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A large plant with scattered sensors

Motivation

Increasing number of embedded sensors dispersedly
integrated at complex plants is fostering the application of
distributed estimation and control schemes.

Distributed strategies o�er interesting advantages such as
scalability, �exibility, fault tolerance and robustness.
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Abstraction involves multi-agent structure

Plant de�nition

G = (V, E),

x+ = Ax,
yi = Cix ∀i ∈ V, (♠)

Goals

Reconstruct the whole state at every node.

Design the observer in a distributed way.

Fix an arbitrary convergence rate for the estimation error.

Exploit linearity to provide intuitive structure.

Reduce the exchange of information.
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Multi-hop output matrix generalization

The ρ-hop output matrix of agent i

The ρ-hop output matrix of agent i, Ci,ρ, is composed by its
output matrix Ci and the output matrices of all agents j with a
direct path to i involving ρ or less edges. That is:

Ci,ρ ,

[
Ci,ρ−1

col(Cj,ρ−1)j∈Ni

]
, ∀ρ > 0,

where Ci,0 := Ci.
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Multi-hop Unobservable Subspaces

The ρ-hop unobservable subspace from agent i, Ōi,ρ
The ρ-hop unobservable subspace from agent i, Ōi,ρ :=
Im(V̄i,ρ), is the unobservable subspace related to pair (Ci,ρ, A).

The ρ-hop observable subspace from agent i, Oi,ρ
The ρ-hop observable subspace from agent i, Oi,ρ := Im(Vi,ρ)
is the orthogonal complement of Ōi,ρ.

Property:

[
V̄i,ρ Vi,ρ

]
is nonsingular ,

Oi,ρ−1 ⊆ Oi,ρ,
∀i ∈ V, ρ ∈ {1, . . . , `i}

Innovation Matrix Wi,ρ

Innovation matrix Wi,ρ that generates Oi,ρ ∩ (Oi,ρ−1)⊥ satis�es

W>i,ρWi,ρ′ = 0, ∀ρ, ρ′ ∈ {1, . . . , `i} such that ρ 6= ρ′.

Im(Wj,ρ−1) ⊆ Im(Vi,ρ), ∀j ∈ Ni.
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Multi-hop Transformation Matrix

`i is selected later as a suitable positive integer

Multi-hop transformation matrix Ti

It is orthogonal T>i = T−1
i by construction:

Ti :=
[︸ ︷︷ ︸

V̄i,ρ

V̄i,`i Wi,`i · · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0

]

Property:

[
V̄i,ρ Vi,ρ

]
is nonsingular ,

Oi,ρ−1 ⊆ Oi,ρ,
∀i ∈ V, ρ ∈ {1, . . . , `i}

Innovation Matrix Wi,ρ

Innovation matrix Wi,ρ that generates Oi,ρ ∩ (Oi,ρ−1)⊥ satis�es

W>i,ρWi,ρ′ = 0, ∀ρ, ρ′ ∈ {1, . . . , `i} such that ρ 6= ρ′.

Im(Wj,ρ−1) ⊆ Im(Vi,ρ), ∀j ∈ Ni.
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Multi-hop observable decomposition enjoys nice structure

Ti :=
[︸ ︷︷ ︸

V̄i,ρ

V̄i,`i Wi,`i · · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0

]
Proposition

Orthogonal transformation Ti provides Multi-hop Observable
Decomposition:

T>i ATi =


V̄ >i,`iAV̄i,`i V̄ >i,`iAWi,`i . . . V̄ >i,`iAWi,1 V̄ >i,`iAWi,0

0 W>i,`iAWi,`i . . . W>i,`iAWi,1 W>i,`iAWi,0

...
...

. . .
...

...
0 0 . . . W>i,1AWi,1 W>i,1AWi,0

0 0 . . . 0 W>i,0AWi,0


Ci,0Ti =

[
0 0 · · · 0 ?

]
...

...

Ci,`iTi =
[

0 ? · · · ? ?
]
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Example of multi-hop observable decomposition

A =


0.295 0 0 0
0 0.9954 −0.0876 0
0 0.1248 0.9945 0
0 0 0 0.6775

,
C1 =

[
1 0 0 0

]
C2 =

[
0 1 0 0

]
C3 =

[
0 0 0 1

]

Wi,0 =


1
0
0
0

 , Wi,1 =


0 0
1 0
0 1
0 0

 , Wi,2 =


0
0
0
1



T>
1 AT1 =


0.6775 0 0 0

0 0.9954 −0.0876 0
0 0.1248 0.9945 0
0 0 0 0.295


C1,0T1 = C1T1 =

[
0 0 0 1

]
C1,1T1 =

[
0 0 0 1
0 1 0 0

] C1,2T1 =

0 0 0 1
0 1 0 0
1 0 0 0


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Proposed observer structure

x̂+i = Ax̂i︸︷︷︸
(A)

+Wi,0Li(yi − ŷi)︸ ︷︷ ︸
(B)

+

`i∑
ρ=1

∑
j∈Ni

Wi,ρNi,j,ρW
>
j,ρ−1(x̂j − x̂i)︸ ︷︷ ︸

(C)

(♥)

(A) Model-based open-loop term.

(B) Luenberger-term for the observable modes: The di�erence
between the locally measured yi and predicted ŷi = Cix̂i
outputs is multiplied by gain Li whose action is limited to
the (local) subspace Wi,0.

Recall that yi − ŷi = Cix− Cix̂i = Ciεi

(C) Consensus-term for the unobservable modes: The estima-
tion di�erence with the neighbors x̂i− x̂j is multiplied by the
gain Ni,j,ρ, whose action is limited to the (non-local) sub-
spaces Wi,ρ.

Recall that x̂j − x̂i = x̂j − x+ x− x̂i = εi − εj
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Design goal and basic (necessary) assumption

Problem α

Given α ∈ (0, 1), plant (♠), and the interconnection graph G =
(V, E), design the gains Li andNi,j,ρ in (♥) such that all estimates
x̂i converge to x exponentially fast with exponential rate α.

Collective α-detectability

Plant (♠) is collectively α-detectable if for each agent i ∈ V, there
exist a �nite number of hops `i ∈ Z > 0 such that pair (Ci,`i , A)
is α-detectable.

Collective α-detectability is necessary

Collective α-detectability is a necessary and su�cient condition
for solving Problem α.
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Assumption α

Given α ∈ (0, 1), plant (♠) is collectively α-detectable.

Figure 1: Assume that pair (C̃, A) with C̃ = [C>
1 , C

>
2 , C

>
3 ]> is α-detectable.

Although strong connectivity does not hold, Assumption is met.

Collective α-detectability is necessary

Collective α-detectability is a necessary and su�cient condition
for solving Problem α.
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Main Result: design guidelines

Theorem α (Design of the distributed observer)

Consider plant (♠) and observer structure (♥). If matrices

W>i,0AWi,0 − LiCiWi,0︸ ︷︷ ︸
=Di,(0,0)

, W>i,ρAWi,ρ −
∑
j∈Ni

Ni,j,ρW
>
j,ρ−1Wi,ρ︸ ︷︷ ︸

=Di,(ρ,ρ)

,

for all ρ ∈ {1, . . . , `i}, have spectral radius smaller than α, then
Problem α is solved:

|x̂i(k)− x(k)| ≤Mαk

∣∣∣∣∣∣∣
 x̂1(0)− x(0)

...
x̂N (0)− x(0)


∣∣∣∣∣∣∣ , ∀i ∈ V.

Coarse bound from the Theorem

Interesting additional bounds emerge from multi-hop
decomposition (next slide).
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Sketch of the proof

Transformed estimation error dynamics of agent i at hop ρ
(εi,ρ = W>i,ρ(x− x̂i)):

ε+
i,0 = [W>i,0AWi,0 − LiCiWi,0]εi,0, ε0 := col(εi,0)

ε+
i,ρ =

ρ∑
r=0

Di,(ρ,r)εi,r +
∑
j∈Ni

Ni,j,ρεj,ρ−1, ερ := col(εi,ρ)i∈V:`i+1≥ρ

Stacking the estimation error at each hop for every agent
ε¯̀

...

ε1

ε0


+

=


4¯̀ . . . ? ?
...

. . .
...

...

0 . . . 41 ?
0 . . . 0 40



ε¯̀

...

ε1

ε0

 with 4ρ =

D1,(ρ,ρ) . . . 0
...

. . .
...

0 . . . Dp,(ρ,ρ)



Ti :=
[︸ ︷︷ ︸

V̄i,ρ

V̄i,`i Wi,`i · · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0

]
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Design feasibility

It is always possible, under Assumption α, to �nd a set of matrices
Li and Ni,j,ρ that satisfy the conditions of Theorem α

Sketch of the proof

Existence of Li from observability of pair (CiWi,0,Wi,0AWi,0).

For Ni,j,ρ rewrite expression

Di,(ρ,ρ) = W>i,ρAWi,ρ −
∑
j∈Ni

Ni,j,ρW
>
j,ρ−1Wi,ρ,

as

W>i,ρAWi,ρ − N̄i,ρΛi,ρ with
N̄i,ρ = col(N>i,j,ρ)

>
j∈Ni ,

Λi,ρ = col(W>j,ρ−1)>j∈NiWi,ρ,

The the pair (Λi,ρ,W
>
i,ρAWi,ρ) is observable from the Popov-

Belevitch-Hautus test.
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Distributed observer setup

For every agent/node i do:

a. Compute Oi,0 and construct matrix Wi,0. Set ρ = 0.

b. Perform the two steps:

Exchange Wi,ρ with the neighbors.
Construct Oi,ρ+1 and construct matrix Wi,ρ+1.

c. If the ρ-hop unobservable modes have speed α, then stop.
Otherwise increment ρ and go to (b).

Gain selection phase

Each agent designs gains (Li, Ni,j,ρ).

Running phase

Each agent will exchange with its neighbors a portion of the state
de�ned by Wj,ρ−1x̂i, for all ρ = 1, . . . , `i.
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Simulation example with 7 nodes
x1
x2
x3
x4


+

=


0.95 0 0 0

0 0.995 −0.0876 0
0 0.125 0.994 0
0 0 0 1.002



x1
x2
x3
x4


y1 = x1, y2 = x2, y3 = x4, y4 = x1,

y5 = x3, y6 = x1, y7 = x4

Estimates of Agent 2 Estimates of Agent 5
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Results directly extend to continuous-time

Continuous-time Simulation Example

ẋ =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

x,

0 2 4 6 8 10

0

0.5

1

1.5

0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

x(1)
x(2)
x(3)
x(4)
x̂1(1)
x̂1(2)
x̂1(3)
x̂1(4)

Estimates for Agent 1 Convergence Speed α
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Conclusions

Distributed observer with distributed design

Arbitrary convergence rate α of the estimation error

Intuitive method based on observable decomposition

Continuous- and Discrete-time results
Necessary and su�cient conditions

Future work

Optimal design of gains Li and Ni,j,ρ (LMI-based)

Time-varying graphs, delays or packet losses

Designs reducing online information exchange
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