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@ Model recovery anti-windup solution

© Applications using Linear Model Recovery Anti-Windup

9 Applications using Nonlinear Model Recovery Anti-Windup
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Active control provides extreme vibration isolation

Newport Corporation’s Elite 3™

vibration isolation table

e Useful, for example, in
e high-precision microscopy
e semiconductor manufacturing

e Actuators: piezoelectric stack

e Sensors: geophones
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Input saturation confuses the base control algorithm

e Extreme vibration suppression (40 dB) up to t =23 s
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o At t = 23 s someone walks close to the table
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Linear Model Recovery Anti-Windup main intuition
Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

Model Recovery Anti-Windup (MRAW)
e Framework for nonlinear AWV:
o AW is a model P of P
e v = k(xay) is a (nonlinear) stabilizer
whose construction depends on P

e AW is controller-independent:
e any (nonlinear) C allowed
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Linear Model Recovery Anti-Windup main intuition
Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

Model Recovery Anti-Windup (MRAW)
e Framework for nonlinear AWV :
o AW is a model P of P
e v = k(xay) is a (nonlinear) stabilizer
whose construction depends on P

e AW is controller-independent:
e any (nonlinear) C allowed

o Useful feature of MRAW:
e C “receives” linear plant output yy
o = C "delivers” linear plant input y.y

e Plant P e Anti-windup filter P
x = AX + Bd d + Bu Sat(u) )Zaw - AXaw + Bu (Yc - Sat‘(u))
z = GCyx+ Dg,d+ Dy, Sat(u) { Vaw = C, Xaw + Dy (}/c - Sat(u))
= Cyx+ Dy, d+ Dy sat(u) v v

i . ~ X = AX + By d + Bu c
e Unconstrained dynamics P + P: :y+yaf/ ' ’ 4
4 = CyXZ+Ddyd+Duyyc

ye
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Linear Model Recovery Anti-Windup main intuition
Teel and Kapoor [1997], Zaccarian and Teel [2002, 2011]

Model Recovery Anti-Windup (MRAW)
e Framework for nonlinear AWV :
o AW is a model P of P
e v = k(xay) is a (nonlinear) stabilizer
whose construction depends on P

e AW is controller-independent:
e any (nonlinear) C allowed

o Useful feature of MRAW:
e C “receives” linear plant output yy
o = C "delivers” linear plant input y.y

® X,, = x; — x stores useful information about the mismatch response
e Unconstrained recovery: stabilize x,,, to zero using v
e Anti-windup filter P stabilized by v through time-varying saturation

{ Xaw = AXaw — Bu(sat[yee(t) + k(xaw)] = yee(t))
Zaw = Coxaw — Duz (sat]yee(t) + k(xaw)] = yee(t))
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Linear Model Recovery Anti-Windup main intuition
Pagnotta et al. [2007], Zaccarian and Teel [2005], Forni et al. [2012, 2010], Zaccarian et al. [2005]

Model Recovery Anti-Windup (MRAW)
e Framework for nonlinear AWV:
e AW is a model P of P
e v = k(xay) is a (nonlinear) stabilizer
whose construction depends on P

e AW is controller-independent:
e any (nonlinear) C allowed
e Useful feature of MRAW:
e C “receives” linear plant output yy
o = C “delivers” linear plant input yy

Several extensions are possible:
o Reduced order P possible (tested on adaptive noise suppression)
o MRAW allows for bumpless transfer among controllers
o MRAW generalizes to rate and curvature saturation

o MRAW generalizes to dead time plants (Smith predictor)
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Base control algorithm confused (recall)

e Extreme vibration suppression (40 dB) up to t =23 s
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o At t = 23 s someone walks close to the table
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MRAW dramatically reduces isolation recovery time
Teel et al. [2006], Zaccarian et al. [2000]

e Effect of a footstep at the side of the table (recovery ~ 4 s)
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Even a bat strike does not confuse the MRAW controller
Teel et al. [2006], Zaccarian et al. [2000]

/ Hitting with a baseball bat the table leg (recovery ~ 5 s)
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Bumpless transfer enables smooth controller activation
Teel et al. [2006], Zaccarian et al. [2000]

e Controller is gradually activated in bumpless transfer scheme

— Plant Input
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Anti-windup for open-water irrigation channels
Zaccarian et al. [2007]

e Open Water Channels: rivers are broken into pools for water saving

e Gate saturation problems:
e bumpless transfer from manual control to avoid startup transients
e with small flows in the pools bad lower saturation effects
e with large disturbances (rain, etc) with overflow to downstream pool

e Challenge: plant is not exponentially stable (poles in 0)
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Simulations save days of transient response
Zaccarian et al. [2007]

Simulations with model of Haughton Main Channel (Queensland, Aus)
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Rate Saturated McDonnell Douglas TAFA dynamics

Barbu et al. [2005]

e Linearized longitudinal dynamics (a=angle of attack; g=pitch rate)

> O[ _ Za Zq 0
=] = L el
= Az+B,¢

e Saturation: M = 20 deg, R = 40 deg/s.

5 = ngn{"”sat(ﬁ)*é]’ //

e Study a flight trim condition with one exp unstable mode

i=[E] =[O ][ ]
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Magnitude saturation and exponential instability
Galeani et al. [2007], Teel [1999]

e Unconstrained trajectory may exit the null-controllability region
e To prevent this, AW scheme uses v = k(xay, X,/)
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e Unconstrained (——), possible desired trajectories (— and — - —)



Linear MRAW Applications
00000000 e0000

Problems due to magnitude+rate saturation

e Unconstrained trajectory may exit the null-controllability region
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e Unconstrained (——), possible desired trajectories (— and — - —)
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Close the position loop using a pilot model
Barbu et al. [2005]

e Use a simple crossover model

: Antiwindup
ba_ Pilot 4d | Closed-loop | 14| | 0
+ System L

T Model

e Study the maneuverability of the aircraft with anti-windup
e Study the possible occurrence of PIOs (Pilot Induced Oscillations)
e Compare with static command limiting (saturating qq)

e Use a step reference 64 = 40 deg
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Piloted flight simulation

Barbu et al. [2005]
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Speed and Heading Control of Ships: approximate models

Donnarumma et al. [2016]

e u = surge speed, n, = (commanded) shaft speed
. ® 1 = heading angle, §, = rudder angle

Vesse e Two indepedent loops on nonlinearly coupled plant

_I e Anti-windup model is linear and decentralized

e Robustness of MRAW provides strong improvement
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Recall the Linear MRAW scheme

Model Recovery Anti-Windup (MRAW)
e Framework for nonlinear AWV :
o AW is a model P of P
o v = k(xaw) is a (nonlinear) stabilizer
whose construction depends on P

o AWV is controller-independent:
e any (nonlinear) C allowed

o Useful feature of MRAW:
e C “receives” linear plant output y;
e = C “delivers” linear plant input y.

e Plant P e Anti-windup filter P
x = Ax+ Bgd+ Bysat(u) Xow = Axaw + By (ye — sat(u))
z = CzX + Dy, d + Dy Sat(u) { Yaw = C Xaw + Dy (yC - Sat‘(u))
y = Cyx+ Dgyd+ Dy sat(u) v g

. . A X - Ax + Bqd + Bu c
e Unconstrained dynamics P + P: :y+ya£ ‘ ¢ Y
Ye Cy X¢ + Ddy d + Duy Ye
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Unconstrained response information (linear case)

e Plant P e Unconstrained controller C
X = AX+de+BuSH,t(U) )-(c = AcXc+Bcu Uc+Bcrr
z = GCyx+ Dg;d+ Dy, sat(u) Ye = Cexc+ Deyuc+ Derr
y = GC,x+ Dg,d+ Dy sat(u)

e Interconnections

u = yctv,
Ue = Y+ Yaw

e Anti-windup filter P

Xaw = AxXaw + Bu(ye —sat(yec + v))
Yaw — Cy Xaw + Duy (}/c - Sat()/c + V)) _
v = k(Xaw, X,): to be selected!

e Coordinate transformation: (x¢, Xc, Xaw) = (X + Xaw, Xcs Xaw )

X = Axi+ Bgd+ Buyc
Y+ Yaw CyX[+Ddyd+DuyYC

e Unconstrained dynamics P + P: {

e = Unconstrained response information embedded within the scheme!
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Unconstrained response information (nonlinear case)

e Plant P e Unconstrained controller C
{ X = (X sat(u)) Xe = g(XCqu’r)
z = h(X Sdt(u)) Ye = k(XC7 Uc, r)
e Anti-windup filter P * Interconnections
. u = + v,
(o = fCbmn) = sty {wz
(o} - aw
Vaw = Xaw

v = k(Xaw, ??): to be selected!
e Coordinate transformation: (x¢, Xc, Xaw) = (X + Xaw, Xcs Xaw )

).Q = f(XZayC)

e Unconstrained dynamics P + P: {
U = X+ Xaw = X¢

e = Unconstrained response information embedded within the scheme!
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Anti-windup for nonlinear plants: resulting scheme

L p[Unconstrained] ¥ 0= k() Saturation |980(t/Nonlinear | Y
u.[®__ Controller ver Nonlinearity plant
L x
T
Tom Anti-windup
Compensator [*—
yaw
+
Y
+

e Need extra plant state measurements (x generally needed)

e Recall that x,, = x; — x: useful for unconstrained response recovery
e worry about stability looking at x (e.g., x, for exponential instability)
@ worry about performance looking at x,,,

e A few application examples:
@ Anti-windup for robot manipulators Morabito et al. [2004]
@ Anti-windup for Brake-by-Wire systems Todeschini et al. [2016]
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A SCARA robot manipulator example

Morabito et al. [2004]

e SCARA robot with limited torque/force inputs
Link 1 2 3 4
m; | 55 Nm | 45 Nm | 70N | 25 Nm

e General class of systems is:

M(q)d + C(q,d)g + h(q) = sat(u)

r u a.q
" PID &
Controller |3y~ Robot >

P I D

121 | 7.5 | 17.8

Dynamic 30 10 | 8.2

inversion 150 1 24.7

150 | 0.5 | 20.1

e Feedback linearizing controller+PID action (computed torque) induces
decoupled linear performance (for small signals)
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slight saturation can be disastrous

e The reference is r = [6 deg, —4 deg, 4 cm, 8 deg]
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e Stability is recovered, performance is almost fully preserved
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Anti-windup injects signals and then fades out

e The reference is a sequence of little steps followed by a large step
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e Anti-windup action dies away to recover the unconstrained closed-loop
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SCARA: large signals (nonlinear stabilizer

e The reference is r = [150 deg, —100 deg, 1 m, 200 deg]
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e Performance dramatically improved (input authority well exploited)
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MRAW intrinsically addresses tracking recovery

Example: a SCARA robot (planar robot) following a circular motion
e Saturated “computed torque” controller goes postal (unstable)
e Nonlinear MRAW provides slight performance degradation
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Nonlinear anti-windup for a Brake By Wire System

Todeschini et al. [2016]

e Brake-by-wire system in motorcycles corresponds to a nonlinear plant

Electric rBersa::/ oir
Brake motor hol
lever ECU oles
—~r_ _| Brake a
reservolr . )
- Plpellne .
torque Brake
 Disc

j Braking
/ ] torque
Gears p(x) ’
F——x Master
Master Master cylinder
cylinder cylinder pressure

position

e The main nonlinear effect can be easily |solated in the model
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-20
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BBW solution uses nonlinear MRAW

e “Deadzone compensation” scheme provides nonlinear baseline controller

e Fully Nonlinear anti-windup addresses saturation with nonlinear plant

and nonlinear controller

N

Vne Une u a(w) y
BBW| - e ] oo
i +u +
aw
- X | | x
aw AW

e Step response reveals successful
anti-windup action

e Y EEre—y— e Driver would get confused by large
e - overshoots

= e Alternative existing solutions
g 0 (nonlinear IMC-based anti-windup)
3 - ®-PD4SAT |
-1 TDADO ST are unacceptably slow (black)
— ® = PID + DC + SAT + IMC
20 o memrmpmey

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Timo o]
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Anti-windup designs apply to additional applications

Vitelli et al. [2010], Burlion et al. [2019]

Image-based visual servoing

e Relevant for plane landing
o follow reference glide slope
e position measurement scaled by
unknown factor

e Challenge: plant is uncertain
(need robust approach)

Small signal nonlinearity compensation in
high-power circulating current amps

e Thyristors have a min current threshold:
e below the treshold: circulating current
e this generates a undesired nonlinearity
e possibly destabilizing outer feedback

e Challenge: reverse anti-windup problem
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References

> Summary of the proposed Model Recovery
Anti-Windup in Galeani et al. [2009], Zaccarian and Teel
[2011]

Modern Anti-windup
Synthesis
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> Model-Recovery anti-windup schemes
e Baseline ideas Teel and Kapoor [1997], Zaccarian and Teel [2
e Bumpless transfer extensions Zaccarian and Teel [2005]
e Generalizations to rate and curvature saturations Forni
e Dead-time plants (input delays) Zaccarian et al. [2005]

Luca Zaccarian and
ndrew R. Teel

> MRAW Applications discussed in this talk:
e Linear MRAW: Flight Control Barbu et al. [2005], Vibratiofisolation Teel
et al. [2006], Open Water Channels Zaccarian et al. [2007], COhtrol of power
converters Vitelli et al. [2010], Ship control Donnarumma et al. [2016].
e Nonlinear MRAW: Control of Euler-Lagrange systems Morabito et al.
[2004], control of Break-by-wire systems Todeschini et al. [2016],
Image-based servoing Burlion et al. [2019].
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