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Coulomb friction and discontinuous right-hand side

velocity v . )
control _ _ _ ds(t
fiction ™ action UP|D(t) = —kps(t) — ki/ S(T)dT — ky d(t )
['01'”(:()7.)"/ mass m [UPiD _ _Jo .
- _. = —kps(t) — kiei(t) — kav(t),
position 5 | Fesign(v) + avv, if v #0 )
r fe(upiD, v):=q upiD, if v=0, |upip| < Fs
. = Fs sign(upip), if v=0, |upip| > Fs

mv = upip — fr(upip, v)
L;avv upp = muforv =20

> normalize physical param'’s I?p, ki, kq, F as (kp, kv, ki) :== (k—n’j, ;ﬁ%, %) Fs = %

> PID action and viscous force combined in u :=

€ =S
s=v

u—Fs ifv>0o0r(v=0u>F)
v=40 if (v=0,|ul <F)

u+Fs ifv<Oor(v=0,u<—F)

u=—kps — kv — kiej,
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The problem is industrially relevant with Coulomb effect

Industrial High-precision motion control system (electron microscope) experiments:

control force  position

friction force Fr

Measured friction nonlinearity points velocity v
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Experiments show instability with Stribeck effect

e Stribeck effect causes “"hunting” instability with PID feedback

velocity v

-

control

friction

force f; |HaSS M

action

UpPID
—>

-

position s

position error m]

%107

15 20 25 30 35
time [s]

40 45 50 55

Same experimental device
shows Stribeck with different
ambient, lubrication and wear
conditions
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Reformulation as a suitable differential inclusion

& =s differential inclusions in general
s=v
u= —kjej — kps — kyv,
+Fs ifv>0
u—v=qsatg(u) ifv=0
—Fs ifv<o
6 — s 4 A F,SGN(v)
s=v Ly
v € —kie; — kps — kyv —FsSGN(v) >
P S —F

@ Physical model: intuitive, but hard to prove existence of solutions and
stability properties with a discontinuous right hand side

@ Differential inclusion: existence of solutions and ad hoc Lyapunov tools

For any initial condition z(0) = (&;(0), s(0), v(0)) € R?, the green differential
inclusion has a unique solution defined for all ¢ > 0.
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A partial literature overview

The interest in dynamics with friction had its peak in the 1990's.
@ modeling direction

o Dahl model:
P. R. Dahl, A solid friction model. Tech. Rep. of The Aerospace Corporation El
Segundo CA, 1968.

e models by Bliman and Sorine:
P.-A. Bliman and M. Sorine, Easy-to-use realistic dry friction models for automatic
control. Proc. of 3rd European Control Conf., 1995.

o LuGre model:
C. Canudas-de-Wit, H. Olsson, K. J. Astrém, and P. Lischinsky, A new model for
control of systems with friction. IEEE Trans. Autom. Control, 1995.
K. J. Astrom and C. Canudas-de-Wit, Revisiting the LuGre friction model. Control
Systems, |IEEE, 2008.
N. Barabanov and R. Ortega, Necessary and sufficient conditions for passivity of the
LuGre friction model. IEEE Trans. Autom. Control, 2000.

o Leuven model:
J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, An integrated friction
model structure with improved presliding behavior for accurate friction
compensation. |IEEE Trans. Autom. Control, 2000.
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Set-valued friction and PID control

@ use of set-valued mapping for the friction force, and hence differential inclusions

o uncontrolled multi-degree-of-freedom mechanical systems:
N. van de Wouw and R. |. Leine, Attractivity of equilibrium sets of systems with dry
friction. Nonlinear Dynamics, 2004.

o PD controlled 1 d.o.f. system:
D. Putra, H. Nijmeijer, and N. van de Wouw, Analysis of undercompensation and
overcompensation of friction in 1 DOF mechanical systems. Automatica, 2007.

e combination of set-valued friction laws and Lyapunov tools:
R. I. Leine and N. van de Wouw, Stability and convergence of mechanical systems
with unilateral constraints. Springer Science & Business Media, 2007.

o stability of compact attractors
V.A. Yakubovich, G.A. Leonov, and A.K. Gelig, Stability of Stationary Sets in
Control Systems with Discontinuous Nonlinearities, World Scientific, 2004.

@ for the same setting (point mass 4+ PID controller), with Coulomb and viscous
friction only it was proven that no stick-slip limit cycle (so-called hunting) exist:

o B. Armstrong-Hélouvry and B. Amin, PID control in the presence of static friction:
exact and describing function analysis. Amer. Control Conf., 1994.

e B. Armstrong and B. Amin, PID control in the presence of static friction: A
comparison of algebraic and describing function analysis. Automatica, 1996.



Coulomb Friction
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Coulomb-only friction provides an initially simplified setting

e Coulomb friction experience suggests (slow) convergence and stability
velocity v

- L-o?_rml State equations with z = (ej, s, v) are
friction petion
force f; |Mass m UPID & s
‘ sle v
| v —kiei — kps — kyv — FsSGN(v)
posmon; | 0 1 0 0
AL - =10 0 1 [z—|0|SGN(v)
U —k,‘ _kp _kv FS

e Standing assumption about the PID gains is probably necessary for GAS

In the absence of friction (Fs = 0), the origin is globally asymptotically stable
(GAS). Equivalently,

ki >0, kp > 0, kvk, > ki.




Coulomb Friction
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With Coulomb Friction the largest set of equilibria is GAS

In the absence of friction (Fs = 0), the origin is globally asymptotically stable
(GAS). Equivalently,
ki >0, kp, > 0, kvk, > ki.

@ For z = (e, s, v) and

sS=v
v € —kiej — kps — kyv — FsSGN(v)

the set of equilibria making z =0 are s =v =0 and |e;| < %.

@ Denote the corresponding set (it depends on k;!!)

Fs Fs
A.—{(e,-,s,v). s=0, v=0,¢ € {—?’?{}}

With Coulomb friction, under Assumption LIN, set A is 1) globally attractive
and 2) Lyapunov stable < 33 € KL such that |z(t)|4 < 8(|z(0)|.4, t), ¥Vt > 0.




Coulomb Friction
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lllustration by simulation is informative

b f=1m/s? ze [?]f[B]SGN(v)
(kv, ko, ki) = (6.4,3,4) (kv, ko, ki) = (1.5,0.66,0.08)
>

e

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

e (m's)




Coulomb Friction

Change of coordinates simplifies A
@ Apply change of coordinates

o= —kis
¢ = —kiej — kps to z'::[és-"]e[g 0 1]2—[8]SGN(V)
vi=v

@ ...and get dynamics

(j’ —k,‘V 0 0 7/(,‘ ag 0
x = |¢| € o — kv ={1 0 —ky||o|—]0[SGN(v
v ¢ — kyv — FsSGN(v) 0 1 —kJ||v Fs

= Ax — bSGN(v) =: F(x)

@ Attractor (simpler expression independent of k;)
A={(o,¢,v): |¢| < Fs,0 =0,v =0}
@ Distance to attractor

xla® = (inf, [x — y[)" = 0 + v* + dar, (¢)°
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Lyapunov-like function is discontinuous!!

—f
f€F SGN |¢ |

o 3 o T o
1 0 [qﬁff] = min [qbff} P[dkf]
10 K v FEFSGN(v) L v v
30 0.12
25 0.1
=20 220.08
=15l %006
= 10| >o.o4T v
5 0.02F \ L\ 1
0 : 0 AN
0 5 10 15[ (5)20 25 30 35 0 10 20 30 40 50 60 70 80 90 100
e Immediate to check
e V(x)=0ifand only if x € A
e V is not continuous

s)

for {(oi, ¢i, vi)}y = {(0,0,(3)'}% . V converges to FZ but V(0) =

0



Coulomb Friction
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Properties of the Lyapunov-like function V

V(x) = o[ [ + min  |p—f]
Tlv] -1 ke |v] rerseN)

Properties of V

The Lyapunov-like function V is:

© lower semicontinuous (Isc)
V(%) < lim V(x), VvxeR’ (Regularity)

X—X
@ lower bounded: There exist ci, c; > 0 such that
c1|)<|,42 < V(x) < cz|)<|,42 +2F2 VxeR? (Sandwich)
© decreasing along trajectories: Jc > 0: for each solution x = (o, ¢, v),

Vo >t >0, V(x(t))— V(x(t)) < —C/t2 v(t)’dt. (Flow)

ty

v

e Proof of Theorem C-GAS given in Bisoffi et al. [2018] using:
e auxiliary function and state partition for stability
e Integral invariance principle of E.P. Ryan (1999) for attractivity
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A closer look at the slow transients reveals promising ideas

e Solutions show long stick phases in the band &gk := {x € R*: v =0, 6| < Fs}

05
o OF
051
-1 L
0 10 20 30 40 50
2
A
V4 ‘ ‘ ‘ ‘
0 10 20 30 40 50
0.1
0 2302
> | 8
0. 01
0.2
10 20 30 40 50 o i
t 0 10 20 30 40 50

¢
e Lyapunov function suggests reversing the sign of ¢ (reset to —¢) when ¢v <0

v = 71 1% U1 & min 16— P
Tlv] -1 ky| |v] rersan)

e Solutions would then jump across the band Egick

e Time-regularized solutions (with timer 7) imposes dwell time ti11 — tx > 0
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Reset PID Control Design Improves Coulomb Transient

e Overall state involves x = (7, ¢, v) and 7 € [0,26], that is (x,7) € R® x [0, 26]

e Hybrid closed loop with reset PID (no knowledge of Fs required)

0 0 —ki||o 0
x€F(x):=1[1 0 —ko||&|—]|0|SGN(v), L TWICT AN D
o 1 —illy F. (x,7) € C:=R3x[0,2]\ D,

T =1—dz(r/d)
=[o

)
8’ —a¢ V] (1) eD = {(x,7) | 60 <0, v <0, 7 > 5},

—
|| H

F and g are the flow and jump maps, C and D are the flow and jump sets.

= o >0 =<0 <0 <0 =0 =0
° i 1 . 5 >0 = O0iswitchto<0: <0 i<O0iswitchto =0
Explanation of the jump set D: i >0 >0 bt =0 =0 h e

e ¢o < 0 so the solution is
overshooting

e ¢v < 0 so the Lyapunov
function does not increase

e Parameter o € [0, 1] tunes robustness (o = 0) vs performance (o = 1)
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A closer look at the slow transients (recall)

e Solutions show long stick phases in the band &gk := {x € R*: v =0, 6| < Fs}

05
o OF
051
-1 L
0 10 20 30 40 50
2
A
V4 ‘ ‘ ‘ ‘
0 10 20 30 40 50
0.1
0 2302
> | 8
0. 0.1
0.2
10 20 30 40 50 o i
t 0 10 20 30 40 50

t
e Lyapunov function suggests reversing the sign of ¢ (reset to —a¢) when ¢v <0

v = 71 1% U0 & min 16— P
v —1 ky| |v| fersGNW)

e Solutions would then jump across the band Egick

e Time-regularized solutions (with timer 7) imposes dwell time ti11 — tx > 0
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) successfully jumps across Egick

Reset PID (with

¥ 01
0. 0.1
0.2
0

5
=
5
=
=
=
o
3
@

o

e Lyapunov decrease, and decrease of |x|4 suggests
exponential convergence

e Bad solutions sequence from xi(0) = (¢, 0, 0) satisfy:
[xk(t)| 4 = |x(0)| .4 = €k for all t < T,

lim ex =0 and |lim T, = +o0.
k— o0

—00
thus disproving exponential convergence

with

e However exponential convergence seems to often occur

20

30

10

20

30



Reset Coulomb
o

The same Lyapunov function helps in the reset context

Recall the Lyapunov-like function:

voo = 71 T U0 & min 16— P
v —-1 ky| |v] rersaNw)

Properties of V' carry over from non-hybrid case

Function V is lower semicontinuous and there exist ci, ¢2, ¢ > 0 such that:

alx|4® < V(x) < alx|a® +2F2 Vx € R? (Sandwich)

Vix(t2,f)) = V(x(t1,)) V solution (x,7)

2
<—c [Tutegde, (o) 2 (8,)) € domx FO)

ty

V(g(x)) — V(x) <0, V(x,7) € D (Jump)A

With Coulomb friction, under Assumption LIN, set A is KLL-GAS. I

e Stability proof: same as before using extra (Jump) condition
e Global attractivity proof: uses meagre-limsup hybrid invariance principle
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Experimental response confirms transient improvement
Beerens et al. [2019]

no reset

1 error [m], and scaled control force

0 20 40 60 80 100
time [s]



Hybrid Automaton

Without resets, alternative hybrid automaton model
Bisoffi et al. [2019]

e Extended state X includes timer 7 and logic variable g such that gv > 0
%:=(5,6,v,§,7) € =:={x € R* x {~1,0,1} x [0,26] | gv > O},

G=—1 470 G=0

e Hybrid automaton s (Coulomb, no resets) — semiglobally correct

O L
7t =g (%), zeDh Ciik={x€=:g=0,v=0,|¢| < Fs}
Di={xe=:g=0,v=0,¢0 > F.,T €[5,24]}
C = Gaip U Gatick Di={x€Z:§=0,#=0,6 < —F;,7 €[5,20]}
D:=D_1UDoU Dy Do:={x€Z:|4|=1,7v=0,§p < Fs}
e Smooth Lyapunov function certifies GAS of A = {X:5 = v = 0,4 € F.SGN(g)}

v =2 [5 2 [] e -arr - a- i@,



Hybrid Automaton
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Alternative proof of Theorem C-GAS uses function V
Bisoffi et al. [2019]

e Same exact evolution for V (along original sol'ns x) and V (along sol'ns X to #s)

04 Properties of smooth V are convenient
gu,z\\ \ Function V is smooth and there exist a1, a2 € Koo, ¢ >0
= ‘ ‘ < such that:
% 5 0 15 2 25 30 _ -
0.4 a1 (%] 1) € V(%) < ae(|x|z) Yxe= (Sandwich)
ga.z:\\ \ (VV(R),f(R)) = —c¥®, VR € Gip U Ctick (Flow)
) S~ Ol = (= S - .
00 s m 5 % o P V(g(%x)) — V(%) <0, V¥xeD,ic{l,—-1,0} (Jump)

e Alternative proof of Theorem C-GAS given in Bisoffi et al. [2019] using:
e auxiliary function and state partition for stability
e proof of attractivity using the following arguments
o Original solutions x are uniformly bounded
o Solutions X of hybrid automaton #s semiglobally reproduces any original
solution x evolving in a compact set /() such that (!iLnOIC(é) =R3

o Smooth Lyapunov function V certifies global attractivity for Hs
o Attract. for Hs; = semiglobal Attract. = Attract. of the original system

e Interesting connections with (bi)simulation concepts found in computer science
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With resets, extended automaton includes extra variable

o Extended state X := (7, ¢, v, §, 7, 3) € = with logic variable 3 such that 57 > 0

= {x € R* x {~1,0,1} x [0,26] x {~1,1} | gv >0, 3 >0, av > 0},

e Hybrid automaton for overshooting solutions, wherein v > 0, then 3 = sign(¢)
5 { x=Ff(kx), =xeC Cap:={X € =: |g| = 1}

% =g(%), xeb  Guu={x€Z:§=07=03<F}
Di:={X€Z:§=0,7=0,3¢ > F.,7 € [0,20]}
C = Gip U Gatiek D_1:={X€=:§=0,v=0,3¢> F,7 € [5,20]}
D:=D1UDyU D Dy:={x€Z:|G|=1,v=0,3p < F},
(J.(L':
© -0.5
1
0 5 10 15 20 25 30
2 S —
0 5 10 15 20 25 30
0.1
0
-0.1
-0.2




Hybrid Automaton
o

Homogeneous automaton explains exponential convergence

e State transformation provides homogeneous hybrid dynamics
x:=(5,6,v,§,7,3) >

e With o = 1, denoting % = (&,

%o =Ar(4,8)%, K€

%= A4, 9%, xeb Catick —{X- §=0,0=0,30 <0}
0,0=0,50>0,7 € [6,26]}
0 0,40 > 0,7 € [0,20]}

e Exploiting 3 = sign(¢), with o = 1 we can prove IM > 0, i > 0 satisfying
|(o, ¢ — sign(¢)Fs, v)| < Me™ ’“|ao|
for all solutions starting at stick-to-slip transition X0 = (o9, 0,0).



Reset Stribeck
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Stribeck model includes extra nonlinearity

e New velocity weakening function ¢ (previously zero):

velocity v ]
contro . E
friction i petion 710 0 —kif]e 0
force f; [M0ASS MM UPID ol |1 0 —ky||&|—|0[(SGN(v)+(v)),
\-/ 0 1 7kv v Fs

—— L
- \ friction
position s | ; — force

Assumption LIN holds (ki > 0, k, > 0, k,k, > k;). Moreover, the velocity
weakening function v is globally Lipschitz and satisfies
o (V)| < F
e vi)(v) > 0 for all v
e it is linear in a small enough interval around zero
(namely, for some €, |v| <&, = ¥(v) = Lav).
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Stribeck “hunting instability” needs a different solution

<107

velocity v

F» control
friction petion f i
force f; |Mass m [PiD \
T — 1
2 0 o

5 10 15 20 25 30 35 40 45 50 55 6O
time [s]

e Reset PID solution solving Coulomb is not successful for Stribeck hunting effect

0.5 0.5
o O \ 7 /7 \ N\ Z 7/ o 0
-0.5F -0.5
-1 -1

0 10 20 30 40 50 0 5 10 15 20 25 30

~
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A tWO—Stage reset PID proposed IN Beerens et al. [2020]

=
e Add boolean state b € {—1,1} such that bvo > 0:
1) b =1 in the overshooting phase vo > 0 @
2) b= —1 in the approaching phase vo < 0 €D,
e Ensure that the integral action e; points in the direction of position error s

This corresponds to imposing ¢o > %”2

e Overall state & := (x, b) := (o, ¢, v, b) evolves in =, where
= :={(x,b) € R’ x{-1,1}: bvo >0, 0¢ > 20°, bve > 0},
e Jumps at zero-crossing of o and v, wherein state b alternates between —1 and 1

[%I]:gg(f)::{ti], £eDy ={(€=:0=0,b=1}

bt

+ (o8

o kp —

[f+]gv(f): |:k</":|, EeD,:={{e€=:v=0,b=—-1}.

bt —b

e Can prove that ¢ is never zero along sol'ns, so D, and D, robustly implemented as

Dy ={¢:00<0,b=1}, D,:={(:vp>0,b=—-1},



Reset Stribeck
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The reset closed-loop eliminates the hunting instability

Under Assumption STRIB, the compact set
Ac = Ax{-1,1} ={£€=:0=v=0,|¢| < Fs}.

is ICL-globally asymptotically stable.

e The proof of Theorem STRI-GAS requires using the hybrid automaton trick
(a new automaton, a new “smooth” Lyapunov function).

o UF
05
1
0 5 10 15 20 2 30
2
o of =
,2\" 0
0 5 10 15 20 2 30
0.1 =
.0 =" 5
0.1 @
02
5 10 15 20 2 30 -10
t 0 5 015 2 _ 25 _ 30
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Stribeck hybrid automaton is more sophisticated
Beerens et al. [2020]

e Extended state £ includes timer 7 and logic variable § such that v > 0

e Hybrid automaton Hs (Stribeck, resets) — semiglobally correct

Hé . { E: F(g)a 5 € é C_ = Cslip chtick

& =g(f), EeD D:=D_,UDyUD,UD, UD,

e Lipschitz Lyapunov function shows GAS of A. := {£ |5 = 7 =0, € F.SGN(b3)}

n@=[] [% 2][E] +ae- sy o @)
125, (b3 1+ (118 )



Reset Stribeck

Proof of Theorem STRI-GAS uses function V.

e Function V. is not smooth but Lipschitz = can use Clarke nonsmooth tools

Properties of Lipschitz V. are convenient

Function V. is Lipscthiz and there exist a1, @z € Koo, ¢ > 0 such that:
a1(|€]2,) < Ve(é) < ao(l€]1,) VEE€= (Sandwich)
V (5) = max <l/a f(§)> _C‘727 Vx € Cslip U Cetick (FlOW)
Ve(&1(6)) — ( £) <0, VéeD;ie{l,-1,0,0,v} (Jump)

e Proof of Theorem STRI-GAS given in Beerens et al. [2020] using:
e proof of uniform global attractivity (UGA) using the following arguments
e Original solutions x are uniformly bounded (not as trivial as with Coulomb)
e Solutions & of hybrid automaton #; semiglobally reproduces any original
solution £ evolving in a compact set /C(J) such that (!TO K(6) =R3

e Lipschitz Lyapunov function V. certifies UGA for Hs
e UGA for H; = semiglobal UA = UGA of the original system
e UGA and strong forward invariance of A. implies stability.

e Interesting connections with (bi)simulation concepts found in computer science



Experimental

Reset Stribeck

Beerens et al. [2020]

position error s — 7 [m]

position error s — 7 [m]

response confirms GAS recovery

reset PID

30
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Wrap up and acknowledgements

Conclusions:

Contents lists available at S irect

e Differential inclusion model for PID controlling £ Bl untalRevienstinfeontol
sliding mass with Coulomb/Stribeck friction effects e
Vision article
e Coulomb: Lyapu nov-based proof of Global To stick or to slip: A reset PID control perspective on positioning
. . . systems with friction
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e Coulomb: Reset PID improves transient response iz
(exponential convergence) o e
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ARTICLE INFO

e Stribeck: Reset PID resolves “hunting” instability -

e
Receved 16 March 2020
4 17 Apet 2020,

e The presented results in a recently published vision article
(IFAC Annual Reviews in Control) Bisoffi et al. [2020]
Future Work:

° Combine resets for exponential convergence and Stribeck extensive simulations and experamental valdation on an industrial nano-posic

©2020 Elsev

e Address the case of asymmetric friction laws
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