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Clegg integrator and its use in a simple planar
feedback loop

Collaborative work with:

D Nesic
AR Teel F Fichera C Prieur

S Tarbouriech M Della Rossa R Goebel A Tanwani
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An analog integrator and its Clegg extension Clegg [1958]

Proportional Integral (PI) control comprise an integrator

Example: Error feedback
u(t) = kpe(t) + ki ∫

t
0 e(τ)dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=xc

∫ xce

kp

ki

C

R vC
e −xc

ẋc = (RC)−1e

� In an analog integrator, the state
information is stored in a capacitor:
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An analog integrator and its Clegg extension Clegg [1958]

Proportional Integral (PI) control comprise an integrator

Example: Error feedback
u(t) = kpe(t) + ki ∫

t
0 e(τ)dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=xc

∫ xce

kp

ki

C

R

e

C

R vC1

vC2

Rd xc

-

-

� Clegg’s integrator Clegg [1958]:
� feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
� input diodes: when e ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd ≪ 1]

� As a consequence ⇒ e and xc never
have opposite signs
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Hybrid dynamics rule flowing or jumping of solutions

Hybrid Clegg integrator:

ẋc = (RC)−1e, allowed when xce ≥ 0,

x+c = 0, allowed when xce ≤ 0,

� Flow set F : where xc may flow (1st eq’n)
� Jump set J : where xc may jump (2nd eq’n)

JF

xc

e

F
C

R

e

C

R vC1

vC2

Rd xc

-

-

� Clegg’s integrator Clegg [1958]:
� feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
� input diodes: when e ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd ≪ 1]

� As a consequence ⇒ e and xc never
have opposite signs
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Hybrid solutions of Clegg flow with t and jump with j
Hybrid Clegg integrator Zaccarian et al. [2005]:
dxc(t, j)

dt
= (RC)−1e(t, j), xc(t, j)e(t, j) ≥ 0,

xc(t, j + 1) = 0, xc(t, j)e(t, j) ≤ 0,

� Flow set F ∶= {(xc , e) ∶ xce ≥ 0} is closed
� Jump set J ∶= {(xc , e) ∶ xce ≤ 0} is closed
� Stability is robust! (Teel 2006–2012)

JF

xc

e

F

Previous models Clegg [1958], Krishnan and Horowitz [1974], Horowitz and Rosen-

baum [1975], Beker et al. [2004]:
ẋc = (RC)−1e, if e ≠ 0,
x+c = 0, if e = 0,

� Inaccurate: solutions ∃ s.t. xce < 0, but
Clegg’s xc and e always have same sign!

� Unrobust: F is almost all of R2

(arbitrary small noise disastrous)
� Conservative: Adds extra solutions

FF

xc

e

F
J

J
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Example: Clegg response to a sine input e(t, j) = sin(t)

� Solid: projection of xc(t, j)
on continuous time axis t
� Dash: projection of e(t, j)
on continuous time axis t
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� Domain dom xc (in red) and graph (bold black) of the solution xc
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Hybrid Lyapunov theory to study exponential stability

Th’m Teel et al. [2013] Given Euclidean norm ∣x ∣ =
√
xT x and system

H ∶ { ẋ = f (x), x ∈ F
x+= g(x), x ∈ J ,

assume that function V ∶ Rn → R≥0 satisfies for some
scalars c1, c2 positive and c3 positive:

c1∣x ∣2 ≤ V (x) ≤ c2∣x ∣2, ∀x ∈ F ∪J ∪ g(J )
V̇ (x) ∶= ⟨∇V (x), f (x)⟩ ≤ −c3∣x ∣2, ∀x ∈ F , (Flow cond’n)

∆V (x) ∶= V (g(x)) −V (x) ≤ −c3∣x ∣2, ∀x ∈ J , (Jump cond’n)

then the origin is uniformly globally exponentially stable (UGES)
for H, namely there exist K , λ > 0 such that all solutions x satisfy

∣x(t, j)∣ ≤ Keλ(t+j)∣x(0,0)∣, ∀(t, j) ∈ dom x

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGES is characterized in terms of hybrid time (t, j)
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Example 1: Clegg connected to an integrator plant

� Block diagram:

1
s

y = xp

d

xc

Clegg

ac = 0

� Output response overcomes
linear control limitations Beker

et al. [2001]
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� Hybrid solution on the phase-plane and plant state response
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Example 1: there exists another bad solution!

� A bad nonconverging “discrete” solution

JF

xc

xp

FJ
0
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� Hybrid solution on the phase-plane and controller response
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Space or time regularization to eliminate bad solutions

� A bad nonconverging “discrete” solution

JF

xc

xp

FJ
0

1
2

0

2

4

-0.2

0

0.2

0.4

0.6

0.8

� Two options to avoid multiple instantaneous resets (jumps)

Inhibit jumps for ρ
continuous time
after each jump

Ensure that jumps
map to the interior
of F , away from J

Time regularization Space regularization
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Space or time regularization to eliminate bad solutions

� Lyapunov conditions must be enforced on suitable sets
xc

e 2

ε

Flow
cond’n

Jump
cond’n

Flow
cond’n

Jump
cond’n

xc

e

Flow
cond’n

Jump
cond’n

Flow
cond’n

Jump
cond’n

Time regularization Space regularization

� Two options to avoid multiple instantaneous resets (jumps)

Inhibit jumps for ρ
continuous time
after each jump

Ensure that jumps
map to the interior
of F , away from J

Time regularization Space regularization
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Time Regularization can induce overflowing in the set J

H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax +Bd
τ̇ = 1

(x , τ) ∈ C

x+ = Gx
τ+ = 0

(x , τ) ∈ D

z = Czx +Dzdd

C = {(x , τ) ∶ x ∈ F or τ ∈ [0, ρ]}
D = {(x , τ) ∶ x ∈ J and τ ≥ ρ}

F = {x ∈ Rn ∶ x⊺Mx ≤ 0}
J = {x ∈ Rn ∶ x⊺Mx ≥ 0}

xc

xp

F

F

J

J

x(t0, 0)

x(t0 + ρ, 0)

x(t1, 1)

τ(t0, 0) = 0

τ(t0 + ρ, 0) = ρ

τ(t1, 1) = 0

, Persistent flowing of solutions
/ Overflow in the set J (t1 ≥ t0+ρ)

Theorem: Nešić et al. [2011] From partial homogeneity it follows that

LAS ⇔ GES ⇔ Lp stable from d ⇔ ISS from d
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From dwell time ⇒ performance wrt ordinary time t
Nešić et al. [2008], Fichera et al. [2016a]

� Dwell-time allows using classical continuous-time performance indexes

Definition (t-decay rate)

Hybrid system H has t-decay rate α > 0 if there exists K > 0 such
that all solutions satisfies

∣x(t, j)∣ ≤ K exp(−αt)∣x(0,0)∣, for all (t, j) ∈ dom(x).

Definition (t-L2 gain)

System H is finite t-L2 gain stable from d to z with gain (upper
bounded by) γ > 0 if any solution to H starting with x(0,0) = 0
satisfies

∥x∥2t ≤ γ∥d∥2t ∶= γ
⎛
⎝∑j∈Z
∫

tj+1

tj

∣d(τ, j)∣2dτ
⎞
⎠

1
2

, for all d ∈ t-L2.
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Performance analysis result: V (x) = x⊺Px quadratic
Nešić et al. [2008], Fichera et al. [2016a]

Theorem: Consider system H. If there exist P = P⊺ > 0,
non-negative τF , τR ∈ R≥0 and positive γ̄, s.t.

(Flow)
⎛
⎜
⎝

A⊺P + PA − τFM PB C⊺
z

B⊺P −γ̄I D⊺
zd

Cz Dzd −γ̄I

⎞
⎟
⎠
< 0,

(Jump) G⊺PG − P + τRM ≤ 0,

Then, by virtue of V (x) = xTPx , for any γ satisfying

γ ≥ γ̄, γ >
√

2∣Dzd ∣,

there exists ρ > 0 such that for any ρ ∈ (0, ρ):

1) the set A = {(x , τ) ∶ x = 0} is globally exponentially stable for
the hybrid system H with d = 0;

2) the t-L2 gain from d to z is ≤ γ, for all d ∈ t-L2.
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Piecewise quadratic Lyapunov function construction

� Proposed in Zaccarian et al. [2011], Loquen [2010], Aangenent et al. [2010]

� Given N ≥ 2 (number of sectors)
� Patching angles:

−θε = θ0 < θ1 < ⋯ < θN = π
2
+ θε

� Patching hyperplanes

Θi = [ 01×(n−2) sin(θi) cos(θi) ]T

� Sector matrices:

S0 ∶= Θ0ΘT
N +ΘNΘT

0

Si ∶= −(Θi Θ
T
i−1 +Θi−1ΘT

i ), i = 1, . . . ,N,

Sε1 ∶=
⎡⎢⎢⎢⎢⎢⎣

0(n−2)×(n−2) 0 0
0 0 sin(θε)
0 sin(θε) −2 cos(θε)

⎤⎥⎥⎥⎥⎥⎦

Sε2 ∶=
⎡⎢⎢⎢⎢⎢⎣

0(n−2)×(n−2) 0 0
0 −2 cos(θε) sin(θε)
0 sin(θε) 0

⎤⎥⎥⎥⎥⎥⎦

xc axis

P1

PN

P2

PN−1

y axis

P0

Sε1

Sε2

θ1

θ2

θ0

θN−2

θN−1 θN

S0

S2

S0

SN−1

SN

S1

Plant outputs:

y = Cpx = [0 ⋯ 0 1]x
z = Czx (that is, Dzd = 0)
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Piecewise quadratic Lyapunov theorem

Theorem Zaccarian et al. [2011], Loquen [2010]: If the following LMIs
in the green unknowns (where Z = [In−2 0(n−2)×2]) are feasible:

(Flow)
⎡⎢⎢⎢⎢⎢⎣

ATPi + PiA + τFiSi PiBd CT
z

⋆ −γI 0
⋆ ⋆ −γI

⎤⎥⎥⎥⎥⎥⎦
< 0, i = 1, . . . ,N,

(Jump) GTP1G − P0 + τJS0 ≤ 0

(Cont ′ty) ΘT
i⊥ (Pi − Pi+1)Θi⊥ = 0, i = 0, . . . ,N − 1,

(Cont ′ty) ΘT
N⊥(PN − P0)ΘN⊥ = 0

(Overlap) GTP1G − P1 + τε1Sε1 ≤ 0

(Overlap) GTP1G − PN + τε2Sε2 ≤ 0

(Origin)
⎡⎢⎢⎢⎢⎢⎣

Z(ATP0 + P0A)ZT ZP0Bd ZCT
z

⋆ −γI 0
⋆ ⋆ −γI

⎤⎥⎥⎥⎥⎥⎦
< 0,

then global exponential stability + finite t-L2 gain γ from d to z
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Example 1: Clegg connected to an integrator

� Block diagram:

1
s

y = xp

d

xc

Clegg

ac = 0

JF

J F

xc = εxp

xp

xc

� Quadratic Lyapunov functions
are unsuitable Zaccarian et al. [2011]

� Gain γdy estimates (N = # of sectors)
N 2 4 8 50

gain γdy 2.834 1.377 0.914 0.87

� A lower bound:
√

π
8 ≈ 0.626

� Lyapunov func’n level sets for N = 4

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

y

x
r

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

y

x
r

� P1, . . . ,P4 cover 2nd/4th quadrants
� P0 covers 1st/3rd quadrants
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Convex Lyapunov function for Example 1 Della Rossa et al. [2019]

� Mid of quadratics provides another nonconvex Lyapunov function
certifying GES for the previous example

Vmid(x) = mid{V1,V2,V3}
∶= max{min{V1,V2},
min{V2,V3},min{V1,V3}}

JF

J F

V1

V2

V3

xp

xc

� May twist it into a convex Lyapunov certificate

Vconv(x) =
⎧⎪⎪⎨⎪⎪⎩

Vmid(x), if x ∈ F
⟨w , x⟩2 if x ∈ J

w

JF

J F

xp

xc
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Stabilization, regulation and tracking using
adaptive First Order Reset Elements (FORE)

with automotive applications

Collaborative work with:

D Nesic
AR Teel D Alberer FS Panni

H Waschl M Cordioli F Palazzetti F Panizzolo
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Hybrid dynamics of the Clegg integrator (recall)

Hybrid Clegg integrator:

ẋc = (RC)−1e, allowed when xce ≥ 0,

x+c = 0, allowed when xce ≤ 0,

� Flow set F : where xc may flow (1st eq’n)
� Jump set J : where xc may jump (2nd eq’n)

JF

xc

e

F
C

R

e

C

R vC1

vC2

Rd xc

-

-

� Clegg’s integrator Clegg [1958]:
� feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
� input diodes: when e ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd ≪ 1]

� As a consequence ⇒ e and xc never
have opposite signs
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Stabilization using hybrid jumps to zero

First Order Reset Element Nešić et al. [2011], Loquen et al. [2007]:

ẋc = acxc + bce, xce ≥ 0,

x+c = 0, xce ≤ 0,

Theorem If P is linear, minimum phase
and relative degree one, then

FORE
y

d

P
ue xc

ac , bc or (ac ,bc) large enough ⇒ global exponential stability
Theorem In the planar case, γdy shrinks to zero as parameters grow

Simulation with:

P = 1

s

bc = 1
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Interpretation: Resets remove overshoots, instability improves transient
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Example 2 (Hollot et al.): FORE (any ac) and linear plant

� Block diagram (P = s+1
s(s+0.2))

P y
d

xc
FORE

� ac = 1: level set with N = 50
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� Gain γdy estimates
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Linear CLS

Reset CLS (Thm 3, ACC 2005)

Reset CLS (this theorem)

� Time responses
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Set point adaptive regulation using hybrid jumps to zero

� Relevant works Panni et al. [2014], Loquen et al. [2008]

� Parametric feedforward uff = Ψ(r)Tα

{ ẋc = acxc + bce,
α̇ = 0,

xce ≥ 0,

⎧⎪⎪⎨⎪⎪⎩

x+c = 0,

α+ = α + λ Ψ(r)
∣Ψ(r)∣2 xc ,

xce ≤ 0,

FORE
y

d

P
r

++
uxce

α
uff

Theorem: If FORE stabilizes with
r = 0, then for constant r , y → r

Lemma: Tuning of λ using
discrete-time rules (Ziegler-Nichols)

λ = 0

λ = 0.32

λ = 0.64

Unit
Circle

Example: EGR Experiment (next slide)
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Fast regulation of EGR valve position in Diesel engines

� Reported in Panni et al. [2014]

� EGR: Recirculates Exhaust Gas
in Diesel engines

� Subject to strong disturbances
⇒ need aggressive controllers
(recall exp. unstable transients)
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Feedforward: α converges to suitable parametrization
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Bare EGR valve

EGR valve with elastic band

Measured steady−state I/O pairs � ⋆: steady-state input/output
pairs (stiction!!)

� Red Solid: uff = ΨT (r)α∗, with
α∗ steady-state for α

� Black dashed: uff = ΨT (r)ᾱ∗
when pulling the valve with an
elastic band
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Experimental adaptation of feedforward in lab setup
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� Random sequence of
position reference steps

� Adaptation gain λ
intentionally selected small
and α initialized at zero to
appreciate transient

� Initial transient shows
typical oscillations
arising with inaccurate
feedforward

� As α → α∗, the step
responses become
increasingly desirable
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Laboratory experiments close to time-optimal
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Adaptive FORE
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� Time-optimal:
unrobust, obtained via
trial and error

� PI:
Tuned using standard
MATLAB tools

� Adaptive FORE:
Response after
α → α∗ =
(0.128, 0.087, 0.115)

� Note the exponentially diverging voltage:
aggressive action for disturbance rejection on the real engine
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Extension to reference tracking is ongoing work

� NEW Parametric feedforward:
uff = Ψ(r)Tα ⇒ Ψ(r , ṙ)Tα

� Proposed in Cordioli et al. [2015]

� Revisited in Cocetti et al. [2019]
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� Electromechanical valve current
tracking in power-split
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High-order reset elements and LMI-based
reset plant-order designs

Collaborative work with:

F Fichera C Prieur S Tarbouriech F Ferrante
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A Lyapunov interpretation of the Clegg integrator logic
Prieur et al. [2013]

● Reset to the minimizer of the hybrid Lyapunov

function V (x) = ∣[xp

xc
]∣

2

:

x+c = φ(xp) ∶= argmin
xc

V (xp, xc) = 0

● Reset whenever function
Vp(xp) ∶= V (xp, φ(xp)) = ∣xp ∣2 starts increasing

JF

J F

xc = εxp

xp

xc

� Jump set selected as

J = {[ xp
xc

] ∈ Rn ∶ [ xp
xc

]⊺M [ xp
xc

] ≥ 0} ,
[ xp

xc
]⊺M [ xp

xc
] = ⟨∇Vp(xp),Apxp +Bpxc⟩
= V̇p(xp, xc)

� Nonlinear extensions in Prieur et al. [2013]

xp

xc
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An architecture for homogeneous reset controller design

May design the reset rules Kp, M, ρ only or the whole dynamics

ẋc = Acxc + Bcy
τ̇ = 1
u = Ccxc + Dcy

xp

xc, τ

yu

Supervisor

flow:

 xp
xc


>

M

 xp
xc

 ≤ 0 or τ ∈ [0, ρ]

x+c = Kpxp

τ+ = 0

jump:

 xp
xc


>

M

 xp
xc

 ≥ 0 and τ ≥ ρ

Hc

ẋp = Apxp + Bpu
y = Cpxp + Dpu

P
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Flow dynamics is given, design Jump sets and rules
Fichera et al. [2012]

Matrices Ac ,Bc ,Cc ,Dc are given. Design Kp, M and ρ

ẋc = Acxc + Bcy
τ̇ = 1
u = Ccxc + Dcy

xp

xc, τ

yu

Supervisor

flow:

 xp
xc


>

M

 xp
xc

 ≤ 0 or τ ∈ [0, ρ]

x+c = Kpxp

τ+ = 0

jump:

 xp
xc


>

M

 xp
xc

 ≥ 0 and τ ≥ ρ

Hc

ẋp = Apxp + Bpu
y = Cpxp + Dpu

P
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Positioning system: overshoot reduction Fichera et al. [2012]

� A DC motor controlled by a PI controller

Ke

1 + τes

1

F + Js
1
s

TmV ω θ

P

u y
PI

r
-

� LMI-based synthesis for
overshoot reduction:

Vp(xp) = x⊺pPpxp ≈ ∣y ∣2

� may also maximize the
decay rate α
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Multi-objective hybrid H∞ controller synthesis
Fichera et al. [2016b]

� Design all of Hc , Ac ,Bc ,Cc ,Dc , Kp, M and ρ, to minimize γdz

ẋc = Acxc + Bcy
τ̇ = 1
u = Ccxc + Dcy

xp

xc, τ

yu

Supervisor

flow:

 xp
xc


>

M

 xp
xc

 ≤ 0 or τ ∈ [0, ρ]

x+c = Kpxp

τ+ = 0

jump:

 xp
xc


>

M

 xp
xc

 ≥ 0 and τ ≥ ρ

Hc

ẋp = Apxp + Bpu + Bdd
y = Cpxp + Dpu + Ddd
z = Czxp + Dzu + Dzdd P

d z

� LMI-based design using Scherer’s like approach P−1 = [Y Z
Z Z ], Pp = Y −1
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“Freeze and play” output feedback plant-order synthesis
Ferrante and Zaccarian [2019]

� Previous design still uses state feedback

� LMI-based fully output feedback design in Ferrante and Zaccarian [2019]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋc = (1 − q)(Acxc +Bcy)
v̇ = −(1 − q)λv
τ̇ = 1

[ y
xc

]
⊺

M [ y
xc

] ≤ 0 or τ ∈ [0, ρ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x+c = Kcxc +Gcy
v+ = Kvxc +Gvy
τ+ = 0

[ y
xc

]
⊺

M [ y
xc

] ≥ 0 and τ ≥ ρ

u = (Ccxc +Dcy)(1 − q) + vq

q =
⎧⎪⎪⎨⎪⎪⎩

1, if τ ≤ ρ, (freeze controller state xc and plant input u = v)

0, if τ ≥ ρ, (release controller state xc and plant input u)

� Lyapunov function based on dwell-time τ ∈ [0, ρ] and x ∶= (xp, xc , v),

W (x , τ) ∶= e−2ατ(eA1 max{0,ρ−τ}x)⊺PeA1 max{0,ρ−τ}x
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Resets improve PID controlled positioning
systems with Coulomb and Stribeck effects

Collaborative work with:

R Beerens A Bisoffi M Heemels

H Nijmeijer N van de Wouw
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Reset PID control to compensate Coulomb friction
Bisoffi et al. [2018], Beerens et al. [2019a]

� Coulomb friction causes slow transients with PID feedback

position s

velocity v
control
action
uPIDmass m

friction
force ff

so = 0

ff

v
f̄c− αv

� Manipulation stage of an electron microscope

Discontinuous Lyapunov function:

V (x) ∶= [σ
v
]

T

[
kv
ki

−1

−1 kp
] [σ

v
] + min

f ∈fc SGN(v)
∣φ − f ∣2

� Hybrid closed loop with reset PID (no knowledge of fc required)

ẋ ∈
⎡⎢⎢⎢⎢⎢⎣

0 0 −ki

1 0 −kp

0 1 −kv

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

σ
φ
v

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0
0
fc

⎤⎥⎥⎥⎥⎥⎦
SGN(v), x ∈ C ∶= R3 ∖D,

x+ = [σ −αφ v]⊺ , x ∈ D ∶= {x ∈ R3 ∣ φσ ≤ 0, φv ≤ 0, ∣φσ∣ ≥ ε},
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Experimental response shows transient improvement
Bisoffi et al. [2018], Beerens et al. [2019a]
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Reset PID control to compensate destabilizing Stribeck
Bisoffi et al. [2019], Beerens et al. [2019b]

� Stribeck effect causes “hunting” instability with PID feedback

position s

velocity v
control
action
uPIDmass m
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force ff
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ff

v

Fs
αv
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� Reset controller with extra logical state h ∈ {−1,1}, jumps from

Dσ ∶= {x ∶ σ = 0,h = 1}, Dv ∶= {x ∶ v = 0, σφ ≥ kp

ki
σ2, h = −1}

� Flow is constrained within C ∶= {x ∶ hvσ ≥ 0, σφ ≥ kp

ki
σ2}

� Stability proof uses semiglobal dwell time and bisimulation of the
dynamics with a rather convoluted hybrid Lyapunov function
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Reset PID control to compensate destabilizing Stribeck
Bisoffi et al. [2019], Beerens et al. [2019b]

� Stribeck effect causes “hunting” instability with PID feedback
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� Reset controller with extra logical state h ∈ {−1,1}, jumps from

Dσ ∶= {x ∶ σ = 0,h = 1}, Dv ∶= {x ∶ v = 0, σφ ≥ kp

ki
σ2, h = −1}

� Flow is constrained within C ∶= {x ∶ hvσ ≥ 0, σφ ≥ kp

ki
σ2}

� Stability proof uses semiglobal dwell time and bisimulation of the
dynamics with a rather convoluted hybrid Lyapunov function
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Proof of stability is, so far, a nightmare 12 pages blurb...
Bisoffi et al. [2019], Beerens et al. [2019b]

� Stribeck effect causes “hunting” instability with PID feedback
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� Reset controller with extra logical state h ∈ {−1,1}, jumps from
Dσ ∶= {x ∶ σ = 0,h = 1}, Dv ∶= {x ∶ v = 0, σφ ≥ kp

ki
σ2, h = −1}

� Flow is constrained within C ∶= {x ∶ hvσ ≥ 0, σφ ≥ kp

ki
σ2}

� Stability proof uses semiglobal dwell time and bisimulation of the
dynamics with a rather convoluted hybrid Lyapunov function
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The fascinating experience of scientific exchange

Conclusions:

� Resets promise aggressive stabilization with
exponentially diverging transients

� We need to be careful about the internal
model properties of reset controllers

� Most of the presented results in a recently
published survey paper (NOW Publishers)
freely available until Sep 11, 2019 at
https://www.nowpublishers.com/article/Download/SYS-017

� Special thanks to many precious collaborators
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