
\begin{align*}
\hat{x}_0 &= A_F(\hat{q}, \hat{a}) \hat{x}_0, \quad \hat{x} \in \hat{C} \\
\hat{x}_0^+ &= A_J(\hat{q}, \hat{a}) \hat{x}_0, \quad \hat{x} \in \hat{D}
\end{align*}
\]

\[\hat{C} := \hat{C}_{\text{slip}} \cup \hat{C}_{\text{stick}} \]

\[\hat{D} := \hat{D}_{-1} \cup \hat{D}_0 \cup \hat{D}_1 \]

- Exploiting \(\dddot{a} = \text{sign}(\dddot{\phi}) \), with \(\alpha = 1 \) we can prove \(\exists M > 0, \mu > 0 \) satisfying

\[|(\sigma, \phi - \text{sign}(\phi) F_s, v)| \leq M e^{-\mu t} |\sigma_0| \]

for all solutions starting at stick-to-slip transition \(\hat{x}_0 = (\sigma_0, 0, 0) \).
Streibeck model includes extra nonlinearity

- New velocity weakening function ψ (previously zero):

$$
\begin{bmatrix}
\dot{\sigma} \\
\dot{\phi} \\
\dot{v}
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & -k_i \\
1 & 0 & -k_p \\
0 & 1 & -k_v
\end{bmatrix}
\begin{bmatrix}
\sigma \\
\phi \\
v
\end{bmatrix}
-
\begin{bmatrix}
0 \\
0 \\
F_s
\end{bmatrix}
(SGN(v) + \psi(v)),
$$

Assumption STRIB

Assumption LIN holds ($k_i > 0$, $k_p > 0$, $k_v k_p > k_i$). Moreover, the velocity weakening function ψ is globally Lipschitz and satisfies

- $|\psi(v)| \leq F_s$
- $v \psi(v) \geq 0$ for all v
- it is linear in a small enough interval around zero (namely, for some ε_v, $|v| \leq \varepsilon_v \Rightarrow \psi(v) = L_2 v$).
Stribeck “hunting instability” needs a different solution

- Reset PID solution solving Coulomb is not successful for Stribeck hunting effect
A two-stage reset PID proposed in Beerens et al. [2020]

- Add boolean state $b \in \{-1, 1\}$ such that $bv\sigma \geq 0$:
 1) $b = 1$ in the overshooting phase $v\sigma \geq 0$
 2) $b = -1$ in the approaching phase $v\sigma \leq 0$

- Ensure that the integral action e_i points in the direction of position error s
 This corresponds to imposing $\phi\sigma \geq \frac{k_p}{k_i}\sigma^2$

- Overall state $\xi := (x, b) := (\sigma, \phi, v, b)$ evolves in Ξ, where
 $$\Xi := \{(x, b) \in \mathbb{R}^3 \times \{-1, 1\} : bv\sigma \geq 0, \sigma\phi \geq \frac{k_p}{k_i}\sigma^2, bv\phi \geq 0\}.$$

- Jumps at zero-crossing of σ and v, wherein state b alternates between -1 and 1
 $$\begin{bmatrix} \sigma^+ \\ \phi^+ \\ v^+ \\ b^+ \end{bmatrix} = g_{\sigma}(\xi) := \begin{bmatrix} \frac{\sigma}{v} \\ -\phi \\ -v \\ -b \end{bmatrix}, \quad \xi \in \mathcal{D}_{\sigma} := \{\xi \in \Xi : \sigma = 0, b = 1\}$$
 $$\begin{bmatrix} \sigma^+ \\ \phi^+ \\ v^+ \\ b^+ \end{bmatrix} = g_{v}(\xi) := \begin{bmatrix} \frac{k_p}{k_i}\sigma \\ \frac{\sigma}{\phi} \\ \frac{v}{\phi} \\ -b \end{bmatrix}, \quad \xi \in \mathcal{D}_{v} := \{\xi \in \Xi : v = 0, b = -1\}.$$

- Can prove that ϕ is never zero along sol’ns, so \mathcal{D}_{σ} and \mathcal{D}_v robustly implemented as
 $$\mathcal{D}_{\sigma}^r := \{\xi : \sigma\phi \leq 0, b = 1\}, \quad \mathcal{D}_v^r := \{\xi : v\phi \geq 0, b = -1\}.$$
The reset closed-loop eliminates the hunting instability

Theorem STRI-GAS (Reset-Stribeck-GAS) Beerens et al. [2020]:

Under Assumption STRIB, the compact set

\[A_e := A \times \{-1, 1\} = \{\xi \in \Xi: \sigma = v = 0, |\phi| \leq F_s\}. \]

is \mathcal{KL}-globally asymptotically stable.

- The proof of Theorem STRI-GAS requires using the hybrid automaton trick (a new automaton, a new “smooth” Lyapunov function).
Stribeck hybrid automaton is more sophisticated
Beerens et al. [2020]

- Extended state $\bar{\xi}$ includes timer $\bar{\tau}$ and logic variable \bar{q} such that $\bar{q}\bar{v} \geq 0$

 $\bar{\xi} := (\bar{\sigma}, \bar{\phi}, \bar{v}, \bar{b}, \bar{q}, \bar{\tau}) \in \bar{\Xi} := \{ \bar{\xi} | \bar{q}\bar{v} \geq 0, \bar{b}\bar{q}\bar{\sigma} \geq 0, \bar{\sigma}\bar{\phi} \geq \frac{k_p}{k_i} \bar{\sigma}^2, \bar{b}\bar{q}\bar{\phi} \geq 0 \}$.

- Hybrid automaton \mathcal{H}_δ (Stribeck, resets) – semiglobally correct

 $\mathcal{H}_\delta : \begin{cases} \dot{\bar{\xi}} = \bar{f}(\bar{\xi}), & \bar{\xi} \in \bar{\mathcal{C}} \\ \bar{\xi}^+ = \bar{g}(\bar{\xi}), & \bar{\xi} \in \bar{\mathcal{D}} \end{cases}$

 $\bar{\mathcal{C}} := \mathcal{C}_{\text{slip}} \cup \mathcal{C}_{\text{stick}}$

 $\bar{\mathcal{D}} := \mathcal{D}_- \cup \mathcal{D}_0 \cup \mathcal{D}_1 \cup \mathcal{D}_\sigma \cup \mathcal{D}_v$

- Lipschitz Lyapunov function shows GAS of $\bar{\mathcal{A}}_e := \{ \bar{\xi} | \bar{\sigma} = \bar{\nu} = 0, \bar{\phi} \in F_s \text{SGN}(\bar{b}\bar{q}) \}$

 $\bar{V}_e(\bar{\xi}) := \begin{bmatrix} \bar{\sigma} \\ \bar{\nu} \end{bmatrix}^\top \begin{bmatrix} \frac{k_v}{k_i} & -1 \\ -1 & k_p \end{bmatrix} \begin{bmatrix} \bar{\sigma} \\ \bar{\nu} \end{bmatrix} + |\bar{q}|(\bar{\phi} - \bar{b}\bar{q}F_s)^2 + (1 - |\bar{q}|)dz^2_{F_s}(\bar{\phi})$

 $+ 2\frac{k_p}{k_i} F_s(\bar{b}\bar{q}\bar{\sigma} + (1 - |\bar{q}|)|\bar{\sigma}|)$
Proof of Theorem STRI-GAS uses function \bar{V}_e

- Function \bar{V}_e is not smooth but Lipschitz \Rightarrow can use Clarke nonsmooth tools

Properties of Lipschitz \bar{V}_e are convenient

Function \bar{V}_e is **Lipschitz** and there exist $\alpha_1, \alpha_2 \in \mathcal{K}_\infty$, $c > 0$ such that:

$$
\alpha_1(|\bar{\xi}|_{\bar{A}_e}) \leq \bar{V}_e(\bar{\xi}) \leq \alpha_2(|\bar{\xi}|_{\bar{A}_e}) \quad \forall \bar{\xi} \in \bar{\Xi} \quad \text{(Sandwich)}
$$

$$
\bar{V}_e^\circ(\bar{\xi}) := \max_{\nu \in \partial \bar{V}_e(\bar{\xi})} \langle \nu, \bar{f}(\bar{\xi}) \rangle \leq -c\bar{v}^2, \quad \forall \bar{x} \in C_{\text{slip}} \cup C_{\text{stick}} \quad \text{(Flow)}
$$

$$
\bar{V}_e(\bar{g}_i(\bar{\xi})) - \bar{V}_e(\bar{\xi}) \leq 0, \quad \forall \bar{\xi} \in \mathcal{D}_i, i \in \{1, -1, 0, \sigma, \nu\} \quad \text{(Jump)}
$$

- Proof of Theorem STRI-GAS given in Beerens et al. [2020] using:
 - proof of **uniform global attractiveness (UGA)** using the following arguments
 - Original solutions x are uniformly bounded (not as trivial as with Coulomb)
 - Solutions $\bar{\xi}$ of hybrid automaton \mathcal{H}_δ semiglobally reproduces any original solution ξ evolving in a compact set $\mathcal{K}(\delta)$ such that $\lim_{\delta \to 0} \mathcal{K}(\delta) = \mathbb{R}^3$
 - Lipschitz Lyapunov function \bar{V}_e certifies UGA for \mathcal{H}_δ
 - UGA for \mathcal{H}_δ \Rightarrow semiglobal UA \Rightarrow UGA of the original system
 - UGA and strong forward invariance of \bar{A}_e implies **stability**.

- Interesting connections with (bi)simulation concepts found in computer science
Experimental response confirms GAS recovery

Beerens et al. [2020]
Wrap up and acknowledgements

Conclusions:

• Differential inclusion model for PID controlling sliding mass with Coulomb/Striбeck friction effects
• Coulomb: Lyapunov-based proof of Global Asymptotic (not exponential) Stability
• Coulomb: Reset PID improves transient response (exponential convergence)
• Striбeck: Reset PID resolves “hunting” instability
• The presented results in a recently published vision article (IFAC Annual Reviews in Control) Bisoffi et al. [2020]

Future Work:

• Combine resets for exponential convergence and Striбeck
• Address the case of asymmetric friction laws

Special thanks to the collaborators of this work:

R Beerens A Bisoffi M Heemels H Nijmeijer N van de Wouw

