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High-gain and peaking
°

Peaking and high-gain observers

e Introduced in the early '90s:

@ F. Esfandiari and H.K. Khalil. Output feedback stabilization of fully
linearizable systems. International Journal of Control,
56(5):1007-1037, 1992.

@ P.V. Kokotovic. The joy of feedback: nonlinear and adaptive. IEEE
Control Systems Magazine, 12(3):7-17, 1992.

@ S. Nicosia, P. Tomei, and A. Tornambe . An approximate observer
for a class of nonlinear systems. Systems and Control Letters,
13(1):43-51, 1989.

e Peaking corresponds to large transients of the error dynamics
caused by high-gain

e Typically it is resolved by saturating the plant input

e In this talk we will use hybrid techniques to reduce peaking for a
restricted class of high gain observers



High-gain and peaking
)

High-gain injection dominates Lipschitz nonlinearities

e Multiplanar case: x; = (pi, vi), x = (X1, .-, Xn), ¥ = (V1. -, Vn)

w:(wl?"'7wn)’¢:(¢17"'7¢n)

e Interconnection of n two-dimensional systems: i € {1,...,n},
GAS b = vi+uily) Available output:
plant vi = o¢i(x,u=~(x)) Yi = Pi;

e Lipschitz-type assumption on nonlinearity ¢: 3Ls5 > 0 s.t.

16i(x, (%)) = ¢i(& (X)) < Lilx = %I, Vie{l,....n}

e Output feedback scheme using a high-gain observer: u = ~(X):

l;?i = Ui+ vily) + Ckp(yi — i) =1

Vo= di(%,(%) + Pko(yi — Bi), ’
induces GAS as long as the high gain ( is "high” (large) enough
(+ extra properties of cascades).

..,n



High-gain and peaking
°

Error dynamics in scaled coordinates is linearly dominant

o |ei| _ | pi—hki | _ |1 O []|pi—pi
e Scaled error ¢; := [e‘”} = {E‘l(v,- N ‘A/i)} = [0 g—l} |:Vi B ‘A/i]

e Scaled error dynamics corresponds to:

. —kp 1|
e,—é[ K, O}e,+

0
6:(x,1(8)) — dil%. (%) ] Ci=1,...n
/
0;i(x,%X)

Ae

e Useful property exploiting Lipschitz assumption:
N Ls N
|0i(x, X)| < 7|X*X’ < Lglel.

e Proposition “High" gain ( is large enough if 3 P > 0, 9 > 0 s.t.

((AeTP + PAL) + ndl2h  P[9]

(PIO])T N e



High-gain and peaking
°

Error Lyapunov function V' is quadratic in e

e Proposition “High" gain ( is large enough if 3 P > 0, 9 > 0 s.t.
(((ATP+ PA) +nilib)® 1, P[O]®I, <0
(PIIDT @ Iy —9® I

n
e Candidate Lyapunov function is V(e) := Z e/ Pei=e (P®I,)e
i=1
e Proof uses the following facts:

e = UAc@ e+ ([9]® 1) d(x,%),
16(x,8)] < /nLsle],

which imply
vV o= 2eT(P®/,,)(e(Ae@/n)e+([g]®/n)5(x,§<))
< —ev(lel+16(x, %))

e Condition A.TP + PA. < 0 is necessary (linear dynamics dominant)



High-gain and peaking
°

Peaking phenomenon due to scaling of e # actual error

e Example from Esfandiari/Khalil '92
e Closed-loop trajectory with

. ‘ 0
= /A +
TLL [ 5(x, %) ]
dominant ~——

small

e Actual error variables

2=

exhibit peaking of e (recall: / is large!)

e Peaking is inevitable due to aggressive action of output injection:

v+ 9(y) + lkp(y — P)
= 6i(%,7(%)) + Pk (v — p)

<o
|



Hybrid Dynamical Systems
°

Hybrid dynamical systems review: dynamics

H=(C,D,F,G) i€ F(z) ot e Ga)
e n € N (state dimension)
e C CR" (flow set)

e D CR" (jump set)

e F:C =3 R" (flow map)
e G:D = R"” (jump map) L.

[ xeF(x) xecC D
| xTe G(x) xeD



Hybrid Dynamical Systems
°

Hybrid dynamical systems review: continuous dynamics

H=(C,,F, ) {)’q =X
e n € N (state dimension) o =—x+x(l-x)
e C CR" (flow set) Van der Pol
. : ‘ :
e F:C = R" (flow map) 2
¢ < 0
-2

H:{ xeF(x) xecC



Hybrid Dynamical Systems
°

Hybrid dynamical systems review: discrete dynamics

H:( 7D7 )G)

e n € N (state dimension)

[ ]
e D CR" (jump set)

e G:D =R" (jump map)

H:{X+€G(X) xe€D

0,1} ifx=0
xT el {0,2} ifx=1
(1,2} ifx=2

A possible sequence of states
from xp = 0 is:

(0-1-2-1) ieN



Hybrid Dynamical Systems
°

Hybrid dynamical systems review: trajectories

Zo 1

)

2y x € F(x) xelC
| xte G(x) xeD



Hybrid Dynamical Systems
°

Hybrid dynamical systems review: hybrid time

The motion of the state is parameterized by two parameters:
e t € Ry, takes into account the elapse of time during the

continuous motion of the state;
e j € Z>o, takes into account the number of jumps during the

discrete motion of the state.

O/\é.§57 0)
0.0 :
f’€(57 1) "/ g(& 3) |
S Tesy
7
V1 > 8, &(7,3)

V1 € [0,5], £(7,0) V1 € [5,8], £(T,2)



Hybrid Dynamical Systems
°

Hybrid dynamical systems review: hybrid time

E CR>q X Z>p is a compact
hybrid time domain if

J-1
E={Jt, il x (i)
j=0

where 0 =t < t7 <--- < ty.

E is a hybrid time domain if for
all (T, _/) S RZO X ZZO

En([0,T] x{0,1,...,J})

is a compact hybrid time domain.




Hybrid Dynamical Systems

Hybrid dynamical systems review: solution

e Formally, a solution satisfies the flow dynamics when flowing and
satisfies the jump dynamics when jumping




Hybrid Dynamical Systems
°

Hybrid dynamical systems review: Lyapunov theorem

Theorem Lyap Given a closed set A C R" and a hybrid system

2y x € F(x), xeC
xte G(x), xeD,

aassume that function V' : R” — R satisfies for some aq, a2
€ K« and p positive definite:

a1(lxla) < V(x) < an(lx|a), Vx € BT

(VV(x), ) < —p(Ixla), Vx €C,F € F(x),

V(g) ~ V(x) < —p(Ixl4), ¥x € D,g € G(x)

then A is unifromly globally asymptotically stable (UGAS) for H,
namely there exists 5 € KL such that all solutions satisfy

[E(&, )] < B(1€(0,0)|, t +J),  V(t,)) € dom &

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, )



Hybrid jumps reduce peaking
°

Peaking phenomenon due to scaling of e (recall)

e Example from Esfandiari/Khalil '92
e Closed-loop trajectory with

. 0
= (A +
TLE [ 5(x, %) ]
dominant

) small
e Actual error variables

212

exhibit peaking of e (recall: 7 is large!)

e Peaking is inevitable due to aggressive action of output injection:

V4 (y) + Cko(y
= ¢i(%,7(R) + Pk,

<o
|

—P)
(v =)



Hybrid jumps reduce peaking
L 1]

Unviable sol'n: avoid peaking by jumping to the other side

e Clean (but unviable) solution: e
5 = . lk.e.: AT [ SN
{ I/?\I Vi —t Vi (i/) * ’2pepl €pi Evi <0, & f i :
Vi = (ZSI'(X?’Y(X)) +1 kvepi, }~ IR | R
BT o - :
b —pi = —(y(p,-—pi) . ape
{ Oﬁ -V, = Q,' — Vi, €pi€vi = 0 . : :
ei+ ga(ei) -10 -7;--.»0 2

e Lemma U Consider any P such that A] P + PA. < 0 and the
corresponding V/(e) = e’ (P ® I,)e for the error dynamics, then

epievi > 0=V(et) = (eN)T(Pal)et <e"(P®l,)e= V(e),
for any a € [0, 1]

e Proof: Uses PA. =[5} 1 [:Z‘V’H =[35]<0

e Problem: Knowledge of sign(ep;e,;) is required



Hybrid jumps reduce peaking
oe

Unviable sol'n: avoid peaking by jumping to the other side

e Clean (but unviable) solution: ]

. pi . DI | S

{ Xj = {;’} =fi(%,y) epievi < 0, & |
i Doaio g
L [pF R

{ Xi = [Q’Jr = gai(%i» i) epievi = 0
i Sl
e (o) RINE S
Di = Di

e Lemma U Consider any P such that AT P 4 PA. < 0 and the
corresponding V/(e) = e’ (P ® I,)e for the error dynamics, then

epievi > 0 =V(et) = (eJr)TPee+ <elPe= V(e),

for any a € [0, 1]

—ky 0
e Problem: Knowledge of sign(epje,;) is required

e Proof: Uses PA, =[5} B2 [%" 1} =[5p;] <0



Hybrid jumps reduce peaking
.

Introduce hybrid dynamics to compute the integral of ep,

e Add extra hybrid states and use £ = (x, X, (,7) ER?"xR?"xR" xR"

%" = gai(%i, yi) 50 =%
CED G =a®i=gi)? s £€DN G == 3i)’
n =0, n =0,
§.<, = fi(X,y) Result: .
1S EC, C,:O Ci(taj):epi(tjx/)»

ni=(yi— 92 mit)) =, ep(r.)dr
forall i=1,...,n, where, for a fixed A > 0,
C = {{‘G]Rﬁ”: —A < e — G+ 20k <ANVI=1,...,n},
D = U D} uUD;,

D = {£eR: & — (i + 2lkym; > A},
Dy = {£eR: e — (i + 2lkom; < —A},



Hybrid jumps reduce peaking
[ 1o}

Sign of epie,; estimated from the integral of e,%,-

e Flow set evaluated along solutions: £(t,j) € C if
—A < edi(t,)) — Gi(t.j) + 20kyni(t. /) < ANi=1,...,n

e First flow equation of error dynamics: é,; = —(kpep; + Le,; yields

t

't
/ epi(7.J)épi(T,j)dT = —Lk / p,(T_j dT—i—E/ epi(7, J)evi(T, j)dT,
t

7 tj

t
= 26/ ep/(T,j)evi(T,j)dT = 2“(/3'//'(th) + epi(t7./) - epi(tj7./)
t

/1

e Lemma S Given any hybrid solution £ and (t,j) € dom &,
£(t,J) €Dim = epiltjevi(t,j) <0

e Lemma U + S Given V(e) = e’ (P ® I,)e and any solution ¢

V(E(t,)) < —evle(t. )%, V(e(t;,)) — V(e(tj,j —1)) <0



Hybrid jumps reduce peaking
oe

Esfandiari's example: response with @ = 0.5

. | ) : 0 0.5 1 0 0.5 1
02 - - ﬁ €1 T1— 21
O 1 1 1 1 1 L .

0 0002 0004 0006 0008 0.01 0012 0014 0.016 0.018 0.02
Time



Hybrid jumps reduce peaking
°

Average dwell time despite multiple jumps in DFL/_

e Lemma ADT Each solution £ satisfies an average dwell-time
condition, namely there exist N, o such that for each pair
(t,j) > (s, k) in dom &,

J—k<o(t—s)+N.
Proof

e e is bounded because V is nonincreasing along both flows and

jumps (id est V <0, AV <0 from Lemma U+S)

= |e(t,j)| < Me|e(0,0)|, ¥(t,j) € dom &.
e ¢ is bounded from the error dynamics and the L5 assumption
o After jump of & we have |e2(t;,/) — Ci(tj,J) + 2¢kpmi(tj,J)| = O
e Then at least p ordinary time elapses before { € D;” U Df:
|5i(7.4) = Gil.4) + 2Lkomi(7.))| < A, V7 € [t 1+ p)

e Solutions may however jump multiple times at each ordinary time t



Hybrid jumps reduce peaking
)

Persistent flow implies UGAS of origin of error dynamics

Theorem PF (persistent flow) Assume that, for a closed attractor A,
@ Lyapunov: V satisfies for some positive scalars aj, ap, as:
a1l¢la < V(€) < a2f¢la
V(§) < —a3V(§), VEeC,
V(Er) - V() <0, VEeD.
@ ADT: for each r > 0, |£(0,0)| 4 < r implies that all solutions
satisfy an average dwell-time constraint.

THEN the set A is UGAS and ULES. In particular, for each r > 0,
there exist M > 0, A > 0, such that

’5(070)‘44 <r = ff(tyj)‘A < e_)\t|§(07 O)’Av V(t,j) € dom §
e Theorem PF can be applied to the closed set

A={£=(x,%(n) €RO: x— % =0}

to show that the estimation error satisfies an exponential bound.



Hybrid jumps reduce peaking
°

Cascaded results on hybrid systems allow to tackle GAS

Theorem C (cascaded hybrid systems) Given a hybrid dynamical
system on R™, consider a closed set A C R™ and a compact set

A, C A If
@ the set A is UGAS for the hybrid dynamics;
Q the set A, is UGAS for the hybrid dynamics restricted to A;

THEN the set A, is ULAS for the hybrid dynamics with domain of
attraction = to the set from which all solutions bounded.

e Theorem C can be applied with

A = {€=(x%(n) eRY: x—&=0}
AO = {0}’

to conclude UGAS of the hybrid observer closed loop



Hybrid jumps reduce peaking
°

Regularity of flow/jump sets and maps gives robustness

e The proposed solution H = (C, F, D, G) satisfies the basic conditions:
Q set C is closed;
@ set D is closed;

© map F is (outer semi-)continuous, convex, nonempty and
locally bounded in C;

© map G is (outer semi-)continuous, nonempty and locally
bounded in D.

e Under these conditions, the hybrid system is well posed, namely:
@ UGAS of compact A, is robust “in the small”
@ its UAS is semiglobally practically robust “in the large”
@ All solutions coincide with Hermes and Krasovskii solutions
e This requirement would still hold if we use C = R%"\ D and

Df = {{ eRO: eg,- — (i + 2lkpn; > Amax(¢i, A)},
Dy = {£€R: e — ¢+ 2tkyn; < —Amax(¢, A)},

to get some homogeneity of solutions



Examples and Extensions
°

Example from Esfandiari/Khalil 1992

e System dynamics (no uncertainty)

1 4
0.8 2 i
I’
p= B} LS
v = Ll.4sin(p)+ 0.8u Ao
& o y 0 T | !
e Auxiliary function ap S T e
T Lo
. 06 il |:
if lw|>1, o
1 4 2 0 2 A“ 6 8

—{ vl
H(w) {W, if lw| <1.

e Control input

u =20 = —sin(p) ~ p— v — = (24 x)(p +2)

e Parameteres in proposition are P = [ 7(1) 5 _(1)'5 ] 9v=20=20



Examples and Extensions
°

Various responses with a =1

e Responses: ', Hybrid, Hybrid Continuous, Laurent

errorReset

X bF-lm




Examples and Extensions
°

Norm of the error |x — X| # |e| and value of V(e)




Examples and Extensions
°

Hybrid response obtained with different a's

N = = = Linear
0.8 o=1 -l
© — - o=0.75
AL LN TN e o=0.5
=, 06 o =0.25 ]
- 1 S~ == a=0
< 0.4 B
=S
0.2 —
o -
(o] 0.15
Time
3 T

1 = = = Linear




Examples and Extensions
°

Solution gives discontinuous state estimate (o = 0.5)

e This causes a discontinuous plant input u
1

05

€1

[o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time



Examples and Extensions

Solution gives discontinuous state estimate (o = 1)

e This causes a discontinuous pIant input u

—

NS

1

0.5

"i
I|ll|I
'JU

0.02

NNqq4
it uwfui‘ﬁiW
0.04 0.06 0.08 0f1 0.‘12 0.;4 0.‘16 0.‘18 0.2
Time

0.02

0.04 0.06

0.08

0.1 0.12 0.14 0.16 0.18

Time

P

0.02

0.04 0.06

0.08

0.1 0.12 0.14 0.16 0.18

Time

0.2



Examples and Extensions
°

For o« = 1 can recover continuity of estimate and of input

e New logic variables g; € {~1,1}, i =1,..., n toggling at each jump
e New overall state £ comprises old state plus ¢ = (g1,...,qn):

= (£,9) = (x,%,(,1,q) € R?"xXR?"xR"xR" xR"

(%7 = gai(Xin i) >A<,:: =X ,
Fed- ) GT=RY =9 soar ) G =0i=5)
§€DI7 77’+:0’ ’ 56D17 T’i:O’

¢ =—a;, g = gqi,

( f(I:ﬁ(j‘(7y) 5:CX{71,1}'7

fecl =0 Dt =D x{-1,1
i = (vi — 9i)? ’ ’
i — P — Yi) ~_ _
L g =0, D; =D; x{-1,1}

Z
e Continuity (wrt ordinary time t) only makes sense because of ADT

. . B+ (1— gy
e Select “continuous’ output Xj. = [q,p, +( q,)y,]



Examples and Extensions
°

For o = 1 can recover continuity of estimate and of input

e Use logic variable g € {—1,1} toggling at each jump

— 1 T T T 1 1
© ] : ]
| 05F-- o ——— 08 - 08
ok . . .
| 0.6 - 0.6
— 05} - N e e -
5] : : : 04 - - 0.4
~
« 02
| 0
N [a]
() 8 -02
<&
-0.4
|
N -0.6
=
-0.8
-1
-1 -0.5 0 0.5 1 -1 -0.5 0 05 1

T1e




Examples and Extensions
.

Laurent’s reduced order observer provides elegant solution

Theorem Consider plant and continuous-time observer

y: f}/(X7y)ﬂ )?: f,V( )A/) K, eYv
x=flay) | x=£%9) - Kee,
and assume that for some P = [Ppy ’;XTV} >0and V(e) = e’ Pe:
- xy x
| P, PL] [y, y) =1 (%, 9) + kyey
V_[ex] [nyPyyH o, y)— (%, 9) + keey| < °

for all X, ¥, x,y such that e = (e, e,) # 0
Then using w = x + PX_lPny, the reduced order observer

= fX(‘:’_ P;lpnyvY)‘i’Px_IPnyy(“Af_ P;lpxy%)/)a

provides an asymptotic estimate [g] = [Q—Pglnyy}'
Note: X —x =& — Py1Pyy —w+ P lPyy =0 —w
Note: V,, = (& — w) T Py(& — w) = (¥ — x) T Px(k% — x) decreases



Examples and Extensions
°

Various responses with av = 1 (revisited)

e Responses: ', Hybrid, Hybrid Continuous, Laurent

errorReset

X bF-lm




Examples and Extensions
.

Example with n = 2: two link planar manipulator

e Dynamic equations:

z
D(9)g+ C(q,4)g+ h(q) = u )
haarimaias n] =w :
s
c11 = —mpaihsin(q2) g,
c12 = —mparhsin(q2)(g1 + ¢2), &7 5
€21 = mparhsin(qg2)qs, s
dip = b+ m2(/22 + aih COS(qg)), (Cy

q1 x
dy = h + ml2,

d11 = Il + m1/22 + /2 + mz(a% + /22 =+ 231/2 COS(qz)),
hy = g(m1h + moay) cos(q1) + gmalh cos(qr + q2),
hy = gmah cos(q1 + g2).

Link | f; [m] | m; [ke] | I; [kem®] | ai [m]
1 0.5 6 0.2 1
2 0.25 5 0.1 0.5




Examples and Extensions
°

Limiting speed satisfies Lipschitz assumption

e Controller is PD-+gravity compensation: v(X) = h(q) — k,§ — kq@:

p(x,u=1(x)) = D(p)’ (=C(q,9)g + h(q) + u)
= D(p) "1 (—C(9,4)qd — Kpg — Ka49)

e Lipschitz bound on d(x, X) using |g| < gmax:

60, %) < 1D(p)* — D(B) *||Kpa + Kdg + C(8, )4
1D(p)” 1IIC( ,8)q — C(q,9)4

e Using the mean value theorem on the red terms and setting
dmax =~ 100 deg/s, we get Ls = 810

e Selecting a feasible P and solving an LMI problem coming from
Proposition, we get the super-high gain £ = 3600

e We fix £ = 100 to avoid crazy simulations

e With this selection Laurent's solution does not work (which P?)



Examples and Extensions
.

Responses with @ = 1 and continuous estimate

e Responses: , Second joint
Hybrid ‘_ Linear

IR LTI an|a@k D%S|Da S

st 0 i o )

e Note the large peak in the second joint velocity




Examples and Extensions
°

Responses with @ = 1 and continuous estimate

e Responses: Position 2, Velocity 1, Velocity 2

I EEREE LIRS

State feedhack

Hybrid High Gain
T




Conclusions
°

Summary and outlook

Summary
e Hybrid jumps in observer states can reduce peaking:
@ Discontinuous estimates lead to faster convergence
@ For a =1 can produce continuous estimates
e A toy problem to play with hybrid dynamical systems

Possible extensions
e Establish a formal statement of “no peaking”:
@ Perhaps show that e does not increase along solutions
e Extend to higher dimensional systems

. . —ki 10 ) X x 0
o Given Hurwitz A = | —k: 01| can we always find P = [x x x}?
—k3 00 0 x X

e Test effectiveness of solution on larger dimensional systems
@ For example larger robot manipulators

e Perform more thorough comparison with Laurent’s solution
@ Direct use of y may be undesirable?
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