Overview	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References

Input allocation: hierarchical design paradigm with redundant actuators and its aerospace applications

Luca Zaccarian

LAAS-CNRS and University of Trento

5th CEAS Conference on Guidance, Navigation & Control

Milano, April 4, 2019

The fa	ascinating exp	erience of	scientific excl	nange	
•000	0000000000000	000000	0	00	
Overview	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References

D Arzelier

M Lovera

C Pittet

A Franchi

M Maggiore

M Sassano

M Furci

C Nainer

A Seuret

O

D Invernizzi

D Peaucelle

JF Tregouet

Thanks also to: L Boncagni, M Cocetti, G De Tommasi, S Galeani, F Mecocci, A Pironti, A Serrani, G Varano, V Vitale, R Vitelli, A Zambelli

Nonlin	ear cascades	as hierarch	ical hehaviors	=	
0000	0000000000000	000000	0	00	
Overview	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References

- ▷ Practical experience with several applications
- \triangleright Abstraction reveals a pervasive pattern of control specs hierarchies

Application	High Priority Task	Perturbation	Low Priority Task
Hybrid Cars	Driveability: Accelerator Response		State of Charge of Battery
Tokamak Plasmas	Plasma Position		Plasma Elongation
Cooperative	Motion	CRI ?	Internal
Manipulation	Control		Forces

 \triangleright Stability/Hierarchy analysis stems from nonlinear cascades

Overview Satellite Attitude ROSPO testbed Beyond ISS cascades Conclusions References Oo <

> Cascaded systems intrinsically represent hierarchical tasks

 \triangleright Stability analysis results date back to the 1980's

Theorem ISS If (U) is GAS and (L) is 0-GAS and ISS, then cascade is GAS

Theorem SON

If (U) is GAS and (L) is 0-GAS, then cascade is LAS with basin of attraction $\mathcal{B}_{\mathcal{A}} = \{$ largest set from where solutions don't diverge $\}$.

Corollary SON

If (U) is GAS and (L) is 0-GAS, and all solutions are bounded, then cascade is GAS

 \triangleright It is not always possible to write "cascaded-like" coordinates: in reduction theorems, the upper system (U) comprises convergence to a closed set Γ

 \triangleright Redeuction theorems for continuous-time discrete-time and hybrid dynamics

Theorem RED

If Γ is GAS and \mathcal{A} is GAS starting from Γ , then \mathcal{A} is LAS with basin of attraction $\mathcal{B}_{\mathcal{A}} = \{ \text{largest set from where solutions don't diverge} \}.$

Corollary RED

if Γ is GAS and ${\cal A}$ is GAS starting from Γ and all solutions are bounded, then ${\cal A}$ is GAS

X Total momentum can't be modified (wheel turns CW, satellite turns CCW) **X** risk of saturation of h_w

$$\Rightarrow h_w(t) = \int_0^t T_w(au) d au$$
 needs to be controlled

()[×]: instantaneous controllability restricted to a plane (z^{\times} is singular) ($\widetilde{b}_{o}(t)$: almost periodic and uncertain

Stabilization problem requires coordination of the actuators

т

Equations of the attitude motion

$$J\dot{\omega} = -\omega^{\times}(J\omega + h_w) - \tau_w - \overbrace{\widetilde{b}^{\times}(t,q)\tau_m}^{\infty}$$

$$\begin{bmatrix} \dot{\varepsilon} \\ \dot{\eta} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -\omega^{\times} & \omega \\ -\omega^{\top} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ \eta \end{bmatrix}$$

Nomenclature

Satellite:

- ω : angular velocity
- $q = (\varepsilon, \eta)$: quaternion
- J: inertia matrix

Reaction wheels:

• *h_w*: angular momentum

• $\tau_w = T_w$: control torque

Magnetorquers:

- $\tilde{b}(t,q)$: geomagnetic field
- *τ_m*: magnetic momentum

 \Rightarrow Design goal: find $\tau_w(x)$ and $\tau_m(x)$ such that x := |q|

$$\rightarrow \begin{bmatrix} \mathbf{0} \\ q_{\circ} \\ h_{ref} \end{bmatrix}$$

× actuators may badly interact

Overview Satellite Attitude ROSPO testbed Beyond ISS cascades Conclusions References 0000 000000000 000000 0

Global attitude stabilization via hybrid feedback

 \triangleright Ideal attitude feedback u_{att} may be selected as a hybrid control law

$$\begin{split} J\dot{\omega} &= -\omega^{\times} J\omega + u_{att} \\ \begin{bmatrix} \dot{\varepsilon} \\ \dot{\eta} \end{bmatrix} &= \frac{1}{2} \begin{bmatrix} -\omega^{\times} & \omega \\ -\omega^{\top} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ \eta \end{bmatrix} \end{split}$$

• No time-invariant continuous selection $u_{att}(x)$ stabilizes the compact attractor $\mathcal{A} := \{\omega = \varepsilon = 0, \eta = \pm 1\}$ [Bhat et al, 2000]

Hybrid solution available in the literature [Mayhew et al, 2009]

For any scalars $k_p > 0$, $k_d > 0$, $\delta \in (0, 1)$, the attractor \mathcal{A} is globally asymptotically and locally exponentially stabilized by the hybrid PD-like dynamic controller:

$$\begin{split} u_{att}(x_c,\varepsilon,\omega) &:= -k_p x_c \varepsilon - k_d \omega \\ \dot{x}_c &= 0, \qquad \text{when } (q,\omega,x_c) \in \mathcal{C} := \{(q,\omega,x_c) : x_c \eta \geq -\delta\} \\ x_c^+ &= -x_c, \quad \text{when } (q,\omega,x_c) \in \mathcal{D} := \{(q,\omega,x_c) : x_c \eta \leq -\delta\}, \end{split}$$

where the *C* is the *flow set* and *D* is the *jump set*.

Overvie DOOC	ew Satellite Attitude ROSPO testbed Beyond ISS cascades Conclusions F D 0000000000000 000000 0 00000 0 000000 0000	References					
l. ⁻	The industrial solution: "cross product control law"						
	The cross-product control law						
	$\tau_{w} = -\omega^{\times} h_{w} - u_{att}, \qquad \tau_{m} = -\frac{\tilde{b}^{\times}(t)}{ \tilde{b}(t) ^{2}} k_{p}(h_{w} - h_{ref})$						
	Ignore the interaction of the two inputs						
	$ \begin{aligned} \dot{J}\dot{\omega} &= -\omega^{\times}J\omega\underbrace{-\tau_{w} - \omega^{\times}h_{w}}^{u_{att}(x_{c},\varepsilon,\omega)} + \underbrace{T_{m}}^{d}, \\ \begin{bmatrix} \dot{\varepsilon} \\ \dot{\eta} \end{bmatrix} &= \frac{1}{2}\begin{bmatrix} -\omega^{\times} & \omega \\ -\omega^{\top} & 0 \end{bmatrix}\begin{bmatrix} \varepsilon \\ \eta \end{bmatrix} \end{aligned} $						
	 loop 1: Attitude control performed by the reaction wheels loop 2: Regulation of h_w by the magnetorquers 	L					

• the two loops are treated separately

b frequency separation between the two loops (= very aggressive attitude stabilizer) gives engineering solution [Camillo,1980; Carrington 1981]

 $ilde{ imes}$ formally proving stability properties of the overall scheme seems hard

Uat

Hybrid Controller

 $\zeta(q, \omega)$ h_{ref}

GAS can be established using Theorem ISS

 $-\tilde{b}_{\circ}^{\times}(t)$

 $h_T^{[I]}$

GAS is proven for any u_{att} under ISS of attitude closed loop if $b_o(t)$ is persistently exciting

GAS can be established using Corollary SON

GAS is proven for any u_{att} (No ISS needed) if $\hat{b}_{\circ}(t)$ is persistently exciting. Boundedness from LES of (U) and Gronwall Lemma.

Simula	ations reveal a	dvantages	of the propo	sed contro	oller
0000	0000000000000	000000		00	
Overview	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References

Context of the simulations

- Mission: micro-satellite Demeter by CNES, the French space agency
- $\widetilde{b}_{\circ}(t)$ evaluated by the IGRF model of the geomagnetic field
- rest-to-rest maneuvers with non-nominal h_w

Controllers used

- Classical "cross product control law" controller
- Revisited version of the classical controller
- Allocation-based controller

Simulation tests

- Nominal: Shows that the classical solution diverges
- Perturbed J: Allocation outperforms Revisited
- Periodic disturbances: Allocation outperforms Revisited

✓ revisited and allocation controllers preserve stability

Monte	-Carlo with	uncertainties	s on J: im	proved trans	sients
0000	0000000000000	000000		00	
	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References.

> Clear advantages emerge from swapping the cascaded structure

✓ Improved attitude transients with allocation-based controller (right)

✓ Robustness rigorously established by intrinsic results of well-posed (hybrid) feedbacks

▷ No rigiorous analysis has been performed for this case

• Interesting direction of future development (regulation theory, contraction theory/convergent dynamics)

✓ Improved attitude response with allocation-based controller (right)

Overview Satellite Attitude ROSPO testbed Beyond ISS cascades Conclusions References 0000 000000 00000 0 00

▷ ROtor graSPing Omnidirectional (ROSPO) ground platform developed at the LAAS-CNRS in Toulouse (France)

- $\triangleright~\textbf{3}~\textbf{DoF}$ Task in SE(2): 2 DoFs position + 1 DoF orientation
 - each turret 2 actuators:
 - propeller: thrust magnitude
 - servo: thrust orientation

- *n* turrets: n = 3, 4, ...
- overactuated for n > 1

$$\begin{cases} \dot{\mathbf{p}} = \mathbf{v} \\ m\dot{\mathbf{v}} = \sum_{i=1}^{n} \mathbf{R}(\psi) \mathbf{f}_{i}^{B} \\ \dot{\psi} = \omega \\ j\dot{\omega} = \sum_{i=1}^{n} (\mathbf{\Pi}\mathbf{r}_{i})^{T} \mathbf{f}_{i}^{B} \end{cases} \begin{cases} \dot{\theta}_{i} = u_{\theta,i} \\ \dot{w}_{i} = u_{w,i} \\ \mathbf{f}_{i}^{B} = k_{w} w_{i}^{2} \begin{bmatrix} \cos(\theta_{i} \\ \sin(\theta_{i}) \end{bmatrix} \end{cases}$$

Actuator dynamics

Constraints

 $\frac{\theta_i}{w_i} \leq \theta_i \leq \overline{\theta_i}$ $\frac{\psi_i}{w_i} \leq w_i < \overline{w_i}$

▷ Design Goal: Trajectory tracking in position and attitude SE(2)

▷ High level control

 \bullet ensures trajectory tracking by generating a suitable "commanded virtual input" $u_{v,c}$ for the allocator

> Allocator tasks with their **priorities**

• **HIGH** ensures that the commanded virtual input is *dynamically* exerted on the plant with time constant γ_p

$$\dot{\mathbf{u}}_{\mathbf{v}} = \gamma_{P}(-\mathbf{u}_{\mathbf{v}} + \mathbf{u}_{\mathbf{v},\mathbf{c}}), \text{ where } \mathbf{u}_{\mathbf{v}} := \left(\sum_{i=1}^{n} \mathbf{f}_{i}^{B}, \sum_{i=1}^{n} (\mathbf{\Pi}\mathbf{r}_{i})^{T} \mathbf{f}_{i}^{B}\right)$$

• LOW ensures optimal allocation w.r.t a cost function $J(\mathbf{w}, \theta)$ penalizing constraints violation

 \triangleright Allocator Dynamics is based on combined effect of u_J and u_y

 \triangleright Feedback linearization transforms actuators in $\dot{x}_a = u_y + u_J$, $\mathbf{u_v} = h(x_a)$

 $\triangleright u_y$ takes care of assigning first order dynamics

$$\dot{\mathbf{u}}_{\mathbf{v}} = \gamma_P(-\mathbf{u}_{\mathbf{v}} + \mathbf{u}_{\mathbf{v},\mathbf{c}}), \text{ where } \mathbf{u}_{\mathbf{v}} := \left(\sum_{i=1}^n \mathbf{f}_i^B, \sum_{i=1}^n (\mathbf{\Pi}\mathbf{r}_i)^T \mathbf{f}_i^B\right)$$

 \triangleright u_J takes care of the cost function J via projection operator $\nabla_{\perp} \mathbf{h}(\mathbf{x_a})$

 \triangleright Cost Function $J(\mathbf{w}, \theta)$ penalizes:

- approaching actuator saturation
- energy consumptions of propellers

> The block Allocator + Actuators externally appears as a first-order filter

 \triangleright Design goal is to track a reference motion $t \mapsto \mathbf{p}_{\mathbf{R}}(t), \psi_{\mathcal{R}}(t)$

> Design task is then simplified by allocator

- Simple Feedforward+Feedback scheme ensures PD-like behavior
- The selected gains ensure desirable damping and bandwidth

GAS can be established using Theorem RED

EXP $\mathbf{p}(t), \psi(t)$ converge globally and exponentially to $\mathbf{p}_{\mathsf{R}}(t), \psi_{\mathsf{R}}(t)$

ACT $\mathbf{u}_{\mathbf{v}}(t)$, $\mathbf{u}_{\mathbf{v},\mathbf{c}}(t)$ asymptotically satisfy $\dot{\mathbf{u}}_{\mathbf{v}} = \gamma_P(-\mathbf{u}_{\mathbf{v}} + \mathbf{u}_{\mathbf{v},\mathbf{c}})$

OPT if $\mathbf{p}_{\mathbf{R}}(t)$, $\psi_{R}(t)$ is constant, then $\mathbf{x}_{\mathbf{a}}(t)$ converges to a stationary point of $J(\mathbf{x}_{\mathbf{a}})$ subject to $\mathbf{h}(\mathbf{x}_{\mathbf{a}}) = \mathbf{u}_{\mathbf{v},\mathbf{c}}$.

Overview Satellite Attitude ROSP0 testbed Beyond ISS cascades Conclusions References 0000 000000 00000 0

\triangleright Step refs in directions $\mathbf{u}_{\mathbf{v}} = (f_x, f_y, \tau)$ confirm linear $\dot{\mathbf{u}}_{\mathbf{v}} = \gamma_P(-\mathbf{u}_{\mathbf{v}} + \mathbf{u}_{\mathbf{v},c})$

 \triangleright If $\gamma_{\it p}$ is too large, input saturation becomes relevant

- $\triangleright \infty$ -shaped motion with n = 3 turrets and n = 4 turrets configurations
- \triangleright Allocator parameters do not change between n=3 and n=4

 \triangleright Lower precision in the case n = 3 as compared to n = 4

 \triangleright Cost Function J highly improved by the allocator action

▷ New iISS quasi-time-optimal stabilizer outperforms historical ISS approach

		ROSPO testbed	Beyond ISS cascades	Conclusions	Reference
0000	0000000000000	000000		•0	

Acknowledgements

D Arzelier

M Lovera

C Pittet

A Franchi

M Maggiore

M Sassano

M Furci

C Nainer

A Seuret

<u>D Inverniz</u>zi

D Peaucelle

JF Tregouet

Thanks also to: L Boncagni, M Cocetti, G De Tommasi, S Galeani, F Mecocci, A Pironti, A Serrani, G Varano, V Vitale, R Vitelli, A Zambelli

Key works for this presentation:

▷ Reduction Theorems for Hybrid Dynamical Systems Maggiore et al. [2019]

- ▷ Applications of static allocation:
 - Satellite attitude stabilization Trégouët et al. [2015]
 - ROSPO experimental platform Nainer et al. [2017]
- ▷ Hierarchical paradigms for UAV control Invernizzi et al. [2018, 2019]

Additional related references

- Dynamic allocation paradigms for linear systems Zaccarian [2009], Cocetti et al. [2018], Galeani et al. [2015]
- ▷ Applications of dynamic allocation:
 - Internal wrenches control in interacting robots Zambelli Bais et al. [2015]
 - Tokamak plasma shape control Boncagni et al. [2012], De Tommasi et al. [2011, 2012]
 - Hybrid Electric Vehicle control Cordiner et al. [2014]
 - Hydrodynamic dynamometer application Passenbrunner et al. [2016]

Overview	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References
		000000	0	00	
BIDIIO	grapny i				

- L. Boncagni, S. Galeani, G. Granucci, G. Varano, V. Vitale, and L. Zaccarian. Plasma position and elongation regulation at FTU using dynamic input allocation. *IEEE Transactions on Control Systems Technology*, 20(3): 641–651, 2012.
- M. Cocetti, A. Serrani, and L. Zaccarian. Linear output regulation with dynamic optimization for uncertain linear over-actuated systems. *Automatica*, 97:214–225, 2018.
- S. Cordiner, S. Galeani, F. Mecocci, V. Mulone, and L. Zaccarian. Torque setpoint tracking for parallel hybrid electric vehicles using dynamic input allocation. *IEEE Transactions on Control Systems Technology*, 22(5): 2007–2015, 2014.
- G. De Tommasi, S. Galeani, A. Pironti, G. Varano, and L. Zaccarian. Nonlinear dynamic allocator for optimal input/output performance trade-off: application to the JET tokamak shape controller. *Automatica*, 47(5): 981–987, 2011.

	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References
0000	000000000000	000000		00	
Biblio	graphy II				

- G. De Tommasi, G. Ambrosino, S. Galeani, F. Maviglia, A. Pironti, G. Varano, R. Vitelli, and L. Zaccarian. A software tool for the design of the current limit avoidance system at the JET tokamak. *IEEE Transactions on Plasma Science*, 40(8):2056–2064, 2012.
- S. Galeani, A. Serrani, G. Varano, and L. Zaccarian. On input allocation-based regulation for linear over-actuated systems. *Automatica*, 52:346–354, 2015.
- D. Invernizzi, M. Lovera, and L. Zaccarian. Geometric tracking control of underactuated VTOL UAVs. In *American Control Conference*, pages 3609–3614, Milwaukee (WI), USA, July 2018.
- D. Invernizzi, M. Lovera, and L. Zaccarian. Integral ISS-based cascade stabilization for vectored-thrust UAVs. *IEEE Control Systems Letters*. *Submitted*, 2019.
- M. Maggiore, M. Sassano, and L. Zaccarian. Reduction theorems for hybrid dynamical systems. *IEEE Transactions on Automatic Control, to appear*, 2019.
- C. Nainer, M. Furci, A. Seuret, L. Zaccarian, and A. Franchi. Hierarchical control of the over-actuated ROSPO platform via static input allocation. In *IFAC World Congress*, pages 13237–13242, Toulouse, France, July 2017.

	Satellite Attitude	ROSPO testbed	Beyond ISS cascades	Conclusions	References
0000	000000000000	000000		00	
Bibliogr	aphy III				

- T. Passenbrunner, M. Sassano, and L. Zaccarian. Optimality-based dynamic allocation with nonlinear first-order redundant actuators. *European Journal of Control*, 31:33–40, 2016.
- J.F. Trégouët, D. Arzelier, D. Peaucelle, C. Pittet, and L. Zaccarian. Reaction wheels desaturation using magnetorquers and static input allocation. *IEEE Transactions on Control Systems Technology*, 23(2):525–539, 2015.
- L. Zaccarian. Dynamic allocation for input-redundant control systems. *Automatica*, 45(6):1431–1438, 2009.
- A. Zambelli Bais, S. Erhart, L. Zaccarian, and S. Hirche. Dynamic load distribution in cooperative manipulation tasks. In *Conference on Intelligent Robots and Systems (IROS)*, pages 2380–2385, Hamburg, Germany, September 2015.