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Identical linear systems with networked feedback

u
Σi =

{
δxi = Axi + Bui

yi = Cxi

−L = −

`11 . . . `1N

...
. . .

...
`N1 . . . `NN



y

. Network composed by N identical continuos- or discrete- time SISO LTI
agents Σi , i = 1, . . . ,N.

Σi =

{
δxi = Axi + Bui

yi = Cxi
δx = ẋ\x+, xi ∈ Rn (♠)

. Output feedback interconnection:

u = −Ly , (♦)

where u = [u1 . . . uN ]> ∈ RN , y = [y1 . . . yN ]> ∈ RN
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Assumptions on the graph and Laplacian matrix

. Laplacian matrix L in interconnection (♦) characterizes a graph with
directed topology satisfying standing assumption.

Assumption (R)

Matrix L has real eigenvalues and
the graph has a directed spanning
tree

Σ1

Σ2

Σ3Σ4

Σ5

. Laplacian matrix defined as L = L> = [`ij ] , `ij =

{
−adij if i 6= j∑N

j=1 adij if i = j

. Properties of Laplacian matrix:
• 0 is an eigenvalue with right eigenvector 1 and left eigenvector v1:

L1 = 0 vT
1 L = 0

. There exists an Orthogonal Transformation T such that:

TLT> =

 0 0 0 0
0 λ1 ... ?

...
. . .

...
0 0 ... λN−1
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A uniform stability viewpoint on consensus/synchronization

. Consensus/Synchronization set is spanned by (eigen)-vector 1⊗ In:

A :=
{

x ∈ RnN : xi − xj = 0, ∀i , j ∈ {1, . . . ,N}
}
. (♥)

. May use Lyapunov tools to measure the point-to-set distance from A:

|x |A = inf
y∈A
|x − y |

. Our goal: establish necessary and sufficient conditions for UGES of A for
the networked interconnection.

Definition (UGES)

A closed set A is Uniformly Globally Exponentially stable for the
dynamics if ∃ positive M and λ such that all solutions φ satisfy:

|φ(t)|A ≤ Me−λt |φ(0)|A if t ∈ R
|φ(t)|A ≤ Me−λt |φ(0)|A if t ∈ Z

. Note that UGES is nontrivial when A is unbounded (not compact) but
linearity helps

5 / 29



Equivalent conditions Media contents delivery Gains Selection Numerical Results Conclusions

Main Result: Equivalent conditions for Synchronization

Theorem (see also [Fax Murray,2004], [Scardovi Sepulchre,2008])

Consider the network of agents (♠) and the interconnection (♦) under
Assumption (R). The following statements are equivalent:

1) Denoting by λk are the eigenvalues of L, matrices

Ak := A− λkBC , k = 1, . . . ,N − 1

are Hurwitz [Schur-Cohn].

2) There exists a Lyapunov function V (x) = x>Px satisfying:

c̄1|x |2A ≤ V (x) ≤ c̄2|x |2A, V̇ (x)\∆V (x) ≤ −c̄3|x |2A,

3) The closed attractor A in (♥) is UGES for the system (♠)-(♦).
4) The closed loop is such that each sub-state xi converges

exponentially to the unique solution of:

δx◦ = Ax◦, x◦(0) =
1

|v1|1

N∑
k=1

v1,kxk(0)

(
=

1

N

N∑
k=1

xk(0)

)
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Consensus in Quality-fair Video delivery

. Parallel delivery of N encoded video streams.

. Communication channel of limited capacity Rc .

. Synchronous control of each video chain.

We want to achieve:

• Fairness among the terminals in
terms of some quality video
metrics, e.g. the Peak
Signal-to-Noise Ratio (PSNR).

• Robustness with respect of the
characteristics of the video
streams.

Server 1

Server 2

...

Server N

Channel Rc

User 1

User 2

...

User N
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Main aspects of the considered application

Video Quality Fairness:

• Encoding Rate of the video streams.

• Transmission Rate through the link.

Control Strategy:

• Feedback Loops based on Proportional Integral (PI) controllers.

• No information is exchanged between the video servers.

Available Measurements:

• Quality informations of the encoded video: utilities U1, . . . , UN

inserted in the packet headers.
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Block diagram of an existing solution (MANE)

. MANE = Media Aware Network Element is a centralized controller

Video Server 1 Buffer 1

Econding rate
Controller 1 B1

Re
1

B0

Video Server 2 Buffer 2

Econding rate
Controller 2 B2

Re
2

B0

.

.

.
.
.
.

Video Server N Buffer N

Econding rate
Controller N BN

Re
N

B0

U1

Drain rate
Controller

U2

UN

Channel Rc

MANE
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Pre-existing model rewritten in Synchronization form

. Block Diagram representation of the i-th video stream, i = 1, . . . ,N:

Kext P Kint z−2 fai
Ūdd ∆Udd

i κ2 ∆Redd
i Udd

iR0

Σint

Σext

. Two sets of PI controller gains must be tuned:

• Encoding rate controller Kint :

Kint(z) =
k int
I

z − 1
+ k int

P

• Transmission rate controller Kext :

Kext(z) =
kext
I

σ

1

z − 1
+

kext
P

σ

. σ = normalizing constant allowing for a-dimensional gain tuning

. fai is the only nonlinearity in the system, and is monotonically increasing 10 / 29
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Two PI Control Loops Σext , Σint should ensure consensus

. Block Diagram representation of the i-th video stream, i = 1, . . . ,N:

Kext Σint fai
Ūdd ∆Udd

i κ2 Redd
i Udd

i

Σ0

. State-space representation of the inner blocks containing PI gains:

Kext :

{
x+
ext = Aextxext + Bext∆Udd

i

κ2 = Cextxext + Dext∆Udd
i

Σint :

{
x+
int = Aintxint + Bintκ2

Udd
i = Cintxint

. State-space representation of the overall linear synchronization feedback:

Σ0 :



[
xext
xint

]+

=

A0︷ ︸︸ ︷[
Aext 0

BintCext Aint

] [
xext
xint

]
+

B0︷ ︸︸ ︷[
Bext

BintDext

]
∆Udd

Redd
i =

C0︷ ︸︸ ︷[
0 Cint

] [xext
xint

]
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Two Distinct Actions from the two PI control loops

. Block Diagram representation of the i-th video stream, i = 1, . . . ,N:

Kext Σint fai
Ūdd ∆Udd

i κ2 Redd
i Udd

i

Σ0

. Σ0 is the cascaded interconnection of Kext and Σint

. Kint stabilizes the streams dynamics rejecting constant bias R0

. Kext synchronizes the network of agents rejecting constant bias B0

• The coupling among the video streams arises from subtracting the
average utility Ūdd from the i-th stream utility Udd

i :

Udd
i − Ūdd = Udd

i −
1

N

N∑
i=1

Udd
i = [LUdd ]i ,

where L is the Laplacian of a fully connected graph.

• Udd
i is a nonlinear time-varying function of output Redd

i .
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Approximated LTI representation from standing assumption

. We want to focus on the following linearized dynamics:

Kext Σint Kf
Ūdd ∆Udd

i κ2 Redd
i Udd

i

Σ0

. To this end we introduce the following standing assumption:

Assumption

There exist scalars hi , i = 1, . . . ,N and a scalar Kf > 0 such that:

Udd
i = fai (Redd

i ) = hi + Kf Redd
i ∀i = 1, . . . ,N

. The integral action of Kext rejects the constant bias hi , ∀i = 1, . . . ,N.

. We obtain a linear output feedback interconnection of N identical linear
systems, whose dynamics is (after a suitable change of coordinates):

Σ0 :

{
x+
i = A0xi + B0∆Udd

i

Udd
i = Kf C0xi
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Closed loop as a synchronization of identical linear systems

. Dynamics of each agent with state xi ∈ Rn:

Σ0 :

{
x+
i = A0xi + B0∆Udd

i

Udd
i = Kf C0xi

. The utility discrepancy corresponds to:

∆Udd = −


1− 1

N −
1
N ... ... − 1

N

− 1
N 1− 1

N ... ... − 1
N

...
...

. . .
...

− 1
N − 1

N ... 1− 1
N

Udd = −LUdd

where Udd = [ Udd
1 ... Udd

N ]>, ∆Udd = [ ∆Udd
1 ... ∆Udd

N ]>.

Σ1
ext

Σ2
extΣ3

ext

Σ4
ext

Σ5
ext Σ6

ext

. G is a fully connected graph. The eigenvalues of L satisfy λo = 0 and
λ1 = · · · = λN−1 = N

N−1 .

. The closed-loop dynamics of the N interconnected systems is:{
x+ = (IN ⊗ A0)x + (IN ⊗ B0)(−Ly)

y = Udd = Kf (IN ⊗ C0)x ,
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Main Result (recall)

Theorem (see also [Fax Murray,2004], [Scardovi Sepulchre,2008])

Consider the network of agents (♠) and the interconnection (♦) where
the graph has a directed spanning tree. The following are equivalent:

1) Denoting by λk are the eigenvalues of L, matrices

Ak := A− λkBC , k = 1, . . . ,N − 1

are Hurwitz [Schur-Cohn].

2) There exists a Lyapunov function V (x) = x>Px satisfying:

c̄1|x |2A ≤ V (x) ≤ c̄2|x |2A, V̇ (x)\∆V (x) ≤ −c̄3|x |2A,

3) The closed attractor A in (♥) is UGES for the system (♠)-(♦).
4) The closed loop is such that each sub-state xi converges

exponentially to the unique solution of:

δx◦ = Ax◦, x◦(0) =
1

|v1|1

N∑
k=1

v1,kxk(0)

(
=

1

N

N∑
k=1

xk(0)

)
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Main result straightforwardly applies to our case

. Necessary and sufficient conditions for consensus from previous theorem

Theorem

The following statements are equivalent:

1) Given any solution, there exists Ū ∈ R such that
limt→+∞ yi (t) = Ū, ∀i = 1, . . . ,N.

2) The consensus set A :=
{

x : xi − xj = 0, ∀i , j ∈ {1, . . . ,N}
}

is
uniformly globally exponentially stable for the closed loop and matrix
Aint is Schur-Cohn.

3) Matrix Aint and matrix Af = A0 − Kf

(
N−1
N

)
B0C0 are both

Schur-Cohn.

. Item 2) requires synchronization to an open-loop dynamics having one
single eigenvalue in zero (the integral action in Kext)

. Item 3) exploits the fact that all nonzero eigenvalues of L coincide

. Item 3) will be used for PI gains tuning (two approaches)

16 / 29



Equivalent conditions Media contents delivery Gains Selection Numerical Results Conclusions

Design of Kint using Jury criterion

. From item 3) we must ensure Aint to be Schur-Cohn

. Using Jury’s criterion, we can derive the stability region for Aint as function
of k int

P and k int
I

. The suboptimal parameters selection maximize the convergence rate of the
internal system

Lemma

Matrix Aint is Schur-Cohn if and only if the following conditions hold:

k int
I > 0

k int
P +

1−
√

5

2
≤ k int

I < k int
P

(k int
I −k int

P − 1)2(k int
I −k int

P )−(k int
P + 2)(2k int

I −k int
P ) > 0.
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Level sets of the spectral radius for Kint

k
int

P

k
i
n
t

I

0 0.2 0.4 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

• The figure shows different level sets of
the spectral radius:

ρ(Aint) := max
i
|λi (Aint)|

• The external line represents the
stability limit, i.e., ρ(Aint) = 1.

• Inspecting the level sets we obtain the
minimum ρmin(Aint) = 0.7964.

• The (sub)optimal parameter values are:

k̂ int
I = 0.0145 k̂ int

P = 0.2
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Jury’s Criterion: design of Kext

. From item 3) we must ensure that Af be Schur-Cohn

. We fix the optimized values of the internal PI loop k̂ int
I and k̂ int

P

. Let now consider matrix Af = A0 − Kf
N−1
N B0C0. Conveniently choosing

σ := Kf
N−1
N we obtain:

Af =


1 0 0 0 −1
−kext

I 1 0 0 kext
P + 1

0 1 1 0 0

0 −k̂ int
P −k̂ int

I 0 0
0 0 0 1 0


. We can apply the same numerical procedure adopted for the controller

Kint , in order to chose the (sub)optimal parameters kext
I , kext

P minimizing
the spectral radius of Af .
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Level sets of the spectral radius for Kext

k
ext

P

k
e
x
t

I

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

• The figure shows different level sets of
the spectral radius:

ρ(Af ) := max
i
|λi (Af )|

• The external line represents the
stability limit, i.e., ρ(Af ) = 1.

• Inspecting the level sets we obtain the
minimum ρmin(Af ) = 0.9399.

• The (sub)optimal parameter values are:

k̂ext
I = 0.1765 k̂ext

P = 0.6590
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Gain selection based on Convex Optimization (LMIs)

. The problem can be cast as a general static output feedback design:

Aint = A1 − B1Kint

[
I 0

]︸ ︷︷ ︸
:=C1

, Af = A2 − B2Kext

[
I 0

]︸ ︷︷ ︸
:=C2

. Maximizing the convergence rate to consensus is a specific discrete-time
Lyapunov equation

Problem (Convergence Rate Maximization)

Given (A,B,C ), we want to solve:

max
α,P=P>>0,K

α subject to:

(A− BK C )>P(A− BK C )− P ≤ −αP

. This Problem is Non-convex (the optimization variables appear bilinearly)

. Algorithm 1 computes iteratively the controller gains: it alternates between
two main steps, each of them requiring the solution of a quasiconvex
optimization problem, based on LMIs and bisection.
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Iterative algorithm for PI gain tuning

Definition

A pair (αL, αU) is admissible for a LMI, if the LMI is feasible with
α = αL and infeasible with α = αU .

Algorithm 1 Rate α and controllers K .

Input: Matrices A, B, C and tolerance δ > 0.
Initialization: Set M = 0, and initialize (αL, αU) =

(
1− σ̄2(A), 1.1

)
.

Iteration:

Step 1: Given M and (αL, αU), solve using
bisection with δ > 0 , the GEVP:

max
W=W>>0,G11,G21,G22,X1,α

α (1)

s.t.

[
−W + αW AG(M) − BX (M)

? −G(M) − G>(M) + W

]
≤ 0

Determine an admissible pair (αL, αU) for

(1) and set K̄ = Ḡ−1
11 X̄1 for the next step.

Step 2: Given K̄ and (αL, αU) solve using
bisection with tolerance δ > 0, the GEVP:

max
α,W=W>>0

α (2)

s.t. AclWA>cl −W ≤ −αW

Determine an admissible pair (αL, αU) for

(2) and set M = W̄−1
11 W̄12 for next step.

until: αL does not increase more than δ over three consecutive steps.
Output: Kout = K̄ and αout = αL.
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Evolution of optimization parameter wrt the iterations

5 10 15 20 25 30
0.18

0.22

0.26

0.3

0.34

0.38

i te ration s

α
L

Se le c t ion of K i n t

5 10 15 20 25 30
-0.02

0.01

0.04

0.07

0.1

0.13

i te ration s

α
L

Se le c t ion of K e xt

Proposition: Algorithm initialization always feasible. Solution carries
between subsequent steps. Terminal solution is good if αL > 0 23 / 29
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Comparison between the two proposed design techniques

. The two design techniques lead to the same gains

Method k int
P k int

I αL

Jury Criterion 0.2 0.0145 0.365747

Algorithm 1 0.19256 0.012915 0.37789

Method kext
P kext

I αL

Jury Criterion 0.6590 0.1765 0.1166

Algorithm 1 0.65801 0.17645 0.1165

. This confirms that the suboptimal iterative construction works well
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Simulation Results compare three techniques

. Description of the simulation parameters:
• 6 video streams of different types have been encoded during 60 s with
H.264 format at various bit rates, delivered to N = 4 clients

• The considered utility Ui is the Peak Signal-to-Noise Ratio (PSNR)

• The linearization constant Kf evaluated based on 4 streams (Progs 1–4)

. Description of the simulation results:
• Robustness of the controller evaluated with other streams (Progs 3–6)

• Five control schemes are comparatively considered:

• With metric ∆U =
1

MN

M∑
j=1

N∑
k=1

∣∣Uk (j)− U (j)
∣∣ we obtain:

Method Kint Kext ∆U (1-4) ∆U (3-6)
Algorithm 1

[
0.192 0.013

] [
0.658 0.176

]
2.28 3.22

[Changuel, 2014]
[
0.152 0.002

] [
2.67 0.0013

]
2.37 –

TRF
[
0.152 0.002

] [
0 0

]
4.12 3.66

UMMF – – 0.88 1.45
CMUM – – 1.53 1.19 25 / 29
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Evolutions of PSNR reveal advantages of proposed solution
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Range of PSNR variations for Progs 1–4 with 5 solutions

Algorithm 1 [Changuel, 2014] UMM CMUM TRF 27 / 29
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Conclusions and Future Works

. Summary of presented works

• A new set of equivalent conditions for synchronization of identical
linear systems

• A consensus viewpoint on an existing quality-fair PI-based media
delivery control scheme

• Equivalent conditions above provide PI gain tuning technique

• Simulation results confirm effectiveness and provide assessment of
previous tuning

. Future Directions

• Extend the theoretical results to the case with complex eigenvalues

• Allow for static nonlinearities to improve the effectiveness with
different streams

• Propose an alternative decentralized MANE (theoretical extension is
straightforward)
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