Equivalent conditions 0000 Media contents deliver 0000000000 Gains Selection

Numerical Results

Conclusions 00

Equivalent Conditions for Synchronization of Identical Linear Systems and Application to Quality-Fair Video Delivery

Luca Zaccarian

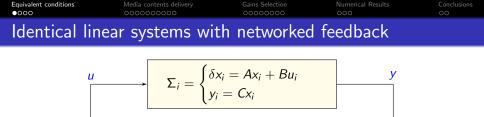
LAAS-CNRS and University of Trento

Joint work with Laura Dal Col, Sophie Tarbouriech, Michel Kieffer and Dimos Dimarogonas

Kyoto, December 21, 2015

Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions
0000	000000000	0000000	000	00
Outline				

- Equivalent conditions for synchronization of identical linear systems
- 2 Application to delivery of media Contents
- 3 Optimization of the controller gains
 - Jury's root criterion
 - Selection based on Convex Optimization (LMIs)
- 4 Numerical Results
- 5 Conclusions and future works



 $-L = - \begin{vmatrix} \ell_{11} & \dots & \ell_{1N} \\ \vdots & \ddots & \vdots \\ \ell_{N1} & \dots & \ell_{NN} \end{vmatrix}$

▷ Network composed by *N* identical continuos- or discrete- time SISO LTI agents Σ_i , i = 1, ..., N.

$$\Sigma_{i} = \begin{cases} \delta x_{i} = A x_{i} + B u_{i} \\ y_{i} = C x_{i} \end{cases} \quad \delta x = \dot{x} \backslash x^{+}, \quad x_{i} \in \mathbb{R}^{n} \qquad (\clubsuit)$$

Output feedback interconnection:

$$u = -Ly, \qquad (\diamondsuit)$$

where $u = [u_1 \dots u_N]^\top \in \mathbb{R}^N$, $y = [y_1 \dots y_N]^\top \in \mathbb{R}^N$

Σ1

 Σ_5

Σ₄

Σ2

Σ3

 \triangleright Laplacian matrix *L* in interconnection (\diamondsuit) characterizes a graph with directed topology satisfying standing assumption.

Assumption (R)

Matrix L has real eigenvalues and the graph has a directed spanning tree

▷ Laplacian matrix defined as $L = L^{\top} = [\ell_{ij}], \ \ell_{ij} = \begin{cases} -a_{ij}^d & \text{if } i \neq j \\ \sum_{i=1}^N a_{ii}^d & \text{if } i = i \end{cases}$

▷ Properties of Laplacian matrix:

• 0 is an eigenvalue with right eigenvector 1 and left eigenvector v_1 :

$$L\mathbf{1} = 0 \qquad v_{\mathbf{1}}^T L = 0$$

 \triangleright There exists an **Orthogonal Transformation** *T* such that:

$$TLT^{\top} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & \dots & \star \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{N-1} \end{bmatrix}$$

 \triangleright Consensus/Synchronization set is spanned by (eigen)-vector $\mathbf{1}\otimes\textit{I}_n$:

$$\mathcal{A} := \left\{ x \in \mathbb{R}^{nN} : x_i - x_j = 0, \forall i, j \in \{1, \dots, N\} \right\}.$$
 (\heartsuit)

 \triangleright May use Lyapunov tools to measure the point-to-set distance from $\mathcal{A}:$

$$|x|_{\mathcal{A}} = \inf_{y \in \mathcal{A}} |x - y|$$

 \triangleright Our goal: establish necessary and sufficient conditions for UGES of ${\cal A}$ for the networked interconnection.

Definition (UGES)

A closed set A is Uniformly Globally Exponentially stable for the dynamics if \exists positive M and λ such that all solutions ϕ satisfy:

$$\begin{split} |\phi(t)|_{\mathcal{A}} &\leq M e^{-\lambda t} |\phi(0)|_{\mathcal{A}} \qquad \text{if } t \in \mathbb{R} \\ |\phi(t)|_{\mathcal{A}} &\leq M e^{-\lambda t} |\phi(0)|_{\mathcal{A}} \qquad \text{if } t \in \mathbb{Z} \end{split}$$

 \triangleright Note that UGES is nontrivial when ${\cal A}$ is **unbounded** (not compact) but linearity helps

Main Result:	Equivalent con	ditions for S	vnchronizatio	n
Equivalent conditions	Media contents delivery 0000000000	Gains Selection	Numerical Results	Conclusions 00

Theorem (see also [Fax Murray, 2004], [Scardovi Sepulchre, 2008])

Consider the network of agents (\blacklozenge) and the interconnection (\diamondsuit) under Assumption (R). The following statements are equivalent: 1) Denoting by λ_k are the eigenvalues of L, matrices

$$A_k := A - \lambda_k BC, \qquad k = 1, \dots, N - 1$$

are Hurwitz [Schur-Cohn].

2) There exists a Lyapunov function $V(x) = x^{\top} Px$ satisfying:

$$ar{c}_1|x|^2_{\mathcal{A}} \leq V(x) \leq ar{c}_2|x|^2_{\mathcal{A}}, \quad \dot{V}(x) ackslash \Delta V(x) \leq -ar{c}_3|x|^2_{\mathcal{A}},$$

- 3) The closed attractor \mathcal{A} in (\heartsuit) is UGES for the system (\blacklozenge)-(\diamondsuit).
- 4) The closed loop is such that each sub-state x_i converges exponentially to the unique solution of:

$$\delta x_{\circ} = A x_{\circ}, \quad x_{\circ}(0) = \frac{1}{|v_{1}|_{1}} \sum_{k=1}^{N} v_{1,k} x_{k}(0) \quad \left(= \frac{1}{N} \sum_{k=1}^{N} x_{k}(0) \right)$$

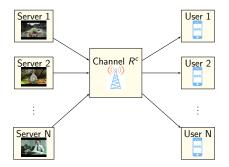
Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions
0000	000000000	0000000	000	00
Consensus in	Quality-fair Vi	deo delivery		

 \triangleright Parallel delivery of *N* encoded video streams.

- \triangleright Communication channel of limited capacity R^c .
- ▷ Synchronous control of each video chain.

We want to achieve:

- Fairness among the terminals in terms of some quality video metrics, e.g. the Peak Signal-to-Noise Ratio (PSNR).
- Robustness with respect of the characteristics of the video streams.



Main aspects	of the consid	ered applica	ition	
0000	000000000	0000000	000	00
Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions

Video Quality Fairness:

- Encoding Rate of the video streams.
- Transmission Rate through the link.

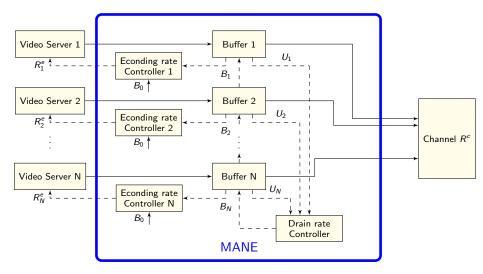
Control Strategy:

- Feedback Loops based on Proportional Integral (PI) controllers.
- No information is exchanged between the video servers.

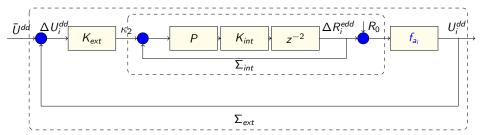
Available Measurements:

• Quality informations of the encoded video: utilities U_1, \ldots, U_N inserted in the packet headers.

 \triangleright MANE = Media Aware Network Element is a centralized controller



 \triangleright Block Diagram representation of the *i*-th video stream, i = 1, ..., N:



▷ Two sets of PI controller gains must be tuned:

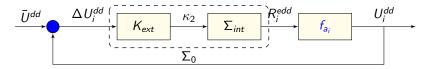
• Encoding rate controller K_{int} : • Transmission rate controller K_{ext} :

$$K_{int}(z) = \frac{k_l^{int}}{z-1} + k_P^{int} \qquad \qquad K_{ext}(z) = \frac{k_l^{ext}}{\sigma} \frac{1}{z-1} + \frac{k_P^{ext}}{\sigma}$$

 $\triangleright \sigma =$ normalizing constant allowing for a-dimensional gain tuning

 $rac{f_{a_i}}{f_{a_i}}$ is the only nonlinearity in the system, and is monotonically increasing

 \triangleright Block Diagram representation of the *i*-th video stream, i = 1, ..., N:



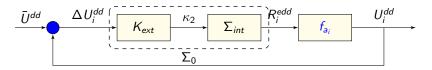
> State-space representation of the inner blocks containing PI gains:

$$K_{ext}: \begin{cases} x_{ext}^+ &= A_{ext}x_{ext} + B_{ext}\Delta U_i^{dd} \\ \kappa_2 &= C_{ext}x_{ext} + D_{ext}\Delta U_i^{dd} \end{cases} \quad \Sigma_{int}: \begin{cases} x_{int}^+ &= A_{int}x_{int} + B_{int}\kappa_2 \\ U_i^{dd} &= C_{int}x_{int} \end{cases}$$

 \triangleright State-space representation of the overall linear synchronization feedback:

$$\Sigma_{0}: \begin{cases} \begin{bmatrix} x_{ext} \\ x_{int} \end{bmatrix}^{+} &= \overbrace{\begin{bmatrix} A_{ext} & 0 \\ B_{int}C_{ext} & A_{int} \end{bmatrix}}^{A_{0}} \begin{bmatrix} x_{ext} \\ x_{int} \end{bmatrix} + \overbrace{\begin{bmatrix} B_{ext} \\ B_{int}D_{ext} \end{bmatrix}}^{B_{0}} \Delta U^{dd} \\ R_{i}^{edd} &= \overbrace{\begin{bmatrix} 0 & C_{int} \end{bmatrix}}^{C_{0}} \begin{bmatrix} x_{ext} \\ x_{int} \end{bmatrix}$$

 \triangleright Block Diagram representation of the *i*-th video stream, i = 1, ..., N:



 $\triangleright \Sigma_0$ is the cascaded interconnection of ${\it K}_{ext}$ and $\Sigma_{\it int}$

 \triangleright K_{int} stabilizes the streams dynamics rejecting constant bias R_0

 $\triangleright~ \textit{K}_{ext}$ synchronizes the network of agents rejecting constant bias \textit{B}_{0}

• The coupling among the video streams arises from subtracting the average utility \bar{U}^{dd} from the *i*-th stream utility U_i^{dd} :

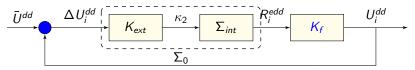
$$U_i^{dd} - \bar{U}^{dd} = U_i^{dd} - \frac{1}{N} \sum_{i=1}^N U_i^{dd} = [LU^{dd}]_i,$$

where *L* is the **Laplacian** of a fully connected graph.

• U_i^{dd} is a nonlinear time-varying function of output R_i^{edd} .

Equivalent conditions Media contents delivery Gains Selection Numerical Results Conclusions oco Approximated LTI representation from standing assumption

 \triangleright We want to focus on the following linearized dynamics:



 \triangleright To this end we introduce the following standing assumption:

Assumption

There exist scalars
$$h_i$$
, $i = 1, ..., N$ and a scalar $K_f > 0$ such that

$$U_i^{dd} = f_{a_i}(R_i^{edd}) = h_i + K_f R_i^{edd} \qquad \forall i = 1, \dots, N$$

 \triangleright The integral action of K_{ext} rejects the constant bias h_i , $\forall i = 1, ..., N$.

▷ We obtain a linear output feedback interconnection of N identical linear systems, whose dynamics is (after a suitable change of coordinates):

$$\Sigma_0: \begin{cases} x_i^+ = A_0 x_i + B_0 \Delta U_i^{dd} \\ U_i^{dd} = K_f C_0 x_i \end{cases}$$

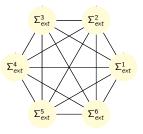
Equivalent conditions Media contents delivery Gains Selection Numerical Results Conclusions oco Colosed loop as a synchronization of identical linear systems

▷ Dynamics of each agent with state $x_i \in \mathbb{R}^n$:

$$\Sigma_0: \begin{cases} x_i^+ &= A_0 x_i + B_0 \Delta U_i^{dd} \\ U_i^{dd} &= K_f C_0 x_i \end{cases}$$

▷ The utility discrepancy corresponds to:

$$\Delta U^{dd} = - \begin{bmatrix} 1 - \frac{1}{N} & -\frac{1}{N} & \dots & \dots & -\frac{1}{N} \\ -\frac{1}{N} & 1 - \frac{1}{N} & \dots & \dots & -\frac{1}{N} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N} & -\frac{1}{N} & \dots & 1 - \frac{1}{N} \end{bmatrix} U^{dd} = -LU^{dd}$$



where $U^{dd} = \begin{bmatrix} u_1^{dd} & \dots & u_N^{dd} \end{bmatrix}^\top$, $\Delta U^{dd} = \begin{bmatrix} \Delta u_1^{dd} & \dots & \Delta u_N^{dd} \end{bmatrix}^\top$ $\triangleright \mathcal{G}$ is a *fully connected* graph. The eigenvalues of L satisfy $\lambda_o = 0$ and $\lambda_1 = \dots = \lambda_{N-1} = \frac{N}{N-1}$.

 \triangleright The closed-loop dynamics of the *N* interconnected systems is:

$$\begin{cases} x^+ = (I_N \otimes A_0)x + (I_N \otimes B_0)(-Ly) \\ y = U^{dd} = K_f(I_N \otimes C_0)x, \end{cases}$$

Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions
0000	0000000000	0000000	000	00
Main Result ((recall)			

Theorem (see also [Fax Murray, 2004], [Scardovi Sepulchre, 2008])

Consider the network of agents (\blacklozenge) and the interconnection (\diamondsuit) where the graph has a directed spanning tree. The following are equivalent: 1) Denoting by λ_k are the eigenvalues of L, matrices

$$A_k := A - \lambda_k BC, \qquad k = 1, \dots, N-1$$

are Hurwitz [Schur-Cohn].

2) There exists a Lyapunov function $V(x) = x^{\top} Px$ satisfying:

$$ar{c}_1|x|^2_{\mathcal{A}} \leq V(x) \leq ar{c}_2|x|^2_{\mathcal{A}}, \quad \dot{V}(x) ackslash \Delta V(x) \leq -ar{c}_3|x|^2_{\mathcal{A}},$$

- 3) The closed attractor \mathcal{A} in (\heartsuit) is UGES for the system (\blacklozenge)-(\diamondsuit).
- 4) The closed loop is such that each sub-state x_i converges exponentially to the unique solution of:

$$\delta x_{\circ} = A x_{\circ}, \quad x_{\circ}(0) = \frac{1}{|v_{1}|_{1}} \sum_{k=1}^{N} v_{1,k} x_{k}(0) \quad \left(= \frac{1}{N} \sum_{k=1}^{N} x_{k}(0) \right)$$

Main result	t straightforward	lly applies to	o our case	
0000	000000000	0000000	000	00
Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions

▷ Necessary and sufficient conditions for consensus from previous theorem

Theorem

The following statements are equivalent:

- 1) Given any solution, there exists $\overline{U} \in \mathbb{R}$ such that $\lim_{t \to +\infty} y_i(t) = \overline{U}, \ \forall i = 1, \dots, N.$
- The consensus set A := {x : x_i − x_j = 0, ∀i, j ∈ {1,..., N}} is uniformly globally exponentially stable for the closed loop and matrix A_{int} is Schur-Cohn.
- Matrix A_{int} and matrix A_f = A₀ K_f (N-1/N) B₀C₀ are both Schur-Cohn.

 \triangleright Item 2) requires synchronization to an open-loop dynamics having one single eigenvalue in zero (the integral action in K_{ext})

 \triangleright Item 3) exploits the fact that all nonzero eigenvalues of L coincide

▷ Item 3) will be used for PI gains tuning (two approaches)

Equivalent conditions	Media contents delivery 0000000000	Gains Selection	Numerical Results 000	Conclusions 00
Design of K_{in}	_t using Jury c	riterion		

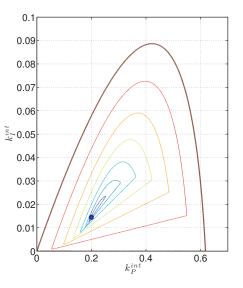
 \triangleright From item 3) we must ensure A_{int} to be Schur-Cohn

- \triangleright Using Jury's criterion, we can derive the stability region for A_{int} as function of k_P^{int} and k_I^{int}
- \triangleright The suboptimal parameters selection maximize the convergence rate of the internal system

Lemma

Matrix A_{int} is Schur-Cohn if and only if the following conditions hold:

$$\begin{split} k_{I}^{int} &> 0 \\ k_{P}^{int} + \frac{1 - \sqrt{5}}{2} \leq k_{I}^{int} < k_{P}^{int} \\ (k_{I}^{int} - k_{P}^{int} - 1)^{2} (k_{I}^{int} - k_{P}^{int}) - (k_{P}^{int} + 2) (2k_{I}^{int} - k_{P}^{int}) > 0. \end{split}$$



 The figure shows different level sets of the spectral radius:

$$\rho(A_{int}) := \max_{i} |\lambda_i(A_{int})|$$

- The external line represents the stability limit, i.e., $\rho(A_{int}) = 1$.
- Inspecting the level sets we obtain the minimum $\rho_{\min}(A_{int}) = 0.7964$.
- The (sub)optimal parameter values are:

$$\hat{k}_{I}^{int} = 0.0145$$
 $\hat{k}_{P}^{int} = 0.2$

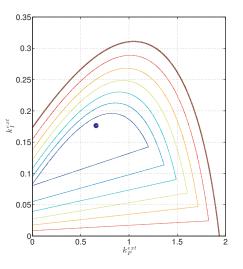
 \triangleright From item 3) we must ensure that A_f be Schur-Cohn

 \triangleright We fix the optimized values of the internal PI loop \hat{k}_{I}^{int} and \hat{k}_{P}^{int}

▷ Let now consider matrix $A_f = A_0 - K_f \frac{N-1}{N} B_0 C_0$. Conveniently choosing $\sigma := K_f \frac{N-1}{N}$ we obtain:

$$A_f = egin{bmatrix} 1 & 0 & 0 & 0 & -1 \ -k_I^{ext} & 1 & 0 & 0 & k_P^{ext}+1 \ 0 & 1 & 1 & 0 & 0 \ 0 & -\hat{k}_P^{int} & -\hat{k}_I^{int} & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

▷ We can apply the same numerical procedure adopted for the controller K_{int} , in order to chose the (sub)optimal parameters k_I^{ext} , k_P^{ext} minimizing the spectral radius of A_f .



 The figure shows different level sets of the spectral radius:

$$\rho(A_f) := \max_i |\lambda_i(A_f)|$$

- The external line represents the stability limit, i.e., $\rho(A_f) = 1$.
- Inspecting the level sets we obtain the minimum $\rho_{\min}(A_f) = 0.9399$.
- The (sub)optimal parameter values are:

$$\hat{k}_{I}^{ext} = 0.1765 \quad \hat{k}_{P}^{ext} = 0.6590$$

▷ The problem can be cast as a general static output feedback design:

$$A_{int} = A_1 - B_1 K_{int} \underbrace{\begin{bmatrix} I & 0 \end{bmatrix}}_{:=C_1}, \quad A_f = A_2 - B_2 K_{ext} \underbrace{\begin{bmatrix} I & 0 \end{bmatrix}}_{:=C_2}$$

Maximizing the convergence rate to consensus is a specific discrete-time Lyapunov equation

Problem (Convergence Rate Maximization)

Given (A, B, C), we want to solve:

$$\max_{\alpha, P=P^{\top}>0, K} \alpha \text{ subject to:} \\ (A - BKC)^{\top} P(A - BKC) - P \leq -\alpha P$$

▷ This Problem is Non-convex (the optimization variables appear bilinearly)

Algorithm 1 computes iteratively the controller gains: it alternates between two main steps, each of them requiring the solution of a quasiconvex optimization problem, based on LMIs and bisection.

Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions
0000	000000000	00000000	000	00
Iterative alg	orithm for PI g	ain tuning		

Definition

A pair (α_L, α_U) is *admissible* for a LMI, if the LMI is feasible with $\alpha = \alpha_L$ and infeasible with $\alpha = \alpha_U$.

Algorithm 1 Rate α and controllers K.

Input: Matrices A, B, C and tolerance $\delta > 0$. **Initialization:** Set M = 0, and initialize $(\alpha_L, \alpha_U) = (1 - \bar{\sigma}^2(A), 1.1)$. **Iteration:**

Step 1: Given M and (α_L, α_U) , solve using bisection with $\delta > 0$, the GEVP:

$$\max_{W=W^{\top}>0,G_{11},G_{21},G_{22},X_{1},\alpha} \alpha \quad (1)$$

s.t.
$$\begin{bmatrix} -W + \alpha W & AG(M) - BX(M) \\ \star & -G(M) - G^{\top}(M) + W \end{bmatrix} \leq 0$$

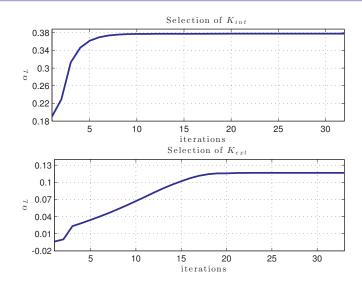
Determine an admissible pair (α_L, α_U) for (1) and set $\bar{K} = \bar{G}_{11}^{-1} \bar{X}_1$ for the next step. Step 2: Given \overline{K} and (α_L, α_U) solve using bisection with tolerance $\delta > 0$, the GEVP:

$$\max_{\substack{\alpha, W=W^{\top}>0}} \alpha$$
(2)
s.t. $A_{cl}WA_{cl}^{\top} - W \leq -\alpha W$

22 / 29

Determine an admissible pair (α_L, α_U) for (2) and set $M = \bar{W}_{11}^{-1} \bar{W}_{12}$ for next step.

until: α_L does not increase more than δ over three consecutive steps. **Output:** $K_{out} = \bar{K}$ and $\alpha_{out} = \alpha_L$.



Proposition: Algorithm *initialization* always feasible. Solution carries between *subsequent steps*. *Terminal solution* is good if $\alpha_L > 0$

Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions
		00000000		
Comparison	between the two	o proposed	d design techn	iques

> The two design techniques lead to the same gains

Method	k_P^{int}	k _I ^{int}	α_L
Jury Criterion	0.2	0.0145	0.365747
Algorithm 1	0.19256	0.012915	0.37789
Method	$k_P^{e \times t}$	k _I ^{ext}	α_L
Jury Criterion	0.6590	0.1765	0.1166
Algorithm 1	0.65801	0.17645	0.1165

 \triangleright This confirms that the suboptimal iterative construction works well

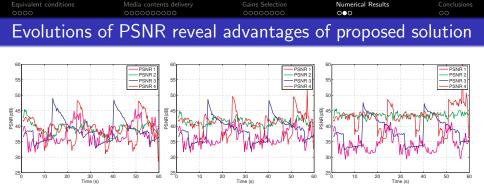
Equivalent conditions	Media contents delivery	Gains Selection	Numerical Results	Conclusions 00
Simulation I	Results compare	e three tech	niques	

 \triangleright Description of the simulation parameters:

- 6 video streams of different types have been encoded during 60 s with H.264 format at various bit rates, delivered to N = 4 clients
- The considered utility U_i is the Peak Signal-to-Noise Ratio (PSNR)
- The linearization constant K_f evaluated based on 4 streams (Progs 1–4)
- > Description of the simulation results:
 - Robustness of the controller evaluated with other streams (Progs 3-6)
 - Five control schemes are comparatively considered:

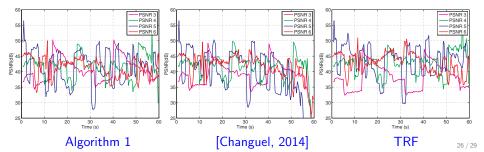
• With metric
$$\overline{\Delta U} = \frac{1}{MN} \sum_{j=1}^{M} \sum_{k=1}^{N} |U_k(j) - \overline{U}(j)|$$
 we obtain:

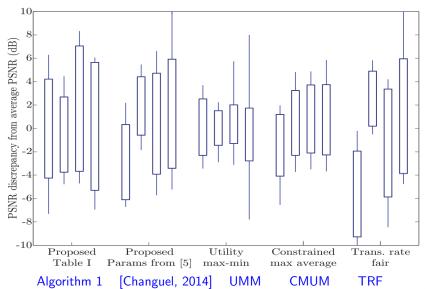
Method	K _{int}	K _{ext}	$\overline{\Delta U}$ (1-4)	$\overline{\Delta U}$ (3-6)
Algorithm 1	0.192 0.013	0.658 0.176	2.28	3.22
[Changuel, 2014]	0.152 0.002	2.67 0.0013	2.37	_
TRF	0.152 0.002	[0 0]	4.12	3.66
UMMF	_	-	0.88	1.45
CMUM	_	_	1.53	1.19 25/29



Algorithm 1

[Changuel, 2014]





Equivalent conditions	Media contents delivery 0000000000	Gains Selection	Numerical Results 000	Conclusions ●O
Conclusions a	and Future Wo	orks		

Summary of presented works

- A new set of equivalent conditions for synchronization of identical linear systems
- A consensus viewpoint on an existing quality-fair PI-based media delivery control scheme
- Equivalent conditions above provide PI gain tuning technique
- Simulation results confirm effectiveness and provide assessment of previous tuning

Future Directions

- Extend the theoretical results to the case with complex eigenvalues
- Allow for static nonlinearities to improve the effectiveness with different streams
- Propose an alternative decentralized MANE (theoretical extension is straightforward)

Equivalent conditions	Media contents delivery 0000000000	Gains Selection	Numerical Results 000	Conclusions O
Bibliography				

[Scardovi Sepulchre,2008] Scardovi, L. and Sepulchre, R. Synchronization in networks of identical linear systems. Automatica, 2009.

[Fax Murray,2004] Fax, J.A. and Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2003.

[Dal Col, 2014] Dal Col, L. and Tarbouriech, S. and Zaccarian, L. and Kieffer, M. A Linear Consensus Approach to Quality-Fair Video Delivery. IEEE CDC, 2014.

[Changuel, 2014] Changuel, N. and Sayadi, B. and Kieffer, M. Control of Multiple Remote Servers for Quality-Fair Delivery of Multimedia Contents. IEEE Journal of Selected Areas in Communications, 2014, to appear.