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Performance with saturation depends on size of disturbance

• Saturation: an abrupt nonlinearity:
• Small signals: sat(u) = u ⇒ no effect

• Large signals: sat(u) bounded ⇒ severe
effect
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• Signal size (L2 norm): ‖z‖2 :=

(∫ ∞
0

|z(t)|2dt

) 1
2

• z ∈ L2 (square integrable) if ‖z‖2 <∞

• Closed-loop performance measures:

• Finite L2 gain (linear H∞ norm): γwz ∈ R≥0:

‖z‖2 ≤ γwz‖w‖2 for all w ∈ L2

• Nonlinear L2 gain: a function s 7→ γwz (s): Megretski [1996]

‖z‖2 ≤ γwz (s)‖w‖2 for all w satisfying ‖w‖2 ≤ s
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Example demonstrates relevance of nonlinear gains

Controller K cancels the plant dynamics
and stabilizes (before saturation)

P : ż = az + sat(u) + w

K : u = −az − 10z

P

K

w z

u

sat(u) y

Three representative cases Sontag [1984], Lasserre [1992]
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Optimal nominal static linear anti-windup design (LMI)

P
w z

u

sat(u) y

+ Daw

CK

u

v

dz(u)

• Given P linear, C linear, design only

• linear anti-windup gain Daw =
[

Daw,1

Daw,2

]
• Performance objective:

given s∗, minimize γdz (s∗)

• Linear controller K equations

ẋc = Axc + By + Daw ,1(u − sat(u))

yc = Cxc + Dy + Daw ,2(u − sat(u))

• LMI-based design Mulder et al. [2001],

Gomes da Silva Jr and Tarbouriech [2005], Hu

et al. [2008]

• Preserve of small signal response (Daw multiplies dz(u) = u − sat(u))

Asymptotically recover large signal response (global not always possible)

• Robust designs follow a deterministic worst case paradigm, imposing
strong convexity conditions Turner et al. [2007], Grimm et al. [2004]

• This talk: randomized analysis and synthesis of robust static anti-windup
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Nonlinear L2 gains are estimated using Lyapunov functions
Hu et al. [2006], Dai et al. [2009], Garulli et al. [2013]

• Quadratic functions (LMIs Boyd et al.

[1994])
V1(x) = xT Px

• Max of quadratics (BMIs)
V2(x) = max

j∈{1,...,J}
xT Pj x

• Convex Hull of quadratics (BMIs)

V3(x) = min
γj≥0:

∑
j γj =1

xT
(∑

j γj Qj

)−1

x

• Piecewise quadratic (LMI-BMI)

V4(x) =

[
x

dz(u(x))

]T

P̄

[
x

dz(u(x))

]
• Piecewise Polynomial (LMI-BMI)

V5(x) =

[
x

dz(u(x))

]{m}T
P̂

[
x

dz(u(x))

]{m}

V̇ +
1

γdz (s)
|z |2 − γdz (s)|w |2 < 0

A possible level set
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Compact representation of the closed-loop system

P
w z

u

sat(u) y

+ Daw

CK

u

xcl

z

u

w

v HDaw

dz(u)

sat(u)
u−v

dz(u)

H :


˙xcl = Acl xcl + Bcl,d (u − sat(u)) + Bcl,v v + Bcl,w w
u = Ccl,uxp + Dcl,ud (u − sat(u)) + Dcl,uv v + Dcl,uw w
z = Ccl,z xp + Dcl,zd (u − sat(u))︸ ︷︷ ︸

dz(u)

+Dcl,zv v + Dcl,zw w ,
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Quadratic analysis conditions are convex
Mulder et al. [2001], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]

Proposition: Given the NOMINAL system and s > 0, if the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He


Acl Q Bcl,d U + Bcl,v Daw U + Y T Bcl,w 0
Ccl,uQ Dcl,ud U + Dcl,uv Daw U − U Dcl,uw 0

0 0 −I/2 0

Ccl,z Q Dcl,zd U + Dcl,zv Daw U Dcl,zw −γ
2

2 I

≺0,

[
Q Y[k]

T

Y[k] ū2
k/s2

]
� 0,

k = 1, . . . , nu

is feasible, then the following holds for the saturated closed-loop:

1 [Stab] the origin is locally exponentially stable with region of
attraction containing the set E(Q, s) := {x : xT Q−1x ≤ s2};

2 [Reach] the reachable set from x(0) = 0 with ‖w‖2 ≤ s is
contained in E(Q, s);

3 [L2Perf] for each w such that ‖w‖2 ≤ s, the zero state solution
satisfies the L2 gain bound:

‖z‖2 ≤ γ̂(s)‖w‖2
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Quadratic analysis conditions easily lead to synthesis
Mulder et al. [2001], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]

Proposition: Given the NOMINAL system and s > 0. If the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He
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2 I

≺0,

[
Q Y[k]

T

Y[k] ū2
k/s2

]
� 0,

k = 1, . . . , nu

is feasible, then the following holds for the saturated closed-loop:

1 [Stab] the origin is locally exponentially stable with region of
attraction containing the set E(Q, s) := {x : xT Q−1x ≤ s2};

2 [Reach] the reachable set from x(0) = 0 with ‖w‖2 ≤ s is
contained in E(Q, s);

3 [L2Perf] for each w such that ‖w‖2 ≤ s, the zero state solution
satisfies the L2 gain bound:

‖z‖2 ≤ γ̂(s)‖w‖2
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Quadratic synthesis conditions are convex
Mulder et al. [2001], Gomes da Silva Jr and Tarbouriech [2005], Hu et al. [2008]

Proposition: Given the NOMINAL system and s > 0. If the LMI problem

γ̂2(s) = min
{γ2,Q,Y ,U,X}

γ2 subject to Q = QT > 0, U > 0 diagonal,

He


Acl Q Bcl,d U + Bcl,v X + Y T Bcl,w 0
Ccl,uQ Dcl,ud U + Dcl,uv X − U Dcl,uw 0

0 0 −I/2 0

Ccl,z Q Dcl,zd U + Dcl,zv X Dcl,zw −γ
2

2 I

≺0,

[
Q Y[k]

T

Y[k] ū2
k/s2

]
� 0,

k = 1, . . . , nu

is feasible, then, selecting the static AW gain as
Daw = XU−1

1 [Stab] the origin is locally exponentially stable with region of
attraction containing the set E(Q, s) := {x : xT Q−1x ≤ s2};

2 [Reach] the reachable set from x(0) = 0 with ‖w‖2 ≤ s is
contained in E(Q, s);

3 [L2Perf] for each w such that ‖w‖2 ≤ s, the zero state solution
satisfies the L2 gain bound:

‖z‖2 ≤ γ̂(s)‖w‖2
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Closed loop now depends on uncertain parameter q ∈ Q

P(q)
w z

u

sat(u) y

+ Daw

CK

u

xcl

z

u

w

v H(q)Daw

dz(u)

sat(u)
u−v

dz(u)

H(q) :


˙xcl = Acl (q)xcl + Bcl,d (q)(u − sat(u)) + Bcl,v (q)v + Bcl,w (q)w
u = Ccl,u(q)xp + Dcl,ud (q)(u − sat(u)) + Dcl,uv (q)v + Dcl,uw (q)w
z = Ccl,z (q)xp + Dcl,zd (q) (u − sat(u))︸ ︷︷ ︸

dz(u)

+Dcl,zv (q)v + Dcl,zw (q)w ,
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Robust static anti-windup synthesis: unviable formulation

• To solve the robust synthesis problem, may look for θ =
{
γ2,Q,Y ,U,X

}
s.t. the LMI holds for all for all q ∈ Q

Given a scalar s > 0, if the nonconvex optimization problem is feasible

γ̂2(s) = min
θ
γ2 subject to Q = QT > 0, U > 0 diagonal,

He


Acl (q)Q Bcl,d (q)U + Bcl,v (q)X + Y T Bcl,w (q) 0
Ccl,u(q)Q Dcl,ud (q)U + Dcl,uv (q)X − U Dcl,uw (q) 0

0 0 −I/2 0

Ccl,z (q)Q Dcl,zd (q)U + Dcl,zv (q)X Dcl,zw (q) − γ
2

2
I

≺0, ∀q ∈ Q

[
Q Y[k]

T

Y[k] ū2
k/s

2

]
� 0, k = 1, . . . , nu

then, selecting the static AW gain as

Daw = XU−1

[WP], [LocStab], and [L2Perf] are robustly guaranteed

• This construction is hard due to general dependence on q.
⇒ Can use scenario (or sequential) randomized approach
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Robust static anti-windup synthesis is a classical problem

• To solve the robust synthesis problem, may look for θ =
{
γ2,Q,Y ,U,X

}
s.t. the LMI holds for all for all q ∈ Q

Given a scalar s > 0, if the nonconvex optimization problem is feasible

γ̂2(s) = min
θ

c>θ subject to fs (θ, q) ≤ 0, ∀q ∈ Q
where

1 θ ∈ Rnθ are the design variables;

2 q ∈ Q are the uncertain parameters;

3 fs (θ, q) ≤ 0 are the problem constraints

then, selecting the static AW gain as

Daw = XU−1

[WP], [LocStab], and [L2Perf] are robustly guaranteed

• This construction is hard due to general dependence on q.
⇒ Can use scenario (or sequential) randomized approach
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Robust and chance constrained optimization

Problem (Robust optimization - RO)

Given an objective vector c ∈ Rnθ , solve

min
θ

c>θ subject to

f (θ, q) ≤ 0, for all q ∈ Q

Problem (Chance constrained optimization - CC)

Let a distribution over Q be given, and let ε ∈ (0, 1) be a (small)
probability level. Given an objective vector c ∈ Rnθ , solve

min
θ

c>θ subject to

Prob{q ∈ Q : f (θ, q) > 0}︸ ︷︷ ︸
Viol(θ)

≤ ε
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Randomized algorithms are a viable trade-off
Calafiore et al. [2011], Tempo et al. [2013], Petersen and Tempo [2014]

Both problems are very hard in general

Robust optimization is hard whenever the uncertainty enters in a
nonlinear way

Chance-constrained optimization is a even more difficult non-convex
problem (it involves hard integral evaluations)

Proposed solution approach: Randomized algorithms

A Randomized Algorithm is an algorithm that makes random choices
during its execution to produce a result

Randomized algorithms entail a (pre determined) probability of
failure
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Scenario approach amounts to a simple extraction
Calafiore and Campi [2006]

Scenario techniques provide a simple and theoretically sound way to
approximately solve the two problems RO and CC

The idea is to replace these hard optimization problems with the
following sampled counterpart (random convex program)

Problem (Scenario optimization)

Extract N i.i.d. samples ( scenarios) q(1), . . . , q(N), and solve

min
θ

c>θ subject to

f (θ, q(i)) ≤ 0, i = 1, . . . ,N

The scenario problem is a standard convex optimization problem
with a finite number of constraints
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Probability of violation is bounded by number of samples

Assumption (Basic assumptions)

f (θ, q) is continuous and convex in θ for any fixed q ∈ Q. For any
multisample extraction q = {q(1), . . . , q(Mk )} ∈ Q, the scenario problem
is feasible and attains a unique optimal solution

Theorem (violation of scenario solutions Campi and Garatti [2008])

Let ε ∈ (0, 1) be a given probability level and let N ≥ nθ. Under
convexity, uniqueness and feasibility assumptions, the scenario
solution θsc satisfies

Pr
{

Viol(θsc ) > ε
}
≤ B(N, ε, nθ)

where

B(N, ε, nθ) =

nθ−1∑
k=0

(
N

k

)
εk (1− ε)N−k .
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Robust static anti-windup synthesis based on scenario

Theorem (Robust static AW synthesis using scenario Formentin et al. [2013])

Fix a positive value s ≥ ‖w‖2, ε ∈ (0, 1), β ∈ (0, 1), and select N satisfying

B(N, ε, nθ) ≤ β,

with nθ = 1 + n(n + 1)/2 + nnu + nu + nu(nu + nc )

Extract N samples of the uncertain matrices according to the probability distribution

Solve

γ2
sc (s) = min

{γ2,Q,Y ,U,X}
γ2, subject to Q = QT > 0, U > 0 diagonal,

He


A

(i)
cl Q B

(i)
cl,d U + B

(i)
cl,v X + Y T B

(i)
cl,w 0

C
(i)
cl,uQ D

(i)
cl,ud U +D

(i)
cl,uv X−U D

(i)
cl,uw 0

0 0 −I/2 0

C
(i)
cl,z Q D

(i)
cl,zd U + D

(i)
cl,zv X D

(i)
cl,zw − γ

2

2
I

<0,

[
Q Y T

[k]

Y[k] ū2
k/s2

]
≥ 0,

∀k = 1, . . . , nu

∀i = 1, . . . ,N

If the above LMIs are feasible, select the static anti-windup gain Daw = XU−1

Then, for each ‖w‖2 < s, the zero initial state solution of the closed loop satisfies
Pr(‖z‖2 > γsc (s) ‖w‖2) ≤ ε, with probability no smaller than 1− β.

Analysis conditions can also be easily formulated
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Illustrative example: a double RC passive network

Uncertain parameters with (known) Gaussian distribution

parameter mean standard deviation
R1 310 Ω ± 10 %
R2 10 Ω ± 10 %
C1 0.01 F ± 10 %
C2 0.01 F ± 10 %

Input generator voltage constrained:
u(t) ∈ [−ū, ū] = [−1Volt, 1Volt]

Design parameters are ε = 0.05, β = 10−6, s = 1
⇒ N = 1323 for analysis and N = 1482 for synthesis
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Deterministic and Randomized nonlinear L2 gains

The probabilistic robust compensator shows better performance (left
curves)

The nominal behavior slightly deteriorated (right curves)
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Without anti-windup (black solid), with nominal anti-windup (blue
dashed) and with robust anti-windup (red dashed-dotted)
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Design variables and certificates

The scenario approach to AW provides a new viewpoint to robust
AW design allowing us to address hard nonconvex synthesis problems

However, it is still very conservative, because we are looking for a
common quadratic Lyapunov function xT Q−1x for all q ∈ Q
that is for “common certificates” of stability and performance

We would like to have “parameter dependent certificates” because
non-common Lyapunov functions are known to lead to greatly
reduced conservatism

Indeed, a (much) less conservative solution can be obtained by
looking for design variables θ =

{
γ2,U,X

}
such that, for each

q ∈ Q, there exist certificates ξ = {Q,Y } = {Q(q),Y (q)}
satisfying the stability/performance LMIs

This approach is new to within the randomized world. We denote it
design with certificates
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Robust static AW synthesis – common certificates (recall)

Given a scalar s > 0, if the LMI problem

γ̂2(s) = min
{γ2,U,X ,Q,Y}

γ subject to U > 0 diagonal,

Q = QT > 0

He


Acl (q)Q Bcl,d (q)U + Bcl,v (q)X + Y T Bcl,w (q) 0
Ccl,u(q)Q Dcl,ud (q)U + Dcl,uv (q)X − U Dcl,uw (q) 0

0 0 −I/2 0

Ccl,z (q)Q Dcl,zd (q)U + Dcl,zv (q)X Dcl,zw (q) − γ
2

2
I

≺0, ∀q ∈ Q

[
Q Y[k]

T

Y[k] ū2
k/s

2

]
� 0, k = 1, . . . , nu

is feasible, then, selecting the static AW gain as

Daw = XU−1

all properties [Stab], [Reach], and [L2Perf] hold robustly
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Robust static AW synthesis – non-common certificates

Given a scalar s > 0, if the LMI problem

γ̂2(s) = min
{γ2,U,X}

γ subject to U > 0 diagonal,

for each q ∈ Q there exist {Qq,Yq} such that

Qq = Qq
T > 0

He


Acl (q)Qq Bcl,d (q)U + Bcl,v (q)X + Y T

q Bcl,w (q) 0
Ccl,u(q)Qq Dcl,ud (q)U + Dcl,uv (q)X − U Dcl,uw (q) 0

0 0 −I/2 0

Ccl,z (q)Qq Dcl,zd (q)U + Dcl,zv (q)X Dcl,zw (q) − γ
2

2
I

≺0,

[
Qq Yq[k]

T

Yq[k] ū2
k/s

2

]
� 0, k = 1, . . . , nu

is feasible, then, selecting the static AW gain as

Daw = XU−1

all properties [Stab], [Reach], and [L2Perf] hold robustly
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Robust optimization with certificates

Problem (Robust optimization with certificates Oishi [2006])

min
θ

cT θ subject to (RwC)

θ ∈ S(q), for all q ∈ Q,

where the set S(q) is defined as

S(q)
.

=
{
θ∈ Rnθ such that there exists ξ satisfying f (θ, ξ, q) ≤ 0

}
.

The idea of constructing certificates based on random samples was
originally introduced by Oishi [2006], in the context of randomized
ellipsoid method

Essentially, one is allowed to use “parameter-dependent” certificates
ξ = ξ(q) (e.g., parameter-dependent Lyapunov functions)

The scenario with certificates approach allows to find a solution
without explicitly assuming the form of the dependence
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Approximate RwC based on multisample extraction

Scenario with certificates: contrary to the scenario problem, now a new
certificate variable ξi is used for each sample q(i), i = 1, . . . ,N

Problem (Scenario with certificates Formentin et al. [2014])

min
θ,ξ1,...,ξN

cT θ subject to: (SwC)

f (θ, ξi , q
(i)) ≤ 0, ∀i = 1, . . . ,N

Theorem (Scenario with certificates Formentin et al. [2014])

If for any multisample extraction the SwC problem is feasible and attains
a unique optimal solution θswc , then, given an accuracy level ε ∈ (0, 1),
the solution θswc satisfies

Pr {Viol(θswc ) > ε} ≤ B(N, ε, nθ)

A sequential algorithm for SwC is also presented in Formentin et al. [2014]
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Static AW synthesis based on scenario (recall)

Theorem (Robust static AW synthesis using scenario Formentin et al. [2013])

Fix a positive value s ≥ ‖w‖2, ε ∈ (0, 1), β ∈ (0, 1), and select N satisfying

B(N, ε, nθ) ≤ β,

with nθ = 1 + n(n + 1)/2 + nnu + nu + nu(nu + nc )

Extract N samples of the uncertain matrices according to the probability distribution

Solve

γ2
sc (s) = min

{γ2,Q,Y ,U,X}
γ2, subject to Q = QT > 0, U > 0 diagonal,

He


A

(i)
cl Q B

(i)
cl,d U + B

(i)
cl,v X + Y T B

(i)
cl,w 0

C
(i)
cl,uQ D

(i)
cl,ud U +D

(i)
cl,uv X−U D

(i)
cl,uw 0

0 0 −I/2 0

C
(i)
cl,z Q D

(i)
cl,zd U + D

(i)
cl,zv X D

(i)
cl,zw − γ

2

2
I

<0,

[
Q Y T

[k]

Y[k] ū2
k/s2

]
≥ 0,

∀k = 1, . . . , nu

∀i = 1, . . . ,N

If the above LMIs are feasible, select the static anti-windup gain Daw = XU−1

Then, for each ‖w‖2 < s, the zero initial state solution of the closed loop satisfies
Pr(‖z‖2 > γsc (s) ‖w‖2) ≤ ε, with probability no smaller than 1− β.

Analysis conditions can also be easily formulated
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Static AW synthesis based on scenario with certificates

Theorem (Robust static AW using scenario with certificates Formentin et al. [2014])

Fix a positive value s ≥ ‖w‖2, ε ∈ (0, 1), β ∈ (0, 1), and select N satisfying

B(N, ε, nθ) ≤ β,

with nθ = 1 + n(n + 1)/2 + nnu + nu + nu(nu + nc )

Extract N samples of the uncertain matrices according to the probability distribution

Solve

γ2
sc (s) = min

{γ2,U,X},{Qi ,Yi}
γ2, subject to Qi = Qi

T > 0, U > 0 diagonal,

He


A

(i)
cl Qi B

(i)
cl,d U + B

(i)
cl,v X + Y T

i B
(i)
cl,w 0

C
(i)
cl,uQi D

(i)
cl,ud U +D

(i)
cl,uv X−U D

(i)
cl,uw 0

0 0 −I/2 0

C
(i)
cl,z Qi D

(i)
cl,zd U + D

(i)
cl,zv X D

(i)
cl,zw − γ

2

2
I

<0,

[
Qi Y T

i [k]

Yi [k] ū2
k/s2

]
≥ 0,

∀k = 1, . . . , nu

∀i = 1, . . . ,N

If the above LMIs are feasible, select the static anti-windup gain Daw = XU−1

Then, for each ‖w‖2 < s, the zero initial state solution of the closed loop satisfies
Pr(‖z‖2 > γsc (s) ‖w‖2) ≤ ε, with probability no smaller than 1− β.

Analysis conditions can also be easily formulated
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Illustrative example: Another (larger) passive network

Uncertain parameters with (known) Gaussian distribution

parameter mean std dev parameter mean std dev
R1 313 Ω ± 10 R5 10 F ± 10
R2 20 Ω ± 10 C1 0.01 F ± 10
R3 315 Ω ± 10 C2 0.01 F ± 10
R4 17 Ω ± 10 c3 0.01 F ± 10

Input generator voltage constrained:
u(t) = Vi (t) ∈ [−ū, ū] = [−1Volt, 1Volt]

Design parameters are ε = 0.01, β = 10−6, s = 0.003, nθ = 35
⇒ N = 2270 (not 7565) for design based on sequential algorithm
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Deterministic and Randomized nonlinear L2 gains

Robust compensator shows better robust performance (red curves)

The nominal behavior slightly deteriorated (thin curves)
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Without anti-windup (black dashed), with nominal anti-windup (blue
dashed-dotted) and with robust anti-windup (red solid)
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Time responses confirm nonlinear L2 gain trends
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Optimization of the reachable set estimate

Theorem (Robust static AW using scenario with certificates Formentin et al. [2014])

Fix a positive value s ≥ ‖w‖2, ε ∈ (0, 1), β ∈ (0, 1), and select N satisfying

B(N, ε, nθ) ≤ β,

with nθ = n(n + 1)/2 + nu + nu(nu + nc )

Extract N samples of the uncertain matrices according to the probability distribution

Solve

γ2
sc (s) = min

{Q̄,U,X},{Qi ,Yi}
trace(Q̄), subject to Qi = Qi

T > 0, U > 0 diagonal,

Q̄ ≥ Qi

He

 A
(i)
cl Qi B

(i)
cl,d U + B

(i)
cl,v X + Y T

i B
(i)
cl,w

C
(i)
cl,uQi D

(i)
cl,ud U +D

(i)
cl,uv X−U D

(i)
cl,uw

0 0 −I/2

<0,

[
Qi Y T

i [k]

Yi [k] ū2
k/s2

]
≥ 0,

∀k = 1, . . . , nu

∀i = 1, . . . ,N

(1)

If the above LMIs are feasible, select the static anti-windup gain Daw = XU−1

Then, for each ‖w‖2 < s, the zero initial state solution of the closed loop has
probability 1− ε of remaining in the ellipsoid E(Q̄, s) with level of confidence no
smaller than 1− β.

Analysis conditions can also be easily formulated 34 / 41
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Reachable sets for simple 2D example

Left is Nominal design:
Clearly unsuitable
Nominal parameters (black),
Perturbed parameters (blue)
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Right is Robust design:
Potential behind noncommon Qi ’s
Guaranteed region E(Q̄, s) (black),
A collection of sets E(Qi , s) (blue)
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Concluding remarks

Deterministic formulation of the robust static anti-windup design
problem is nonconvex

Scenario approach can be used for robust static anti-windup
compensator synthesis and for robust stability and performance
analysis with common certificates

New tool scenario with certificates allows for non-common
certificates and results with reduced conservativeness

Current/future work:

transform s into a random variable to deal with uncertain
disturbances/references
address robust dynamic anti-windup compensation
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