Multi-hop Decomposition 00000	Observer design 000000		Conclusions

Distributed estimation based on multi-hop subspace decomposition

Luca Zaccarian^{2,3}

Joint work with A.R. del Nozal¹, P. Millán¹, L. Orihuela¹, A. Seuret²

¹Departamento de Ingeniería, Universidad Loyola Andalucía, Sevilla, Spain
 ²LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
 ³Department of Industrial Engineering, University of Trento, Italy

IEEE RTSI 2018 Conference Palermo (Italy), September 10, 2018

Research partially supported by AEI/FEDER (TEC2016-80242-P)

Motivation 00	Multi-hop Decomposition 00000	Observer design 000000	Simulations 00	Conclusions
Overviev	W			

- 1 Motivation and Preliminaries
- 2 Multi-hop Decomposition
- Observer design
- Distributed setup and operation
- Simulation results
- 6 Conclusions and future work

Motivation ●○	Multi-hop Decomposition 00000	Observer design 000000	Setup	Conclusions
A large	plant with scatte	red sensors		

Motivation

- Increasing number of embedded sensors dispersedly integrated at complex plants is fostering the application of distributed estimation and control schemes.
- Distributed strategies offer interesting advantages such as scalability, flexibility, fault tolerance and robustness.

Abstraction involves multi-agent structure

Plant definition	
$\mathcal{G} = (\mathcal{V}, \mathcal{E}),$	
$x^+ = Ax,$	(▲)
$y_i = C_i x \forall i \in \mathcal{V},$	(••)

Goals

- Reconstruct the whole state at every node.
- Design the observer in a distributed way.
- Fix an arbitrary convergence rate for the estimation error.
- Exploit linearity to provide intuitive structure.
- Reduce the exchange of information.

	Multi-hop Decomposition ●0000	Observer design 000000		Conclusions
Multi-h	on output matrix	generalizati	on	

ъ

The ρ -hop output matrix of agent i

The ρ -hop output matrix of agent *i*, $C_{i,\rho}$, is composed by its output matrix C_i and the output matrices of all agents *j* with a direct path to *i* involving ρ or less edges. That is:

$$C_{i,\rho} \triangleq \begin{bmatrix} C_{i,\rho-1} \\ \operatorname{col}(C_{j,\rho-1})_{j \in \mathcal{N}_i} \end{bmatrix}, \quad \forall \rho > 0,$$

where $C_{i,0} := C_i$.

Innovation matrix $W_{i,\rho}$ that generates $\mathcal{O}_{i,\rho} \cap (\mathcal{O}_{i,\rho-1})^{\perp}$ satisfies

- $W_{i,\rho}^{\top}W_{i,\rho'} = 0, \ \forall \rho, \ \rho' \in \{1, \dots, \ell_i\}$ such that $\rho \neq \rho'$.
- $Im(W_{j,\rho-1}) \subseteq Im(V_{i,\rho}), \ \forall j \in \mathcal{N}_i.$

 ℓ_i is selected later as a suitable positive integer

Multi-hop transformation matrix
$$T_i$$

It is orthogonal $T_i^{\top} = T_i^{-1}$ by construction:
 $T_i := \begin{bmatrix} \overline{V}_{i,\ell_i} & W_{i,\ell_i} & \cdots & W_{i,\rho+1} \\ \hline V_{i,\rho} & & \hline V_{i,\rho} \end{bmatrix} \underbrace{W_{i,\rho} & \cdots & W_{i,0}}_{V_{i,\rho}}$

Property: $\begin{bmatrix} \bar{V}_{i,\rho} & V_{i,\rho} \end{bmatrix}$ is nonsingular, $\forall i \in \mathcal{V}, \ \rho \in \{1, \dots, \ell_i\}$ $\mathcal{O}_{i,\rho-1} \subseteq \mathcal{O}_{i,\rho},$

Innovation Matrix $W_{i,\rho}$

Innovation matrix $W_{i,\rho}$ that generates $\mathcal{O}_{i,\rho} \cap (\mathcal{O}_{i,\rho-1})^{\perp}$ satisfies

•
$$W_{i,\rho}^{\top}W_{i,\rho'} = 0, \ \forall \rho, \ \rho' \in \{1, \dots, \ell_i\}$$
 such that $\rho \neq \rho'$.

• $Im(W_{j,\rho-1}) \subseteq Im(V_{i,\rho}), \ \forall j \in \mathcal{N}_i.$

Proposition

Orthogonal transformation T_i provides **Multi-hop Observable Decomposition**:

$$T_i^{\top} A T_i = \begin{bmatrix} \bar{V}_{i,\ell_i}^{\top} A \bar{V}_{i,\ell_i} & \bar{V}_{i,\ell_i}^{\top} A W_{i,\ell_i} & \dots & \bar{V}_{i,\ell_i}^{\top} A W_{i,1} & \bar{V}_{i,\ell_i}^{\top} A W_{i,0} \\ 0 & W_{i,\ell_i}^{\top} A W_{i,\ell_i} & \dots & W_{i,\ell_i}^{\top} A W_{i,1} & W_{i,\ell_i}^{\top} A W_{i,0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & W_{i,1}^{\top} A W_{i,1} & W_{i,1}^{\top} A W_{i,0} \\ 0 & 0 & \dots & 0 & W_{i,0}^{\top} A W_{i,0} \end{bmatrix}$$
$$C_{i,0} T_i = \begin{bmatrix} 0 & 0 & \cdots & 0 & \star \end{bmatrix}$$
$$\vdots & \vdots & \vdots \\ C_{i,\ell_i} T_i = \begin{bmatrix} 0 & \star & \cdots & \star & \star \end{bmatrix}$$

Motivation 00	Multi-hop Decomposition 00000	Observer design ●00000			Conclusions
Prop	osed observer structur	·e			
\hat{x}_i^+	$=\underbrace{A\hat{x}_i}_{(A)} + \underbrace{W_{i,0}L_i(y_i - \hat{y}_i)}_{(B)}$	$\underbrace{(j)}_{i} + \sum_{\rho=1}^{\ell_i} \sum_{j \in \mathcal{N}_i} W_i,$	$_{ ho}N_{i,j, ho}W$	$\hat{x}_{j,\rho-1}^{\top}(\hat{x}_j - \hat{x}_j)$	i) (♡)

(A) Model-based open-loop term.

(B) Luenberger-term for the observable modes: The difference between the locally measured y_i and predicted $\hat{y}_i = C_i \hat{x}_i$ outputs is multiplied by gain L_i whose action is limited to the (local) subspace $W_{i,0}$.

(C)

Recall that $y_i - \hat{y}_i = C_i x - C_i \hat{x}_i = C_i \varepsilon_i$

(C) Consensus-term for the unobservable modes: The estimation difference with the neighbors $\hat{x}_i - \hat{x}_j$ is multiplied by the gain $N_{i,j,\rho}$, whose action is limited to the (non-local) subspaces $W_{i,\rho}$.

Recall that $\hat{x}_j - \hat{x}_i = \hat{x}_j - x + x - \hat{x}_i = \varepsilon_i - \varepsilon_j$

Motivation
ooMulti-hop Decomposition
oocooObserver design
oocooSetup
oocooSimulations
ooConclusions
oocooDesign goal and basic (necessary) assumption

Problem α

Given $\alpha \in (0, 1)$, plant (\blacklozenge), and the interconnection graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, design the gains L_i and $N_{i,j,\rho}$ in (\heartsuit) such that all estimates \hat{x}_i converge to x exponentially fast with exponential rate α .

Collective α -detectability

Plant (\spadesuit) is collectively α -detectable if for each agent $i \in \mathcal{V}$, there exist a finite number of hops $\ell_i \in \mathbb{Z} > 0$ such that pair (C_{i,ℓ_i}, A) is α -detectable.

Collective α -detectability is necessary

Collective α -detectability is a *necessary and sufficient* condition for solving Problem α .

Figure 1: Assume that pair (\tilde{C}, A) with $\tilde{C} = [C_1^\top, C_2^\top, C_3^\top]^\top$ is α -detectable. Although strong connectivity does not hold, Assumption is met.

Collective α -detectability is necessary

Collective α -detectability is a *necessary and sufficient* condition for solving Problem α .

Theorem α (Design of the distributed observer)

Consider plant (\spadesuit) and observer structure (\heartsuit) . If matrices

$$\underbrace{W_{i,0}^{\top}AW_{i,0} - L_iC_iW_{i,0}}_{=D_{i,(0,0)}}, \underbrace{W_{i,\rho}^{\top}AW_{i,\rho} - \sum_{j \in \mathcal{N}_i} N_{i,j,\rho}W_{j,\rho-1}^{\top}W_{i,\rho}}_{=D_{i,(\rho,\rho)}},$$

for all $\rho \in \{1, \dots, \ell_i\}$, have spectral radius smaller than α , then Problem α is solved:

$$|\hat{x}_i(k) - x(k)| \le M\alpha^k \left| \begin{bmatrix} x_1(0) & x(0) \\ \vdots \\ \hat{x}_N(0) - x(0) \end{bmatrix} \right|, \ \forall i \in \mathcal{V}.$$

Coarse bound from the Theorem

Interesting additional bounds emerge from multi-hop decomposition (next slide).

$$\begin{split} & \underset{\substack{\text{occore}}{\text{occore}}{\text{occore}} & \underset{\substack{\text{occore}}{\text{occore}}{\text{occore}}{\text{occore}} & \underset{\substack{\text{occ}}{\text{o$$

Stacking the estimation error at each hop for every agent

$$\begin{bmatrix} \varepsilon_{\bar{\ell}} \\ \vdots \\ \varepsilon_1 \\ \varepsilon_0 \end{bmatrix}^+ = \begin{bmatrix} \Delta_{\bar{\ell}} & \cdots & \star & \star \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \Delta_1 & \star \\ 0 & \cdots & 0 & \Delta_0 \end{bmatrix} \begin{bmatrix} \varepsilon_{\bar{\ell}} \\ \vdots \\ \varepsilon_1 \\ \varepsilon_0 \end{bmatrix} \text{ with } \Delta_{\rho} = \begin{bmatrix} D_{1,(\rho,\rho)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & D_{p,(\rho,\rho)} \end{bmatrix}$$
$$T_i := \underbrace{\left[\overline{V}_{i,\ell_i} \quad W_{i,\ell_i} \quad \cdots \quad W_{i,\rho+1} \quad W_{i,\rho} \quad \cdots \quad W_{i,\rho} \right]}_{\bar{V}_{i,\rho}}$$

	Multi-hop Decomposition 00000	Observer design 00000●		Conclusions
Desig	n feasibility			

It is always possible, under Assumption α , to find a set of matrices L_i and $N_{i,j,\rho}$ that satisfy the conditions of Theorem α

Sketch of the proof

Existence of L_i from observability of pair $(C_i W_{i,0}, W_{i,0} A W_{i,0})$. For $N_{i,j,\rho}$ rewrite expression

$$D_{i,(\rho,\rho)} = W_{i,\rho}^{\top} A W_{i,\rho} - \sum_{j \in \mathcal{N}_i} N_{i,j,\rho} W_{j,\rho-1}^{\top} W_{i,\rho},$$

as

$$W_{i,\rho}^{\top}AW_{i,\rho} - \bar{N}_{i,\rho}\Lambda_{i,\rho} \text{ with } \begin{array}{l} N_{i,\rho} = \operatorname{col}(N_{i,j,\rho}^{\top})_{j \in \mathcal{N}_{i}}^{\top}, \\ \Lambda_{i,\rho} = \operatorname{col}(W_{j,\rho-1}^{\top})_{j \in \mathcal{N}_{i}}^{\top}W_{i,\rho}, \end{array}$$

The the pair $(\Lambda_{i,\rho}, W_{i,\rho}^{\top}AW_{i,\rho})$ is observable from the Popov-Belevitch-Hautus test.

Motivation	Multi-hop Decomposition	Observer design	Setup		Conclusions
00	00000	000000		00	

Distributed observer setup

For every agent/node i do:

- a. Compute $\mathcal{O}_{i,0}$ and construct matrix $W_{i,0}$. Set $\rho = 0$.
- **b**. Perform the two steps:
 - Exchange $W_{i,\rho}$ with the neighbors.
 - Construct $\mathcal{O}_{i,\rho+1}$ and construct matrix $W_{i,\rho+1}$.
- c. If the ρ -hop unobservable modes have speed α , then stop. Otherwise increment ρ and go to (b).

Gain selection phase

Each agent designs gains $(L_i, N_{i,j,\rho})$.

Running phase

Each agent will exchange with its neighbors a portion of the state defined by $W_{j,\rho-1}\hat{x}_i$, for all $\rho = 1, \ldots, \ell_i$.

Simulation example with 7 nodes

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^+ \begin{bmatrix} 0.95 & 0 & 0 & 0 \\ 0 & 0.995 & -0.0876 & 0 \\ 0 & 0.125 & 0.994 & 0 \\ 0 & 0 & 0 & 1.002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
$$y_1 = x_1, \quad y_2 = x_2, \quad y_3 = x_4, \quad y_4 = x_1,$$
$$y_5 = x_3, \quad y_6 = x_1, \quad y_7 = x_4$$

Continuous-time Simulation Example

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix} x$$

18/19

10

Motivation 00	Multi-hop Decomposition 00000	Observer design 000000	Setup	Simulations 00	Conclusions		
Conc	lusions						
٠	Distributed observer	with distribut	ed desig	gn			
٠	Arbitrary convergence	e rate α of the	e estima	tion error			
٠	• Intuitive method based on observable decomposition						
	• Continuous- and	Discrete-time re	sults				

• Necessary and sufficient conditions

Future work

- Optimal design of gains L_i and $N_{i,j,\rho}$ (LMI-based)
- Time-varying graphs, delays or packet losses
- Designs reducing online information exchange

References

- P. Millan Gata, A. Rodriguez del Nozal, L. Zaccarian, L. Orihuela Espina, and A. Seuret. Distributed implementation and design for state estimation. In Proc. of the IFAC World Congress, pages 6667-6672, Toulouse, France, July 2017.
- A. Rodriguez del Nozal, P. Millan Gata, L. Orihuela Espina, and A. Seuret, L. Zaccarian. Distributed Estimation based on multi-hop subspace decomposition. Submitted to Automatica.