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Introduction mple: the PRISMA

. a3 S PSS e
Figure 1 : The PRISMA mission. Photo courtesy of CNES.
® Proximity operations (active debris removal, reparation of a spacecraft, refueling, etc).

e Target/chaser.



Modeling Orbital reference frames

Reference frames

Inertial reference frame:
7= (o,,)?f, ?,,Z)

LVLH reference frame:
C)O — (Oo~ )?(7- 370- 20)

X » = V-bar

Yi Z, = R-bar



Modeling Linear translational motion

Linear translational equations (Tschauner-Hempel)

Linearization X(t) = A(t) X(t) + B F(t) derived by Tschauner-Hempel
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Modeling Linear translational motion

Linear translational equations (Tschauner-Hempel)
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¢ Impulsive control input: u(tx) = AV(tx) = AV, = f F(t) d f —P%Pe dit.
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X =A(t)X in free motion
° 0 . .

Xt =X+ j“} u  across impulsive thrusts

3
4 /B2




Modeling Coordinate transformations

Linearized translational equations (Tschauner-Hempel)

Transformations of the free dynamics

H(v)

Q@ X(t) = A(t) X(t) =5 X(v) = A(v) X(v).
From the t-domain to the v-domain (change of time scale).

T(v)

Q X(v) =A@W) X(v) —>
Provides simple periodic equations governed by true anomaly v € [0, 27]
o €y = AW) &)
Explicit solution of free motion exists (Yamanaka-Ankersen)
It provides a basis for parametrization of constant solutions
Representation of periodic trajectories < & = O
® {(v) =AW) &) " &) =AEW).
Application of Floquet-Lyapunov theory — transformation of LTV periodic system
into an equivalent LTI system (with a constant dynamic matrix A).



Modeling Coordinate transformations

LTI dynamics derivation

Transformation T(v)

Second coordinate transformation T(v):

Sy~ | P 0s 5
X(v) L(V)T o) /j X(v).

7(v)
Simplified Tschauner-Hempel equations:
X" =27
)7” = _)7’
yro 3 7 —2%.
1+ ecosv

State vector: X(v) =[x y 2 X § Z].



Modeling Coordinate transformations

LTI dynamics derivation

Transformation C(v)

x(t) —HW). x@) _TW) ). i) SW, gu)

Third coordinate transformation C(v): it allows a periodic representation of the trajectories
in the original coordinates.

0 < o o

—S, (o)
o] Sy 0] [0] [ 0
3esy (1+p) esy (1+p) /)Z—ecV—B
1 0 T (21 T2 0 T2
= _ p(es—1) et —1 et —1 %
)= | —3s, su(1+p) 0 cup ).
0 o 3(c2,, +e) _ c,,(12+p)+e o sup
es—1 5 es—1
0 0 73(3eclé+e +2) 32pz o 736'251/;)
es—1 es—1 es—1
c(v)

State vector: £(v) =[& & & & & &)



Modeling Coordinate transformations

LTI dynamics derivation

Transformation S(v)

x(y) A, x() _T0) CW). i) S0 g

Fourth coordinate transformation: based on Floquet-Lyapunov theory. It allows an LTI
representation of the dynamics.

1 0] o] 0 0] [0]
0 1 o] 0 0] [0]
0 (0] 1 0 [0] o(v)
HOE (1—e2)3/2 | &),
[0} (0] 0] 1 [0] [0]
0 (0] 0] 0 1 [0]
(o) [0} [0} (o) [0} 1
S(v)
2T

h =v—- —t
where o(v) :=v T

State vector: E(V):[a gz §A3 gl 55 EF:]T-

The final model is obtained after the four coordinate changes:

E(v) = R(v) X(v) :=S(v) C(v) T(v) X(v) .



Modeling Coordinate transformations

Linearized translational equations (Recap)

Transformations of the free dynamics

& =A¢ in free motion
¢ across impulsive thrusts

Proposition. R(v) is a coordinate change (bounded and with bounded inverse) and motion
of X(t) is periodic if and only if & =
Reference Periodic Motion can be specified in terms of periodic relative trajectory

ref [gref ref ref ;ef ref ]

May also define the tracking error: £ = £ — £ .



Modeling ~ Examples of Periodic Reference Trajectories

Reference periodic trajectories

200 O x (m)

System representation: dynamics mismatch between current state and reference orbit:

g=£-§"




Guidance algorithms within a hybrid framework Hybrid dynamical systems

Summary of proposed hybrid context

Closed-loop dynamics

e Tracking of &€ "/ = periodic trajectory = chaser inside a tolerance box.

e System representation: error w.r.t. a desired reference orbit £ = £ — & ref
¢ Linear translational model:
g'=AE £ € C (free motion),

£t =2+ B(v)u, &€ D (across impulsive thrusts).

Hybrid dynamical systems (Teel, Goebel, Sanfelice 2012)

¢ Continuous-time differential equations: free motion dynamics — flow set C.
e Discrete-time difference equations: impulses execution — jump set D.

¢ Control law amounts to selecting u and D (C = closed complement of D):

¢ We propose a dynamical solution depending on timers (controller states).




Guidance algorithms within a hybrid framework Hybrid dynamical systems

A typical evolution of a hybrid solution

jumps
j+2 &(v2,j +2)
Jump U,

P g(”hj + 1)
j N

Flow during © Eva,j+1)

Jump Uy
J
gm,j)
14 V2 time



Guidance algorithms within a hybrid framework Hybrid dynamical sys

Timers are the states of the dynamic controller

Satellite dynamics — periodic of period 27r. Timer v used to track the periodic
time-varying nature of the satellite dynamics. " = O each time it reaches 2.
Thrusters firings instants. Timer 7 used to capture the information about how long
we need to wait until the next impulsive control action. When 7 = O — thrusters are

fired by u = 7,(&, ) and next firing instant is selected 77 = (£, )

D is now selected. Design problem reduced to: choose 7, and -,




Guidance algorithms within a hybrid framework

Hybrid dynamical systems

Hybrid closed-loop with controller states

FLOW DYNAMICS

(g v,7)ecC
g =A%
V=1,
7=,

C :=(R6 x [0,27] x [0,27]) \ D

JUMP DYNAMICS

(Ev,7) €Dy (&,v,7) € D;
et =% et =2+B) (v,
vt =0, v =,
Tt =r, T =7.(5,v)

D, :=R® x {27} x [0, 27] D, :=R® x [0,27] x {0}

Reset to 0 when it

Capt iodicity of motion.
5 aptures periodicity of motion [0, 27]
reaches 2w
Impulsive control actions sequencing. How long need to
T [0, 27]

wait until the next impulse



Guidance algorithms within a hybrid framework Hybrid design problem statement

Hybrid problem statement

We wish to (partially) meet the following specifications:

A. The chaser departs from an initial state and converges to a final state §A = E i }
(reference periodic trajectory) which is uniformly globally asymptotically stable.

B. The chaser tracks the reference periodic trajectory during the inspection.
C. The cost / in (??) is minimized over the full maneuver:

N

N
=Y AV =D (1Avk] + [Avy 4] + [Av, 4]) -
k=1 k=1

Goal: Design state feedback impulsive guidance laws by selecting:

e the firing instants v, k € N given by the trigger law - (&, v/);

¢ the corresponding input law v, (&, /).




Guidance algorithms within a hybrid framework Hybrid guidance la

Proposed guidance laws

Controller Trigger law v-(€,v) Input law u = (g, v)

#1: uniform Arrival at & " by means of periodic
sampling norm- v (Ev)=D trajectories. Minimize the Euclidean
minimizing norm of the error &.

#2:  us. bi- N B Tracking of fA ref after 2 control ac-
. ‘ 1 (Ev) =D .

impulsive tions.

#3: non-us. bi- N . Tracking of fA ref after 2 control ac-
. ‘ V(& v) =argmin o

impulsive 7€[0,27] tions. Minimize the cost /.

) Arrival at E "l by means of periodic
#4: us. tri- ~ — . . . ref

) ) v (Ev)="0 trajectories. Tracking of £ " after 3
impulsive .
control actions.



Guidance algorithms within a hybrid framework Hybrid guidance laws

A closer look at the dynamic matrices

Hybrid equations:

Matrices A and B have useful structure:

0 -(1-€%)sy 0
0000 0 (1-€?)c, 0
oloooo - 5
_r op oeps,
~ oolooo1]| - -e(H4+p)sv-——3575 —— P2
A:(1*ez)73/2 s B(V): kzp(:-ez) (1_62)3/2 (1—6’2) /
000000 (-e)(+p)sy O (edpcy
000000
[0o0jooo0o0] (+p)evte 0 “psv
L -3p? o] 3eps,

where ¢, := cos(v) s, = sin(v)



Guidance algorithms within a hybrid framework Hybrid guidance laws

Uniform sampling and norm-minimizing

Control law 1

Theorem. The reference periodic orbit £ "/ is stable (attractivity not guaranteed).

The chaser moves through periodic trajectories = £,% = 0O, while the rest of the states are
minimized.

Jump equation:

e ulle in charge of £;* = 0.

e 46 must min &...5 while having no influence over ulls.

Computation of the input law v = ~,(&, v):

uAV:*MAB*%V B(v) B& (v _L<A§y WAG).
S = ) (B0)8s () (£~ Bw) :



Guidance algorithms within a hybrid framework Hybrid guidance laws

Uniform sampling bi-impulsive

Control law 2

Theorem. The reference periodic orbit £ "*f is stable and attractive.

The chaser arrives at the reference &  in 2 control impulses separated by an angle :

S+ 7, +2) = 0. (@
jumps
j+2 &(12,j +2)
Jump Dz
" E(m,j+1)
j i
Flow during 7 E(v2,j +1)
Jump LAJW
joA
5(’%/)

12 173 time



Guidance algorithms within a hybrid framework

Hybrid guidance laws
jumps
j+2 22, +2)
Jump U,
P é\(V 1 f + 1)
JH+1
Flow during v E(va,j +1)
Jump Uy
j o
&(n.j)
14 123 time
v

Thrust u; at time 24 g, j+1)= A(Vh/) ( 1) Ure
Flow during 7: Ewn+o,j+1)= (1/) e(n,)) + +B(w) u ]
Thrust s at time 11 + 7 &4 + 7, + 2) = ®(5) |E(4,)) + B(14) tn + &(—7)B(1r + 7) UZ]



Guidance algorithms within a hybrid framework Hybrid guidance laws

Uniform sampling bi-impulsive

Control law 2

Theorem. The reference periodic orbit £ "*f is stable and attractive. This results from

forward invariance and global uniform attractivity.

The chaser arrives at the reference 2 "f in 2 control impulses separated by an angle &

g +p,j+2)=0. (5)
Computation of the input law v, (&, v) = u:
(@ v)=[-1 0] [B) ®(~2)B(v+7)] e (6)
M(v,7)~"

Ve

Conjecture: (no proof)
Matrix M is invertible < o # km, k € Z.

Figure 3 : Determinant of M. 21/3



Guidance algorithms within a hybrid framework Hybrid guidance laws

Non-uniform sampling bi-impulsive

Control law 3

Theorem. The reference periodic orbit £ "*f is stable and attractive. This results from

forward invariance and global uniform attractivity.

The chaser arrives at the reference 2 "f in 2 control impulses separated by an angle &

Enm+r,j+2)=0.
The input law u = 7,(&, v) is the same as for the previous controller:

'Yu(é\a V) = [_/ O] M(V7 1/*)71 E.

The trigger function is evaluated at v* # km, k € Z, which minimizes the cost:

= i * i i i i i |
0 45 90 135 180 225 270 315 360
v (deg)
~ . —\—1 A .
v' =.(8,v) =argmin|[l O]M(v,p)” €| = argmin /.
el0,27] 1 el0,27]

The corresponding minimization is not (not even locally) convex: hard to implement.



Guidance algorithms within a hybrid framework Hybrid guidance laws

Uniform sampling tri-impulsive

Control law 4

Theorem. The reference periodic orbit £ "*f is stable and attractive. This results from

forward invariance and global uniform attractivity.

Take advantage of the decoupling in matrices A and §(1/) such that the control design is

separated in two completely decoupled problems corresponding to the following partitions:

&2’ O2x2 ‘ O2x3 O2x1 &2
E3.5" | = | Osxz | Osxz [f(e) Oza]” &35 |
&' Oix2 | Oix3 0 €6

A

(7)
gt &2 ~
AL’Z — Ba (V)21 ‘ O2x2 AV,
€3...5 = £3...5 + 0 ‘ E = .
~4 ~ 4%1 B(V)4X2 AV
&6 €6
B(v)




Guidance algorithms within a hybrid framework

Guidance law #4: tri-impulsive

Hybrid guidance laws

0 0(0 0 O 0
0 0(0 0 O 0
0 0(0 0 O !
i- (1—e2)32
0010 0 O 0
0 0(0 0 O 0
L0 0)0 0 O 0 1
0 —(1—€?) psin(v) 0
0 (1—€?) pcos(v) 0
. 30p° 3oep? sin(v) 3 5
Bw) = 1 *8(1+P)Pﬁln(l’)*m 0 T—epn P +p 42
k2p%(1 —e2) )
pe (1 =€) (1 + p)psin(v) 0 (1 — €?)p? cos(v)
(14 p)pcos(v) + ep 0 —p?sin(v)
L —3p° 0 3ep? sin(v)




Guidance algorithms within a hybrid framework Hybrid guidance laws

Periodic tri-impulsive

Control law 4

The chaser moves through periodic trajectories = g,7 = 0.

g £3...5 ~
3---5
= ~ + Bﬂ(l/) Ugc — Uac = UL‘? + Ugc -

0] €6

Le

® u;, can be computed as in the bi-impulsive method. In 2 impulses &, = O.

o ulein charge of " = 0. In 1 impulse &5 = 0.

lle

1 . . ~
® u;® must have no influence over ugé. In 3 impulses €3...5 = O.




Guidance algorithms within a hybrid framework Hybrid guidance laws

Actions up, and uge computed separately

Computation of input law v, 12)(€,v) = AV:
e State &> becomes O after 2 impulses: & ,(v + 7,j + 2) = O.

¢ Propagation of the hybrid dynamics along the 2 impulses, executed at v and v +

o) ==1 0] [Bal) Bulw+9) & g

Computation of input law +,, (3...6)(€, ) = AV

e State £ becomes and remains O after each impulse: §6+ =0.

® Design of a control component uﬂ? that ensures periodicity §6+ = O while uj‘f’ has

no influence over &g.
® Propagation of the hybrid dynamics along 3 impulses, executed at
v=v,1,=v+rvand vz = v + 20:

2y Be(V)
o e (EV) =

&85 (10 0] [Bu(v) Bulv+7) Bu(v +20)| e



Guidance algorithms within a hybrid framework Hybrid guidance laws

Periodic bi-impulsive

Control law 4

Theorem. The reference periodic orbit £ “*f is stable and attractive. The proof uses

forward invariance and global attractivity.

The chaser arrives at the reference 2 *ef in 3 control impulses separated two angles 7 and
1721
Bva,j+3) = 0. (10)

Computation of the input law u = ~,(€, v) when &y = 0, = I

0 1 (0]

v (Ev) = [ 8 ?] Yo, (3--6)(E; ) (11)

:| Yu, (1...2)(5, I/) +

1
0

Proposition. Matrix M is invertible if and
only if & + 0, # 2kn, k € Z.




Guidance algorithms within a hybrid framework Hybrid simulations

Simulations

Matlab-Simulink

e Approach and inspection phases for the PRISMA mission.

¢ Linear vs nonlinear simulations (/>, atmospheric drag, saturations, dead zones).

® Performance indices: fuel consumption & convergence time.

30

20

T N Target
= ° satellite




Guidance algorit! within a hybrid framework

Hybrid simulations

Initial state: Xgpgeer = [—1300 3200 50 0 0 0]

Target position: Xiarget = [0 O O]T.

Tolerance box centered at X,y = [100 50 50]” of widths [50 25 25]".

) Linear sim, control 1
400 -- Nonlinear sim, control 1
Linear sim, control 2
-- Nonlinear sim, control 2
200 — Linear sim, control 4
— T --- Nonlinear sim, control 4
£ O Initial position
° I Target satellite
0 — Reference orbit
—200 I
—400
4000 No N
2,000 0
L —1,000 —500 0 500 1,000
y (m) '

Norm-minimizing & tri-impulsive: periodic trajectories = safe.




[OSaturated impuls

[OSaurated wm\ﬂ«\

?o OOQ

[OSaturated impulses

Time in number of umm

“Time in number of orbits

Linear sim
— Nonline

n
T., Nonlinear sim

Lincar sim
— Nonlinear sim

T, Linear sim
--T., Nonlinear sim

“Time in number of orbits

T 5 6 7 8 0 1

T 5 6 7 8 9
Time in number of orbits

Time in number of orbits

7] '
0 2 1 5 6 T 8 9 10 0 3 It 5 6 7 9 i 2 3 i 5 6 T 8 9 10
Time in number of orbits ‘Time in number of orbits ‘Time in number of orbits

1

Lincar sim ! Linear sim Linear sim
—Nonlincar sim — Nonlincar sim — Nonlinear sim

. Linear sim T, Linear sim inear
., Nonlinear sim T, Nonlinear sim

0 2 1 5 6 71 8 9 10 h 7 7 ) 2 3 41 5 6 7 8§ 9 10

Time in number of orbits

5 6
‘Time in number of orbits

Time in number of arbits

30




[OSaturated impulses

[OSaturaed impulses]

[OSaturated impulses

- . 069207907701
o TTTTTTT] o H H
[ 7 8 9 10 0 1 2 9 10 i 6 7 i
Time i umber of rbis e i aber o i “Time in number of rbits
1
08 -
06 ‘
0.4
=02
0 1 2 3 1 5 6 7 B 9 10 0 1 2 3 1 5 6 7 8 9 10 ) 1 1 5 6 9 1

“Time in number of orbits Time in number of orbits

Consumption (m/s) for the different uniform sampling guidance laws:

#1: norm-min - #4: 3-imp
LIN NL LIN NL LIN NL
[ 549 569 . * | 685 699

Convergence time (nb. orbits) for the different uniform sampling guidance laws:

#1: norm-min
LIN NL LIN NL LIN NL

3.56 3.56 * " 3.87 3.87

Time in number of orbits

/32



Conclusions & perspectives

Conclusions & perspectives

Conclusions

— Floquet-Lyapunov theory successfully applied to rendez-vous dynamics
e Suitable coordinate transformations provide simplified dynamics.
¢ Suggestive hybrid framework enables the use of intuitive laws (timers, periodicity).

¢ Fundamental theorems with compact attractors and data regularity allow to conclude

stability from (uniform) convergence and invariance.
® Robustness of asymptotic stability is confirmed by perturbed simulations.

— Satellite rendez-vous control is an example where hybrid dynamics is useful:

Perspectives

¢ Physical meaning of the parameters after the coordinate transformations: all constant

except one — link to relative orbital parameters?

¢ Address saturation more directly

¢ Design sub-optimal laws based on simple hybrid mechanisms (estimates of /?).
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