Input allocation: hierarchical design paradigm
with redundant actuators and its aerospace
applications

Luca Zaccarian

LAAS-CNRS and University of Trento

5th CEAS Conference on Guidance, Navigation & Control

Milano, April 4, 2019



Overview

[ Jele]e]

Th

e fascinating experience of scientific exchange

‘\‘n —

A Franchi M Furci D Invernizzi

;:ﬂ’!
M Lovera M Maggiore C Nainer D Peaucelle

2 2 2

M Sassano A Seuret

C Pittet

JF Tregouet
Thanks also to: L Boncagni, M Cocetti, G De Tommasi, S Galeani, F
Mecocci, A Pironti, A Serrani, G Varano, V Vitale, R Vitelli, A Zambelli




Overview
o] le]e]

Nonlinear cascades as hierarchical behaviors

> Practical experience with several applications
> Abstraction reveals a pervasive pattern of control specs hierarchies

.. High Priority Perturbation Low Priority
Application Task Task
] Driveability: State of
Hgbrld Accelerator Charge of
ars Response Battery
Tokamak Plasma Plasma
Plasmas Position Elongation
Cooperative Motion Internal
Manipulation Control Forces

> Stability/Hierarchy analysis stems from nonlinear cascades
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Historical results on nonlinear cascades by E. Sontag

> Cascaded systems intrinsically represent hierarchical tasks

. Ty =U . TL
ty = fu(vy) & = fr(zrp,u) —»

> Stability analysis results date back to the 1980's

If (U) is GAS and (L) is 0-GAS and ISS, then cascade is GAS

Theorem SON

If (U) is GAS and (L) is 0-GAS, then cascade is LAS with basin of
attraction B4 = {largest set from where solutions don't diverge}.

| N

Corollary SON

If (U) is GAS and (L) is 0-GAS, and all solutions are bounded, then
cascade is GAS

N
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Cascades generalize to reduction theorems useful next

> It is not always possible to Write “cascaded like" coordinates: in reduction
theorems, the upper system (U) comprises convergence to a closed set I’

& -

> Redeuction theorems for continuous-time discrete-time and hybrid dynamics

Theorem RED

If I is GAS and A is GAS starting from I', then A is LAS with basin of
attraction B4 = {largest set from where solutions don't diverge}.

Corollary RED

if [ is GAS and A is GAS starting from I and all solutions are bounded,
then A is GAS
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Attitude control performed by two actuators
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Reaction wheels suffer from total momentum problems

Reaction wheels

Nomenclature

El ]
2o ] e h, € R3: angular
S L ‘ . momentum
0 5 10 15 20 25 30 35 40 45 3
e T, € R>: control
?015 T T T T T T T T tor ue
S 04 ] q
Z
\iOOS*

X Total momentum can't be modified (wheel turns CW, satellite turns CCW)
X risk of saturation of hy,

t
= hy(t) = / Tw(7T)dT needs to be controlled
0
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Magnetorquers confined to exert torque in rotating plane

0 -z 2z
z5 = | z 0 -z
—z, 2z 0

Nomenclature

o T, € R® control torque

e b € R3: magnetic field

o 7, € R®: magnetic momentum

e g € R*: quaternion

e R € R**3: rotation matrix

e m % 40 s e 0 & w1 s
Position on orbit (%)

B.(0) (1)

X ()% instantaneous controllability restricted to a plane (z* is singular)
X bo(t): almost periodic and uncertain
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Stabilization problem requires coordination of the actuators

Equations of the attitude motion

T Satellite:
— .
Jir = —wX(Jw + hy) — 1w — b (£, q)Tm @ w: angular velocity
[ e g = (g,m): quaternion
- 1W % @ J: inertia matrix
5 —w* w | e
[ﬁ] =3 [ T 0 } LJ Reaction wheels:

@ hy: angular momentum

; e 7, = T,: control torque
q] Magnetorquers:
Ty ° E(t, q): geomagnetic field

@ T, magnetic momentum

4

href

w 0
= Design goal: find 7,,(x) and 7,,(x) such that x := [q] — [qo]
hu

X actuators may badly interact
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Global attitude stabilization via hybrid feedback

> Ideal attitude feedback u,;; may be selected as a hybrid control law

Jw=—w*Jw+ Uy

HE Al

e No time-invariant continuous selection w,(x) stabilizes the compact
attractor A := {w =¢ =0,n= %1} [Bhat et al, 2000]

Hybrid solution available in the literature [Mayhew et al, 2009]

For any scalars k, > 0, kg > 0, § € (0,1), the attractor A is globally
asymptotically and locally exponentially stabilized by the hybrid PD-like
dynamic controller:

Uatt (X, €,w) 1= — pXc€ — kgw
xc =0, when (q,w,x.) € C = {(q,w, xc) : xen > =4}
xI = —xc, when (q,w,xc) € D :={(q,w,xc) : xn < =6},

C

where the C is the flow set and D is the jump set. )
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|. The industrial solution: ‘“cross product control law”

The cross-product control law

Tw = _thW — Uatt, TTm = — |%(t()t|)2 p(hw - href)

v

Ignore the interaction of the two inputs

Uaet (Xc,€,w) d

~~
Jow=—w Jw—-1, —why,+ Tpn,

Het varale

@ loop 1: Attitude control performed by the reaction wheels

@ loop 2: Regulation of h, by the magnetorquers

@ the two loops are treated separately

> frequency separation between the two loops ( = very aggressive attitude
stabilizer) gives engineering solution [Camillo,1980; Carrington 1981]

X formally proving stability properties of the overall scheme seems hard
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Il. Revisited “cross product control law" highlights cascade

A revisited version of the cross—product control law

% ko +-Je — R(q)hrer)

> Classical approach reveals quasi cascaded structure where hT refers to the
total angular momentum (satellite + wheels)
v/ the feedback branch (the dashed line) can be avoided by redefining 7,
X attitude dynamics is affected by the momentum dumping action

— X —
Tw = —W hy = Uat,  Tm = |b

UPPER SUBSYSTEM LOWER SUBSYSTEM
bo(t)
h[ﬂ W 4 Dynamics of (g, w)
. ; ' (q,w)
O KA i
LR =3 (1)
[bo (£)] Uq Hybrid
Controller
4 e
Tre — 0 PR R,
! ) (a)

]

GAS can be established using Theorem ISS

GAS is proven for any u.; under ISS of attitude closed loop if Bo(t) is
persistently exciting
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I11. Allocation-based controller prioritizes attitude

Allocation-based controller equations

Tw = _WX hw - (R(q)go(t))x'rm — Uatt, Tm = _%kp(hw - href)

> Reversing the cascaded structure giving priority to the attitude stabilization
> stemming from a different partition of the effected input: w.(x,e,w)

Jo+wdw= -1y —w hy + Tm.

UPPER SUBSYSTEM LOWER SUBSYSTEM
I
u %% il
w Dynamics of (¢, w)
(g,w)
b (t) M Pre
Hybrid [B.()2™"
controller

GAS can be established using Corollary SON

GAS s proven for any . (No ISS needed) if by(t) is persistently
exciting. Boundedness from LES of (U) and Gronwall Lemma.
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Simulations reveal advantages of the proposed controller

Context of the simulations

@ Mission: micro-satellite Demeter by CNES, the French space agency
° Eo(t) evaluated by the IGRF model of the geomagnetic field

@ rest-to-rest maneuvers with non-nominal h,,

Controllers used

@ Classical ‘“cross product control law” controller
@ Reuvisited version of the classical controller

@ Allocation-based controller

Simulation tests

@ Nominal: Shows that the classical solution diverges
o Perturbed J: Allocation outperforms Revisited

o Periodic disturbances: Allocation outperforms Revisited

N
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Stabilization transients with aggressive controller

x107° x10™°
7 7
== classical
- = —revisited
6 allocation
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v/ Similar results X saturation of hy
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Stabilization transients with non aggressive controller

x 10

0.02 3 T
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Position on orbit (%)

v/ revisited and allocation controllers preserve stability
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Monte-Carlo with uncertainties on J: improved transients

> Clear advantages emerge from swapping the cascaded structure

)

Cardan angles
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10 X 10t i
4 at
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Z Z
- £
% s
- . 8L . . ]
0 50 100 150 0 50 100 150

Position on orbit (%) Position on orbit (%)

v/ Improved attitude transients with allocation-based controller (right)

v/ Robustness rigorously established by intrinsic results of well-posed
(hybrid) feedbacks
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Periodic disturbances are best handled by allocator

> No rigiorous analysis has been performed for this case
e Interesting direction of future development (regulation theory,
contraction theory/convergent dynamics)

v Improved attitude response with allocation-based controller (right)
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ROSPO represents key challenges in UAV allocation

> ROtor graSPing Omnidirectional (ROSPO) ground platform developed at
the LAAS-CNRS in Toulouse (France)

>3 DoF Task in SE(2): 2 DoFs position 4+ 1 DoF orientation
e each turret 2 actuators:

o propeller: thrust magnitude e nturrets: n =3, 4,...
o servo: thrust orientation e overactuated for n > 1
l-) :vn B Qi = Uo.i &SQISQT
mv =3 iy R(Y)F, Wi = Uw,i w < w < W
Y =w B — kw2 cos(6;) -
jo =3 (e)TEE L T [sin(6;)

Platform equations Actuator dynamics Constraints
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Control Objective and Allocator Hierarchy

> Design Goal: Trajectory tracking in position and attitude SE(2)

: CONTROL P PLANT
pn((yf)) P ACTUATORS PLATFORM
Yr(t : ar 5 —
> HIGH Uy c wp A |4 = e £fB |P. T L oo
‘ LEVEL >|  ALLOCATOR ‘ue"”‘; o= i plmv = X RO
wi | = k2|0 ¥ e
Lo " [sin(6:) Jo = YL, Mr)TE

' CONTROL r»

> High level control
e ensures trajectory tracking by generating a suitable “commanded virtual
input” uy ¢ for the allocator

> Allocator tasks with their priorities
e HIGH ensures that the commanded virtual input is dynamically exerted

on the plant with time constant «y,
n

n
0, = vp(—uy +uy ), where u, := Zf,-B , Z(I’Ir;)Tf,-B
i=1 i=1
e LOW ensures optimal allocation w.r.t a cost function J(w, #) penalizing
constraints violation
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Input Allocator Exploits Projection for Hierarchy

> Allocator Dynamics is based on combined effect of u; and u,

ACTUATORS

Eq = f(za) + 9(za)u
u, = h(z,)

s

v

ALLOCATOR

> Feedback linearization transforms actuators in X, = u, + uy, u, = h(x,)

> u, takes care of assigning first order dynamics

Uy = vp(—uy +uy ), where u, := <Z f5 Z(”l’l TfB)

i=1
> uy takes care of the cost function J via projection operator V h(x,)

> Cost Function J(w, ) penalizes: -

e approaching actuator saturation \«___/

e energy consumptions of propellers . .
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High-level controller ensures trajectory tracking

> The block Allocator + Actuators externally appears as a first-order filter

t
f/)};fgt% ALLOCATOR + ACTUATORS PLATFORM
— HIGH Uy c u RS
LEVEL Gy = 7p(—ty + Uy.o) ™Y = (¢¥)S1uy
CONTROL Jw = Sou,

> Design goal is to track a reference motion t — pgr(t), ¥r(t)

> Design task is then simplified by allocator
e Simple Feedforward+Feedback scheme ensures PD-like behavior

e The selected gains ensure desirable damping and bandwidth

GAS can be established using Theorem RED

EXP p(t),1(t) converge globally and exponentially to pr(t), ¥r(t)

ACT uy(t), uy c(t) asymptotically satisfy Gy, = yp(—uy + uy )

OPT if pr(t),¥r(t) is constant, then x,(t) converges to a stationary
point of J(xa) subject to h(xa) = uy c.
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Experiments show allocator-induced “external linearity”

> Step refs in directions u, = (f;, f,, 7) confirm linear t, = yp(—u, + uyc)

T T T T T daf
x
]
£y i 5 " "“/F’=6
. e il -- -4
Tefe 7572
1 I I I I Rl
4 6 8 10 12 14
—dF
y
2+ - - 778
= I
Z P ansth ks gzt . P
= 0 ol Fmi by 7 N Sreu -4
oL ! p=2
I
I I I I I I e
0 2 4 6 8 10 12 14
T
2k
— 1
é [ SN
-1
2+
I I I
0 2 4 6

time [s]

> If 7, is too large, input saturation becomes relevant
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Experiments following an co-shaped motion

> oo-shaped motion with n = 3 turrets and n = 4 turrets configurations

> Allocator parameters do not change between n =3 and n=4

7~ Aturrets
— 3 turrets

time [s]

> Lower precision in the case n = 3 as compared to n = 4

> Cost Function J highly improved by the allocator action



Beyond ISS cascades

Beyond ISS cascades in hierarchical UAV control

> In underactuated UAVs, the cascaded sequence enforced by the dynamics

X =V

R = R&

Jo = (Jw)*w + 7¢

mv = —mges + Rf.

X =v

mv =~v(x,v)+ A, (R, x,v, f)
R = R®

Jo = (Jw)*w + 7¢

> Cascade interconnection shows undesirable position feedback perturbation

to guarantee A, — 0

Attitude dynamics controlled

Ay

Perturbed Position

Stabilization

> New ilSS quasi-time-optimal stabilizer outperforms historical ISS approach
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Main references related to the presented works

Key works for this presentation:
> Reduction Theorems for Hybrid Dynamical Systems Maggiore et al. [2019]

> Applications of static allocation:
e Satellite attitude stabilization Trégouét et al. [2015]
e ROSPO experimental platform Nainer et al. [2017]

> Hierarchical paradigms for UAV control Invernizzi et al. [2018, 2019]

Additional related references

> Dynamic allocation paradigms for linear systems Zaccarian [2009], Cocetti et al.
[2018], Galeani et al. [2015]

> Applications of dynamic allocation:
e Internal wrenches control in interacting robots Zambelli Bais et al. [2015]
e Tokamak plasma shape control Boncagni et al. [2012], De Tommasi et al.
[2011, 2012]
e Hybrid Electric Vehicle control Cordiner et al. [2014]
e Hydrodynamic dynamometer application Passenbrunner et al. [2016]
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