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An analog integrator and its Clegg extension Clegg [1958]

Integrators: core components of dynamical control systems

∫ xcẋcv Bc

Ac

Example: PI controller

ẋc = Acxc + Bcv

∫ xcv

kp

ki

C

R vC
v −xc

ẋc =
1

RC
v

• In an analog integrator, the state
information is stored in a capacitor:
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An analog integrator and its Clegg extension Clegg [1958]

Integrators: core components of dynamical control systems

∫ xcẋcv Bc

Ac

Example: PI controller

ẋc = Acxc + Bcv

∫ xcv

kp

ki
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg’s integrator Clegg [1958]:
• feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never

have opposite signs
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Hybrid dynamics rule flowing or jumping of solutions

Hybrid Clegg integrator:

ẋc =
1

RC
v , allowed when xcv ≥ 0,

x+
c = 0, allowed when xcv ≤ 0,

• Flow set C: where xc may flow (1st eq’n)
• Jump set D: where xc may jump (2nd eq’n)

DC

xc

v

C
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg’s integrator Clegg [1958]:
• feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never

have opposite signs
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Stabilization using hybrid jumps to zero

First Order Reset Element Nešić et al. [2011], Loquen et al. [2007]:

ẋc = acxc + bcv , xcv ≥ 0,

x+
c = 0, xcv ≤ 0,

Theorem If P is linear, minimum phase
and relative degree one, then

FORE
y

d

Puv xc

ac , bc or (ac , bc) large enough ⇒ global exponential stability
Theorem In the planar case, γdy shrinks to zero as parameters grow

Simulation
uses:

P =
1

s

bc = 1
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Interpretation: Resets remove overshoots, instability improves transient
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Piecewise quadratic Lyapunov function construction

• Proposed in Zaccarian et al. [2011], Loquen [2010], Aangenent et al. [2010]

• Given N ≥ 2 (number of sectors)
• Patching angles:

−θε = θ0 < θ1 < · · · < θN =
π

2
+ θε

• Patching hyperplanes (Cp = [0 · · · 0 1])

Θi =
[

01×(n−2) sin(θi ) cos(θi )
]T

• Sector matrices:

S0 := Θ0ΘT
N + ΘNΘT

0

Si := −(Θi Θ
T
i−1 + Θi−1ΘT

i ), i = 1, . . . ,N,

Sε1 :=




0(n−2)×(n−2) 0 0
0 0 sin(θε)
0 sin(θε) −2 cos(θε)




Sε2 :=




0(n−2)×(n−2) 0 0
0 −2 cos(θε) sin(θε)
0 sin(θε) 0




xc axis

P1

PN

P2

PN−1

y axis

P0

Sε1

Sε2

θ1

θ2

θ0

θN−2

θN−1 θN

S0

S2

S0

SN−1

SN

S1

Hybrid closed-loop:

ẋ = AF x + Bdd , x ∈ C
x+ = AJx , x ∈ D
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Piecewise quadratic Lyapunov theorem

Theorem Zaccarian et al. [2011], Loquen [2010]: If the following LMIs
in the green unknowns (where Z = [In−2 0(n−2)×2]) are feasible:

(Flow)




AT
F Pi + PiAF + τFiSi PiBd CT

? −γdy I 0
? ? −γdy I


 < 0, i = 1, . . . ,N,

(Jump) AT
J P1AJ − P0 + τJS0 ≤ 0

(Cont ′ty) ΘT
i⊥ (Pi − Pi+1) Θi⊥ = 0, i = 0, . . . ,N − 1,

(Cont ′ty) ΘT
N⊥(PN − P0)ΘN⊥ = 0

(Overlap) AT
J P1AJ − P1 + τε1Sε1 ≤ 0

(Overlap) AT
J P1AJ − PN + τε2Sε2 ≤ 0

(Origin)




Z (AT
F P0 + P0AF )ZT ZP0Bd ZCT

? −γdy I 0
? ? −γdy I


 < 0,

then global exponential stability + finite L2 gain γdy from d to y
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Example 1: Clegg (ac = 0) connected to an integrator

• Block diagram:

1
s

y
d

xc

Clegg

ac = 0

• Output response (overcomes
linear systems limitations)
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Linear (a
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• Quadratic Lyapunov functions

are unsuitable

• Gain γdy estimates (N = # of sectors)
N 2 4 8 50

gain γdy 2.834 1.377 0.914 0.87

• A lower bound:
√

π
8 ≈ 0.626

• Lyapunov func’n level sets for N = 4
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• P1, . . . ,P4 cover 2nd/4th quadrants
• P0 covers 1st/3rd quadrants
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Example 2: FORE (any ac) and linear plant (Hollot et al.)

• Block diagram (P = s+1
s(s+0.2) )

P y
d

xc
FORE

• ac = 1: level set with N = 50
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• Gain γdy estimates
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Linear CLS

Reset CLS (Thm 3, ACC 2005)

Reset CLS (this theorem)

• Time responses
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Stabilization using hybrid jumps to zero (recall)

First Order Reset Element Nešić et al. [2011], Loquen et al. [2007]:

ẋc = acxc + bcv , xcv ≥ 0,

x+
c = 0, xcv ≤ 0,

Theorem If P is linear, minimum phase
and relative degree one, then

FORE
y

d

Puv xc

ac , bc or (ac , bc) large enough ⇒ global exponential stability
Theorem In the planar case, γdy shrinks to zero as parameters grow

Simulation
uses:

P =
1

s

bc = 1

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

Time

P
la

n
t 

o
u

tp
u

t

 

 
Linear (a

c
=−1)

a
c
=−3

a
c
=−1

a
c
=1

a
c
=3

Interpretation: Resets remove overshoots, instability improves transient
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Set point adaptive regulation using hybrid jumps to zero

• Relevant works Panni et al. [2014], Loquen et al. [2008]

• Parametric feedforward uff = Ψ(r)Tα{
ẋc = acxc + bcv ,
α̇ = 0,

xcv ≥ 0,

{
x+

c = 0,

α+ = α + λ Ψ(r)
|Ψ(r)|2 xc ,

xcv ≤ 0,

FORE
y

d

Pr
++
uxcv

α
uff

Theorem: If FORE stabilizes with
r = 0, then for constant r , y → r

Lemma: Tuning of λ using
discrete-time rules (Ziegler-Nichols)

λ = 0

λ = 0.32

λ = 0.64

Unit
Circle

Example: EGR Experiment (next slide)
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Fast regulation of EGR valve position in Diesel engines

• Reported in Panni et al. [2014]

• EGR: Recirculates Exhaust Gas
in Diesel engines

• Subject to strong disturbances
⇒ need aggressive controllers
(recall exp. unstable transients)
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• Identified valve transfer function:

EGR
Valve

voltage position

P(s) =
2200

(s + 164.4)(s + 10.69)
.
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Feedforward: α converges to suitable parametrization
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Bare EGR valve

EGR valve with elastic band

Measured steady−state I/O pairs • ?: steady-state input/output
pairs (stiction!!)

• Red Solid: uff = ΨT (r)α∗, with
α∗ steady-state for α

• Black dashed: uff = ΨT (r)ᾱ∗

when pulling the valve with an
elastic band
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Experimental adaptation of feedforward in lab setup
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• Random sequence of
position reference steps

• Adaptation gain λ
intentionally selected small
and α initialized at zero to
appreciate transient

• Initial transient shows
typical oscillations
arising with inaccurate
feedforward

• As α→ α∗, the step
responses become
increasingly desirable
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Laboratory experiments close to time-optimal
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• Time-optimal:
unrobust, obtained via
trial and error

• PI:
Tuned using standard
MATLAB tools

• Adaptive FORE:
Response after
α→ α∗ =
(0.128, 0.087, 0.115)

• Note the exponentially diverging voltage:
aggressive action for disturbance rejection on the real engine
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Experiments on Diesel engine testbench (JKU)

Experimental testbench at the Johannes Kepler Universitet (Linz, Austria)

• Specs: 2 liter, 4 cylinder passenger
car turbocharged Diesel engine

• Compared: to factory EGR valve
controller coded in ECU
(gain scheduled PI with feedforward)

• Test cycle: Urban part of
New European Driving Cycle

• Relevance: Faster EGR positioning
⇒ Reduced NOx emissions
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Adaptive FORE provides substantial performance increase
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• Mean squared error: ECU = 6.68 (100%), FORE = 1.53 (23 %)

• Improvement most important with EGR almost closed (t ≈ 117, 124)

• Recent results promise time-varying reference tracking
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Set-point Regulation using hybrid jumps to zero (recall)

• Parametric feedforward uff = Ψ(r)Tα{
ẋc = acxc + bcv ,
α̇ = 0,

xcv ≥ 0,

{
x+

c = 0,

α+ = α + λ Ψ(r)
|Ψ(r)|2 xc ,

xcv ≤ 0,

FORE
y

d

Pr
++
uxcv

α
uff

Theorem: If FORE stabilizes with
r = 0, then for constant r , y → r

Lemma: Tuning of λ using
discrete-time rules (Ziegler-Nichols)

λ = 0

λ = 0.32

λ = 0.64

Unit
Circle

Example: EGR Experiment (next slide)

0 0.1 0.2 0.3 0.4 0.5 0.6

20

40

60

80

P
o

s
it
io

n
 [

%
]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

0

1

x
c

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

u
ff

Time [s]

 

 

Reference

λ=0.04

λ=0.32

λ=0.58



Clegg and FORE are hybrid Exponential Stability Set-point Regulation Reference Tracking Conclusions References

Adaptive Reference tracking using hybrid jumps to zero

• NEW Parametric feedforward:
uff = Ψ(r)Tα ⇒ Ψ(r , ṙ)Tα

• Proposed in Cordioli et al. [2015]

• Feedback/Feedforward equations:





ẋc = acxc + bcv ,
α̇ = 0, τ̇ = 1

Ξ̇ = e−Af τBΨT (r , ṙ),
xcv ≥ 0,

FORE
y

d

Pr
++
uxcv

α
uffṙ





x+
c = 0,

α+ = α + λ (C exp(Af τ)Ξ)T

max{1,|C exp(Af τ)Ξ|2}xc

τ+ = 0, Ξ+ = [ 0 0 0
0 0 0 ] ,

xcv ≤ 0,

Theorem: If FORE stabilizes, then for any λ ∈ (0, 1) the parameter
estimation error |α− α∗| is non-increasing.
If α(0, 0) = α∗, then any reference r ∈ C 1 is tracked.
Under persistence of excitation property, |α− α∗| converges to
zero and asymptotic tracking of any r ∈ C 1 holds.

Note: this is a simplified exposition without temporal regularization
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Reference tracking with approximate adaptation

• NEW Parametric feedforward:
uff = Ψ(r)Tα ⇒ Ψ(r , ṙ)Tα

• Proposed in Cordioli et al. [2015]

• Feedback/Feedforward equations:

{
ẋc = acxc + bcv ,
α̇ = 0, τ̇ = 1

xcv ≥ 0,

FORE
y

d

Pr
++
uxcv

α
uffṙ





x+
c = 0,

α+ = α + λ ϕ(τ)
max{1,|ϕ(τ)|2}Ψ(r , ṙ)xc

τ+ = 0,

xcv ≤ 0,

Theorem: If FORE stabilizes, then for any λ ∈ (0, 1) the parameter
estimation error |α− α∗| is non-increasing.
If α(0, 0) = α∗, then any reference r ∈ C 1 is tracked.
Under persistence of excitation property, |α− α∗| converges to
zero and asymptotic tracking of any r ∈ C 1 holds.

Note: this is a simplified exposition without temporal regularization
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Continuous-time simulations predict desirable behavior
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• Hybrid dynamics
simulated in MATLAB
using dedicated
Toolbox (HyEQ from
R. Sanfelice)

• Reference is repeated
multiple times

• Parameters show
desirable convergence
(lower plot)
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Discretized simulation with PWM ⇒ slight deterioration
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• Sampled-data
controller and PWM
voltage: simulation is
not hybrid

• Intrinsic robustness
of scheme leads to
slightly deteriorated
behavior

• Slower convergence
to zero of estimation
error |α− α∗|2
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Hybrid simulation

Sampled data approximation
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Software in the loop simulation requires accuracy
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• SIL: control law is
flashed into ECU and
simulated against
MATLAB model

• To prevent freezing of
parameter estimates α
a 32 bit accuracy was
necessary in some
variables

• Arising results
essentially coincide
with discrete-time
simulation
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Experiments on the real valve are satisfactory
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• Expected results from
SIL confirmed by the
experiment

• Small spike during
the zero current phase
could be removed by
suitable logic

• Convergence of
parameters is
perturbed during some
phases (disturbances?)
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Experiment: a different (richer) sinusoidal reference
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• A close look reveals
anticipatory action of
the dependence on ṙ

• Feedback correction
action reveals presence
of exponentially
diverging control
bursts

• Homogeneous hybrid
dynamics with unstable
continuous-time
component
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Conclusions and future work

Conclusions

• Recent hybrid systems techniques allow to understand better
Clegg integrators and FOREs (after 50 years)

• Reset control allows for aggressive control action (exponentially
diverging input bursts)

• Resets destroy internal model property: special feedforward is
needed

• The proposed feedforward provides convenient adaptation
(memory of past transients)

• Experimental results keep confirming technological advantages

Future work

• Use alternative adaptation laws with weaker assumptions

• Extend to higher order plants (but still FOREs)

• Validate on additional experimental challenges
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