Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References
000	0000	000000000000	00000000000	

Model recovery anti-windup for input-saturated plants illustrated by control applications

Luca Zaccarian

LAAS-CNRS and University of Trento

Thanks to many senior collaborators, junior colleagues/students and collaborators from industry/applied research centers: A.R. Teel, S. Galeani, E. Weyer, A. Alessandri, F. Forni, Y. Li, F. Morabito, G. Panzani, S. Donnarumma, J. Marcinkovski, S. Podda, V. Vitale, F. Todeschini, L. Burlion.

Forum on Robotics and Control Engineering, November 20, 2019

Outline •••	Model Recovery AW 0000	Linear MRAW Applications	Nonlinear MRAW Applications	References
Outlin	ne			

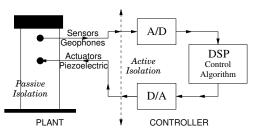
2 Applications using Linear Model Recovery Anti-Windup

3 Applications using Nonlinear Model Recovery Anti-Windup

 Outline
 Model Recovery AW

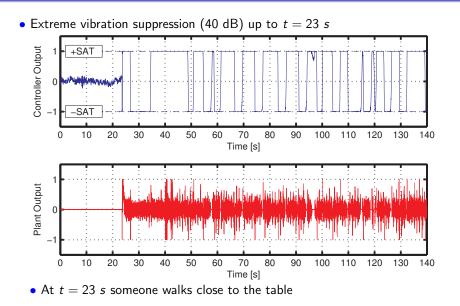
 ○●○
 ○○○○

Linear MRAW Applications

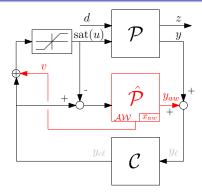

Nonlinear MRAW Applications

References

Active control provides extreme vibration isolation

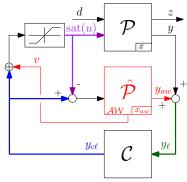

Newport Corporation's Elite 3^{TM} vibration isolation table

- Useful, for example, in
 - high-precision microscopy
 - semiconductor manufacturing
- Actuators: piezoelectric stack
- Sensors: geophones



Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References
000	● 000	000000000000	00000000000	

Linear Model Recovery Anti-Windup main intuition Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]



Model Recovery Anti-Windup (MRAW)

- Framework for **nonlinear** \mathcal{AW} :
 - \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- \mathcal{AW} is controller-independent:
 - any (nonlinear) \mathcal{C} allowed
- Useful feature of MRAW:
 - \mathcal{C} "receives" linear plant output y_ℓ
 - $\Rightarrow C$ "delivers" linear plant input $y_{c\ell}$

Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References
000	0000	000000000000	00000000000	

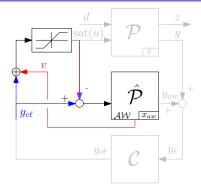
Linear Model Recovery Anti-Windup main intuition Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

• Plant ${\cal P}$

$$\begin{cases} \dot{x} &= Ax + B_d d + B_u \operatorname{sat}(u) \\ z &= C_z x + D_{dz} d + D_{uz} \operatorname{sat}(u) \\ y &= C_y x + D_{dy} d + D_{uy} \operatorname{sat}(u) \end{cases}$$

• Unconstrained dynamics $\mathcal{P} + \hat{\mathcal{P}}$:

Model Recovery Anti-Windup (MRAW)


- Framework for **nonlinear** \mathcal{AW} :
 - \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- \mathcal{AW} is controller-independent:
 - \bullet any (nonlinear) ${\cal C}$ allowed
- Useful feature of MRAW:
 - \mathcal{C} "receives" linear plant output y_ℓ
 - $\Rightarrow C$ "delivers" linear plant input $y_{c\ell}$
 - Anti-windup filter $\hat{\mathcal{P}}$

$$\left\{ \begin{array}{rll} \dot{x}_{aw} &=& A\,x_{aw} + B_u\left(y_c - \mathrm{sat}(u)\right) \\ y_{aw} &=& C_y\,x_{aw} + D_{uy}\left(y_c - \mathrm{sat}(u)\right) \end{array} \right.$$

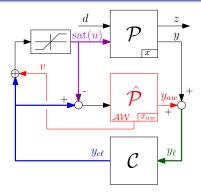
$$\begin{array}{rcl} \dot{x}_\ell &=& A\,x_\ell + B_d\,d + B_u\,y_c \\ & \stackrel{=y+y_{aw}}{y_\ell} &=& C_y\,x_\ell + D_{dy}\,d + D_{uy}\,y_c \end{array}$$

Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References
	0000			

Linear Model Recovery Anti-Windup main intuition Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

Model Recovery Anti-Windup (MRAW)

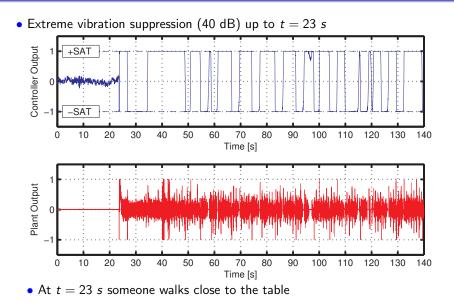
- Framework for **nonlinear** \mathcal{AW} :
 - \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- \mathcal{AW} is controller-independent:
 - \bullet any (nonlinear) ${\cal C}$ allowed
- Useful feature of MRAW:
 - \mathcal{C} "receives" linear plant output y_ℓ
 - $\Rightarrow C$ "delivers" linear plant input $y_{c\ell}$


• $x_{aw} = x_{\ell} - x$ stores useful information about the mismatch response

- Unconstrained recovery: stabilize x_{aw} to zero using v
- Anti-windup filter $\hat{\mathcal{P}}$ stabilized by v through time-varying saturation

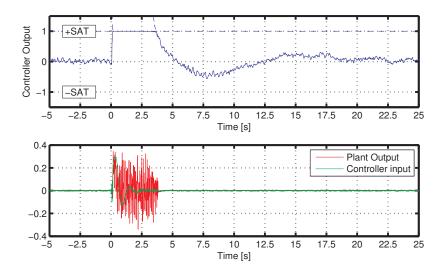
$$\begin{cases} \dot{x}_{aw} = A x_{aw} - B_u \left(\operatorname{sat}[y_{c\ell}(t) + k(x_{aw})] - y_{c\ell}(t) \right) \\ z_{aw} = C_z x_{aw} - D_{uz} \left(\operatorname{sat}[y_{c\ell}(t) + k(x_{aw})] - y_{c\ell}(t) \right) \end{cases}$$

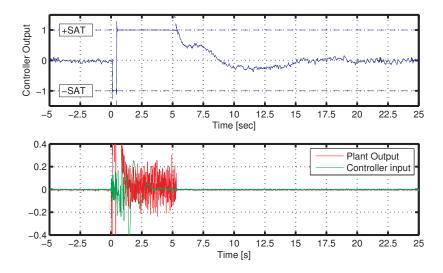
Linear Model Recovery Anti-Windup main intuition Pagnotta et al. [2007], Zaccarian and Teel [2005], Forni et al. [2012, 2010], Zaccarian et al. [2005]


Several extensions are possible:

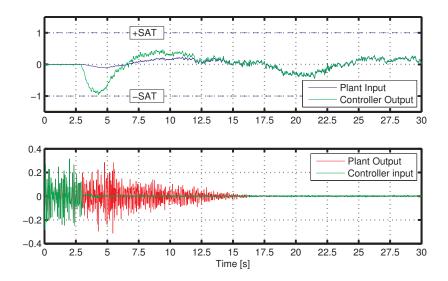
- **Reduced order** $\hat{\mathcal{P}}$ possible (tested on adaptive noise suppression)
- MRAW allows for **bumpless transfer** among controllers
- MRAW generalizes to rate and curvature saturation
- MRAW generalizes to **dead time** plants (Smith predictor)

Model Recovery Anti-Windup (MRAW)


- Framework for **nonlinear** \mathcal{AW} :
 - \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- \mathcal{AW} is controller-independent:
 - any (nonlinear) \mathcal{C} allowed
- Useful feature of MRAW:
 - \mathcal{C} "receives" linear plant output y_ℓ
 - $\Rightarrow C$ "delivers" linear plant input $y_{c\ell}$

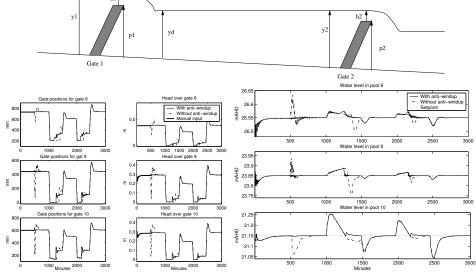


• Effect of a footstep at the side of the table (recovery \approx 4 s)



/ Hitting with a baseball bat the table leg (recovery pprox 5 s)

• Controller is gradually activated in bumpless transfer scheme


Antiw	indup for a	open-water irriga	tion channels	
		000000000000		
Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References

Anti-windup for open-water irrigation channe Zaccarian et al. [2007]

- Open Water Channels: rivers are broken into pools for water saving
- Gate saturation problems:
 - bumpless transfer from manual control to avoid startup transients
 - with small flows in the pools bad lower saturation effects
 - with large disturbances (rain, etc) with overflow to downstream pool
- Challenge: plant is not exponentially stable (poles in 0)

Pata	Saturated	McDonnoll Doug	lac TAEA c
000	0000	000000000000	000000000000
	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW App

References

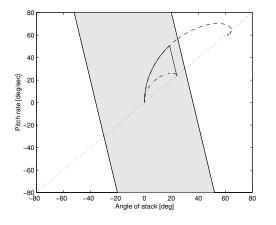
Rate Saturated McDonnell Douglas TAFA dynamics Barbu et al. [2005]

• Linearized longitudinal dynamics (α =angle of attack; q=pitch rate)

$$\dot{z} := \begin{bmatrix} \dot{\alpha} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} Z_{\alpha} & Z_{q} \\ M_{\alpha} & M_{q} \end{bmatrix} z + \begin{bmatrix} 0 \\ M_{\delta} \end{bmatrix} \delta$$
$$=: A z + B_{u} \delta$$

• Saturation:
$$M = 20 \text{ deg}$$
, $R = 40 \text{ deg}/s$.

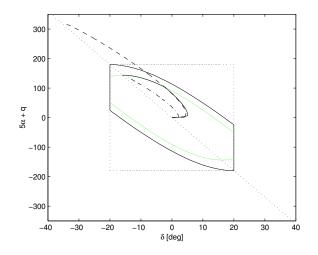
$$\dot{\delta} = R \operatorname{sgn} \left[M \operatorname{sat} \left(\frac{u}{M} \right) - \delta \right],$$


• Study a flight trim condition with one exp unstable mode

$$\dot{x} := \begin{bmatrix} \dot{x}_s \\ \dot{x}_u \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} b_s \\ b_u \end{bmatrix} \delta$$

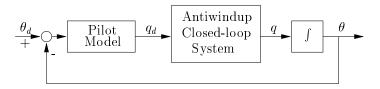
Magnitude saturation and exponential instability Galeani et al. [2007], Teel [1999]

- Unconstrained trajectory may exit the null-controllability region
- To prevent this, AW scheme uses $v = \bar{k}(x_{aw}, x_u)$



• Unconstrained (--), possible desired trajectories (- and $-\cdot -)$

Problems due to magnitude+rate saturation

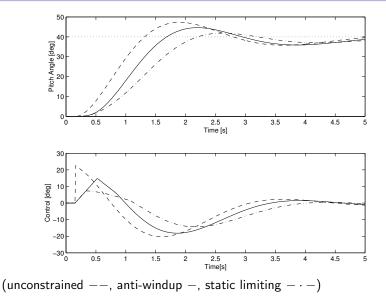

• Unconstrained trajectory may exit the null-controllability region

• Unconstrained (--), possible desired trajectories (- and $-\cdot -)$

• Use a simple crossover model

- Study the maneuverability of the aircraft with anti-windup
- Study the possible occurrence of PIOs (Pilot Induced Oscillations)
- Compare with static command limiting (saturating q_d)
- Use a step reference $\theta_d = 40 \ deg$

 Outline
 Model Recovery AW
 Linear N


 000
 0000
 0000

Linear MRAW Applications

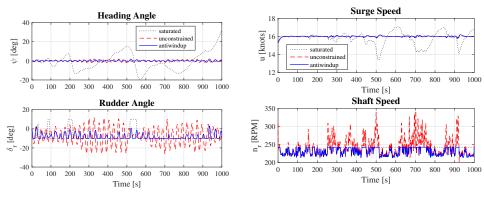
Nonlinear MRAW Applications

References

Piloted flight simulation Barbu et al. [2005]

Outline	Model Recovery AW
000	0000

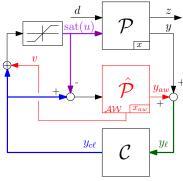
Linear MRAW Applications


Nonlinear MRAW Applications

References

Speed and Heading Control of Ships: approximate models Donnarumma et al. [2016]

- u = surge speed, $n_r =$ (commanded) shaft speed
 - $\psi =$ heading angle, $\delta_r =$ rudder angle
 - Two indepedent loops on nonlinearly coupled plant
 - Anti-windup model is linear and decentralized
 - Robustness of MRAW provides strong improvement


Outline	Model Recovery AW

Linear MRAW Applications

Nonlinear MRAW Applications

References

Recall the Linear MRAW scheme

• Plant ${\cal P}$

$$\begin{cases} \dot{x} &= Ax + B_d d + B_u \operatorname{sat}(u) \\ z &= C_z x + D_{dz} d + D_{uz} \operatorname{sat}(u) \\ y &= C_y x + D_{dy} d + D_{uy} \operatorname{sat}(u) \end{cases}$$

• Unconstrained dynamics $\mathcal{P} + \hat{\mathcal{P}}$:

Model Recovery Anti-Windup (MRAW)

- Framework for **nonlinear** \mathcal{AW} :
 - \mathcal{AW} is a model $\hat{\mathcal{P}}$ of \mathcal{P}
 - $v = k(x_{aw})$ is a (nonlinear) stabilizer whose construction depends on \mathcal{P}
- \mathcal{AW} is controller-independent:
 - \bullet any (nonlinear) ${\cal C}$ allowed
- Useful feature of MRAW:
 - ${\mathcal C}$ "receives" linear plant output y_ℓ
 - $\Rightarrow C$ "delivers" linear plant input $y_{c\ell}$
 - Anti-windup filter $\hat{\mathcal{P}}$

$$\left\{ \begin{array}{rll} \dot{x}_{aw} &=& A\,x_{aw}+B_u\,(y_c-\mathrm{sat}(u))\\ y_{aw} &=& C_y\,x_{aw}+D_{uy}\,(y_c-\mathrm{sat}(u)) \end{array} \right. \label{eq:aw}$$

$$\begin{cases} \dot{x}_{\ell} = A x_{\ell} + B_d d + B_u y_c \\ \stackrel{=y+y_{aw}}{y_{\ell}} = C_y x_{\ell} + D_{dy} d + D_{uy} y_c \end{cases}$$

Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References
000	0000	000000000000	•0000000000	
1.1	1			

Unconstrained response information (linear case)

 $\bullet \; \mathsf{Plant} \; \mathcal{P}$

- $\begin{cases} \dot{x} = Ax + B_d d + B_u \operatorname{sat}(u) \\ z = C_z x + D_{dz} d + D_{uz} \operatorname{sat}(u) \\ y = C_y x + D_{dy} d + D_{uy} \operatorname{sat}(u) \end{cases}$
- Anti-windup filter $\hat{\mathcal{P}}$

 $\begin{cases} \dot{x}_{aw} = A x_{aw} + B_u (y_c - \operatorname{sat}(y_c + v)) \\ y_{aw} = C_y x_{aw} + D_{uy} (y_c - \operatorname{sat}(y_c + v)) \end{cases}$

 \bullet Unconstrained controller ${\cal C}$

$$\begin{cases} \dot{x}_c = A_c x_c + B_{cu} u_c + B_{cr} r\\ y_c = C_c x_c + D_{cu} u_c + D_{cr} r \end{cases}$$

Interconnections

$$\left\{ \begin{array}{rrr} u & = & y_c + v, \\ u_c & = & y + y_{aw} \end{array} \right.$$

 $v = \bar{k}(x_{aw}, x_u)$: to be selected!

- Coordinate transformation: $(x_{\ell}, x_c, x_{aw}) = (x + x_{aw}, x_c, x_{aw})$
- Unconstrained dynamics $\mathcal{P} + \hat{\mathcal{P}}$: $\begin{cases} \dot{x}_{\ell} &= A x_{\ell} + B_d d + B_u y_c \\ y + y_{aw} &= C_y x_{\ell} + D_{dy} d + D_{uy} y_c \end{cases}$

• \Rightarrow Unconstrained response information embedded within the scheme!

Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References
000	0000	000000000000	0000000000	
			/ 11	N

Unconstrained response information (nonlinear case)

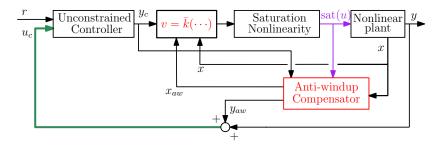
 $\bullet \; \mathsf{Plant} \; \mathcal{P}$

- $\begin{cases} \dot{x} = f(x, \operatorname{sat}(u)) \\ z = h(x, \operatorname{sat}(u)) \end{cases}$
- Anti-windup filter $\hat{\mathcal{P}}$

 \bullet Unconstrained controller ${\cal C}$

$$\begin{cases} \dot{x}_c &= g(x_c, u_c, r) \\ y_c &= k(x_c, u_c, r) \end{cases}$$

Interconnections


$$\dot{x}_{aw} = f(x + x_{aw}, y_c) - f(x, \operatorname{sat}(y_c + v)) \qquad \begin{cases} u = y_c + v, \\ u_c = x + x_{aw} \end{cases}$$

 $v = \bar{k}(x_{aw},??)$: to be selected!

- Coordinate transformation: $(x_{\ell}, x_c, x_{aw}) = (x + x_{aw}, x_c, x_{aw})$
- Unconstrained dynamics $\mathcal{P} + \hat{\mathcal{P}}$: $\begin{cases} \dot{x}_{\ell} &= f(x_{\ell}, y_{c}) \\ u_{c} &= x + x_{aw} = x_{\ell} \end{cases}$

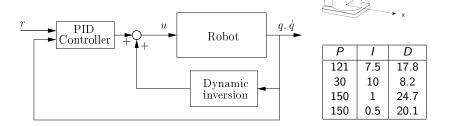
• \Rightarrow Unconstrained response information embedded within the scheme!

- Need extra plant state measurements (x generally needed)
- Recall that $x_{aw} = x_{\ell} x$: useful for unconstrained response recovery
 - worry about stability looking at x (e.g., x_u for exponential instability)
 - worry about performance looking at x_{aw}
- A few application examples:
 - Anti-windup for robot manipulators Morabito et al. [2004]
 - Anti-windup for Brake-by-Wire systems Todeschini et al. [2016]

 Outline
 Model Recovery AW
 Linear MRAW Applications
 Nonlinear MRAW Applications

 000
 0000
 00000000000
 0000000000

 A SCARA robot manipulator example

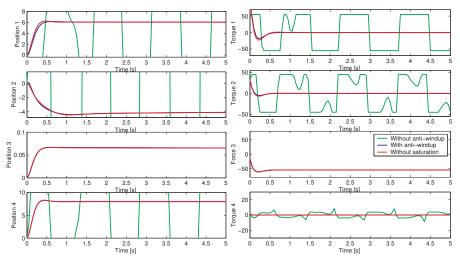

 Morabito et al. [2004]

• SCARA robot with limited torque/force inputs

Link	1	2	3	4
mi	55 Nm	45 Nm	70 N	25 Nm

• General class of systems is:

 $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + h(q) = \operatorname{sat}(u)$

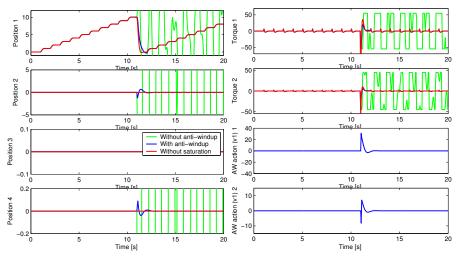

× ۲'

 Feedback linearizing controller+PID action (computed torque) induces decoupled linear performance (for small signals) Nonlinear MRAW Applications

References

A slight saturation can be disastrous

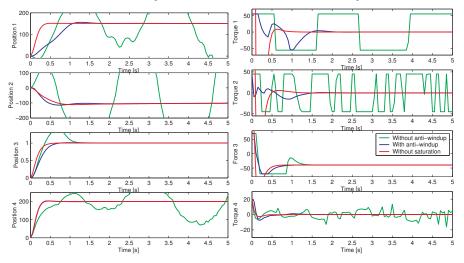
• The reference is r = [6 deg, -4 deg, 4 cm, 8 deg]



• Stability is recovered, performance is almost fully preserved

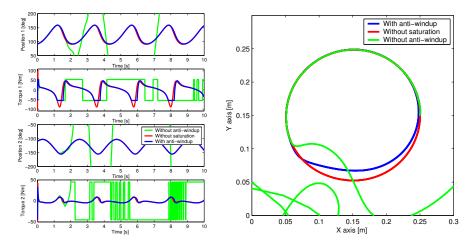
Outline 000	Model Recovery AW 0000	Linear MRAW Applications	Nonlinear MRAW Applications	References

Anti-windup injects signals and then fades out


• The reference is a sequence of little steps followed by a large step

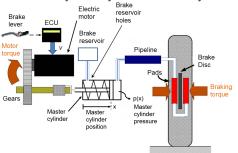
• Anti-windup action dies away to recover the unconstrained closed-loop

• The reference is r = [150 deg, -100 deg, 1 m, 200 deg]

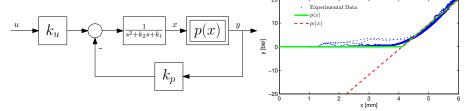

Performance dramatically improved (input authority well exploited)

MRAW intrinsically addresses tracking recovery

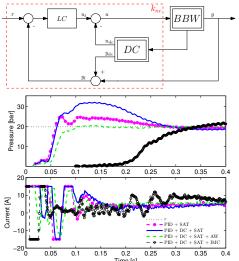
Example: a SCARA robot (planar robot) following a circular motion


- Saturated "computed torque" controller goes postal (unstable)
- Nonlinear MRAW provides slight performance degradation

Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications References
			0000000000000


Nonlinear anti-windup for a Brake By Wire System Todeschini et al. [2016]

• Brake-by-wire system in motorcycles corresponds to a nonlinear plant



• The main nonlinear effect can be easily isolated in the model:

BBW solution uses nonlinear MRAW

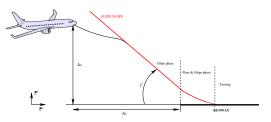
- "Deadzone compensation" scheme provides nonlinear baseline controller
- Fully Nonlinear anti-windup addresses saturation with nonlinear plant and nonlinear controller

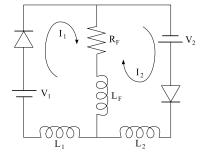
References

- Step response reveals successful anti-windup action
- Driver would get confused by large overshoots
- Alternative existing solutions (nonlinear IMC-based anti-windup) are unacceptably slow (black)

Outline	Model Recovery AW
000	0000

Linear MRAW Applications


Nonlinear MRAW Applications


References

Anti-windup designs apply to additional applications Vitelli et al. [2010], Burlion et al. [2019]

Image-based visual servoing

- Relevant for plane landing
 - follow reference glide slope
 - position measurement scaled by unknown factor
- **Challenge**: plant is uncertain (need robust approach)

Small signal nonlinearity compensation in high-power circulating current amps

- Thyristors have a min current threshold:
 - below the treshold: circulating current
 - this generates a undesired nonlinearity
 - possibly destabilizing outer feedback
- Challenge: reverse anti-windup problem

	Model Recovery	
00	0000	

Linear MRAW Applications

Nonlinear MRAW Applications

References

Modern Anti-windup Svnthesis

References

Summary of the proposed Model Recovery Anti-Windup in Galeani et al. [2009], Zaccarian and Teel [2011]

> Model-Recovery anti-windup schemes

- Baseline ideas Teel and Kapoor [1997], Zaccarian and Teel [2
- Bumpless transfer extensions Zaccarian and Teel [2005]
- Generalizations to rate and curvature saturations Forni
- Dead-time plants (input delays) Zaccarian et al. [2005]

> MRAW Applications discussed in this talk:

- Linear MRAW: Flight Control Barbu et al. [2005], Vibration isolation Teel et al. [2006], Open Water Channels Zaccarian et al. [2007], Control of power converters Vitelli et al. [2010], Ship control Donnarumma et al. [2016].
- Nonlinear MRAW: Control of Euler-Lagrange systems Morabito et al. [2004], control of Break-by-wire systems Todeschini et al. [2016], Image-based servoing Burlion et al. [2019].

Luca Zaccarian and

Outline 000	Model Recovery AW 0000	Linear MRAW Applications	Nonlinear MRAW Applications	References
Biblio	graphy I			

- C. Barbu, S. Galeani, A.R. Teel, and L. Zaccarian. Nonlinear anti-windup for manual flight control. *Int. J. of Control*, 78(14):1111–1129, September 2005.
- L. Burlion, L. Zaccarian, H. de Plinval, and S. Tarbouriech. Discontinuous model recovery anti-windup for image based visual servoing. *Automatica*, 104:41–47, 2019.
- S. Donnarumma, L. Zaccarian, A. Alessandri, and S. Vignolo. Anti-windup synthesis of heading and speed regulators for ship control with actuator saturation. In *European Control Conference*, pages 1284–1290, Aalborg, Denmark, June 2016.
- F. Forni, S. Galeani, and L. Zaccarian. An almost anti-windup scheme for plants with magnitude, rate and curvature saturation. In *American Control Conference*, pages 6769–6774, Baltimore (MD), USA, June 2010.
- F. Forni, S. Galeani, and L. Zaccarian. Model recovery anti-windup for continuous-time rate and magnitude saturated linear plants. *Automatica*, 48 (8):1502–1513, 2012.

000	0000	000000000000	00000000000	
Outline	Model Recovery AW	Linear MRAW Applications	Nonlinear MRAW Applications	References

Bibliography II

- S. Galeani, A.R. Teel, and L. Zaccarian. Constructive nonlinear anti-windup design for exponentially unstable linear plants. *Systems and Control Letters*, 56(5):357–365, 2007.
- S. Galeani, S. Tarbouriech, M.C. Turner, and L. Zaccarian. A tutorial on modern anti-windup design. *European Journal of Control*, 15(3-4):418–440, 2009.
- F. Morabito, A.R. Teel, and L. Zaccarian. Nonlinear anti-windup applied to Euler-Lagrange systems. *IEEE Trans. Rob. Aut.*, 20(3):526–537, 2004.
- L. Pagnotta, L. Zaccarian, A. Constantinescu, and S. Galeani. Anti-windup applied to adaptive rejection of unknown narrow band disturbances. In *European Control Conference*, pages 150–157, Kos (Greece), July 2007.
- A.R. Teel. Anti-windup for exponentially unstable linear systems. Int. J. of Robust and Nonlinear Control, 9:701–716, 1999.
- A.R. Teel and N. Kapoor. The \mathcal{L}_2 anti-windup problem: Its definition and solution. In *European Control Conference*, Brussels, Belgium, July 1997.
- A.R. Teel, L. Zaccarian, and J. Marcinkowski. An anti-windup strategy for active vibration isolation systems. *Control Engineering Practice*, 14(1): 17–27, 2006.

Outline 000	Model Recovery AW 0000	Linear MRAW Applications	Nonlinear MRAW Applications	References
Biblic	ography III			

- F. Todeschini, S. Formentin, G. Panzani, M. Corno, S. Savaresi, and L. Zaccarian. Nonlinear pressure control for BBW systems via dead zone and anti-windup compensation. *IEEE Transactions on Control Systems Technology*, 24(4):1419–1431, 2016.
- R. Vitelli, L. Boncagni, F. Mecocci, S. Podda, V. Vitale, and L. Zaccarian. An anti-windup-based solution for the low current nonlinearity compensation on the FTU horizontal position controller. In *Conference on Decision and Control*, pages 2735–2740, Atlanta (GA), USA, December 2010.
- L. Zaccarian and A.R. Teel. A common framework for anti-windup, bumpless transfer and reliable designs. *Automatica*, 38(10):1735–1744, 2002.
- L. Zaccarian and A.R. Teel. The \mathcal{L}_2 (l_2) bumpless transfer problem: its definition and solution. *Automatica*, 41(7):1273–1280, 2005.
- L. Zaccarian and A.R. Teel. *Modern anti-windup synthesis: control augmentation for actuator saturation*. Princeton University Press, Princeton (NJ), 2011.

Outline Model Recovery AV Linear MRAW Applications Nonintear MRAW Applications References 000 000000000000000000000000000000000000	Biblic	ography IV			
	Outline 000	Model Recovery AW 0000	Linear MRAW Applications	Nonlinear MRAW Applications	References

- L. Zaccarian, A.R. Teel, and J. Marcinkowski. Anti-windup for an active vibration isolation device: theory and experiments. In *Proceedings of the American Control Conference*, pages 3585–3589, Chicago (IL), USA, June 2000.
- L. Zaccarian, D. Nešić, and A.R. Teel. L₂ anti-windup for linear dead-time systems. *Systems and Control Letters*, 54(12):1205–1217, 2005.
- L. Zaccarian, E. Weyer, A.R. Teel, Y. Li, and M. Cantoni. Anti-windup for marginally stable plants and its application to open water channel control systems. *Control Engineering Practice*, 15(2):261–272, 2007.