
High-gain and peaking Hybrid Dynamical Systems Hybrid jumps reduce peaking Examples and Extensions Conclusions

Hybrid reset rules for peaking avoidance of a class
of high-gain observers

Luca Zaccarian
LAAS-CNRS, Toulouse and University of Trento

with Vincent Andrieu, Christophe Prieur, Sophie Tarbouriech

LAGEP, CNRS, Lyon, Gipsa-lab-CNRS, Grenoble, LAAS-CNRS, Toulouse

Centre Automatique et Systèmes, MINES ParisTech
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Peaking and high-gain observers

• Introduced in the early ’90s:

1 F. Esfandiari and H.K. Khalil. Output feedback stabilization of fully
linearizable systems. International Journal of Control,
56(5):1007-1037, 1992.

2 P.V. Kokotovic. The joy of feedback: nonlinear and adaptive. IEEE
Control Systems Magazine, 12(3):7-17, 1992.

3 S. Nicosia, P. Tomei, and A. Tornambè . An approximate observer
for a class of nonlinear systems. Systems and Control Letters,
13(1):43-51, 1989.

• Peaking corresponds to large transients of the error dynamics
caused by high-gain

• Typically it is resolved by saturating the plant input

• In this talk we will use hybrid techniques to reduce peaking for a
restricted class of high gain observers
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High-gain injection dominates Lipschitz nonlinearities

• Multiplanar case: xi = (pi , vi ), x = (x1, . . . , xn), y = (y1, . . . , yn)
ψ = (ψ1, . . . , ψn), φ = (φ1, . . . , φn)

• Interconnection of n two-dimensional systems: i ∈ {1, . . . , n},

GAS
plant

{
ṗi = vi + ψi (y)
v̇i = φi (x , u = γ(x))

Available output:

yi = pi ,

• Lipschitz-type assumption on nonlinearity φ: ∃Lδ > 0 s.t.

|φi (x , γ(x̂))− φi (x̂ , γ(x̂))| ≤ Lδ|x − x̂ |, ∀i ∈ {1, . . . , n}

• Output feedback scheme using a high-gain observer: u = γ(x̂):

˙̂pi = v̂i + ψi (y) + `kp(yi − p̂i )
˙̂vi = φi (x̂ , γ(x̂)) + `2kv (yi − p̂i ),

i = 1, . . . , n

induces GAS as long as the high gain ` is “high” (large) enough
(+ extra properties of cascades).
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Error dynamics in scaled coordinates is linearly dominant

• Scaled error ei :=

[
epi
evi

]
=

[
pi − p̂i

`−1(vi − v̂i )

]
=

[
1 0
0 `−1

] [
pi − p̂i
vi − v̂i

]
• Scaled error dynamics corresponds to:

ėi = `

[
−kp 1
−kv 0

]
︸ ︷︷ ︸

Ae

ei +

[
0

φi (x , γ(x̂))− φi (x̂ , γ(x̂))

`︸ ︷︷ ︸
δi (x ,x̂)

]
, i = 1, . . . , n

• Useful property exploiting Lipschitz assumption:

|δi (x , x̂)| ≤ Lδ
`
|x − x̂ | ≤ Lδ|e|.

• Proposition “High” gain ` is large enough if ∃ P > 0, ϑ > 0 s.t.[
`(Ae

TP + PAe) + nϑL2δ I2 P [ 01 ]
(P [ 01 ])T −ϑ

]
< 0.
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Error Lyapunov function V is quadratic in e

• Proposition “High” gain ` is large enough if ∃ P > 0, ϑ > 0 s.t.[
(`(Ae

TP + PAe) + nϑL2δ I2)⊗ In P [ 01 ]⊗ In
(P [ 01 ])T ⊗ In −ϑ⊗ In

]
< 0.

• Candidate Lyapunov function is V (e) :=
n∑

i=1

eTi Pei = eT (P ⊗ In)e

• Proof uses the following facts:

ė = `(Ae ⊗ In)e + ([ 01 ]⊗ In) δ(x , x̂),

|δ(x , x̂)| ≤
√
nLδ|e|,

which imply

V̇ = 2eT (P ⊗ In)
(
`(Ae ⊗ In)e + ([ 01 ]⊗ In) δ(x , x̂)

)
< −εV (|e|2 + |δ(x , x̂)|2)

• Condition Ae
TP + PAe < 0 is necessary (linear dynamics dominant)
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Peaking phenomenon due to scaling of e 6= actual error

• Example from Esfandiari/Khalil ’92
• Closed-loop trajectory with

ė = `Aee︸︷︷︸
dominant

+

[
0

δ(x , x̂)︸ ︷︷ ︸
small

]
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• Actual error variables[
p − p̂
v − v̂

]
=

[
e1
`e2

]
exhibit peaking of e2 (recall: ` is large!)
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• Peaking is inevitable due to aggressive action of output injection:

˙̂p = v̂ + ψ(y) + `kp(y − p̂)
˙̂v = φi (x̂ , γ(x̂)) + `2kv (y − p̂)
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Hybrid dynamical systems review: dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (flow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn (flow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x) x ∈ C
x+∈ G (x) x ∈ D

C

D

ẋ ∈ F (x) x+ ∈ G(x)
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Hybrid dynamical systems review: continuous dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (flow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn (flow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x) x ∈ C
x+∈ G (x) x ∈ D

{
ẋ1 = x2
ẋ2 = −x1 + x2(1− x21 )
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Hybrid dynamical systems review: discrete dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (flow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn flow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x) x ∈ C
x+∈ G (x) x ∈ D

x+ ∈


{0, 1} if x = 0
{0, 2} if x = 1
{1, 2} if x = 2

A possible sequence of states
from x0 = 0 is:

(0 · 1 · 2 · 1)i i ∈ N
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Hybrid dynamical systems review: trajectories

C

D

x1x0

x2

x4 x5

x7

x3

x6

H :

{
ẋ ∈ F (x) x ∈ C
x+∈ G (x) x ∈ D
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Hybrid dynamical systems review: hybrid time

The motion of the state is parameterized by two parameters:

• t ∈ R≥0, takes into account the elapse of time during the
continuous motion of the state;

• j ∈ Z≥0, takes into account the number of jumps during the
discrete motion of the state.

ξ(0, 0)

ξ(5, 0)

ξ(8, 3)
ξ(5, 1)

ξ(5, 2)

∀τ ∈ [0, 5], ξ(τ, 0) ∀τ ≥ 8, ξ(τ, 3)∀τ ∈ [5, 8], ξ(τ, 2)

ξ(8, 2)
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Hybrid dynamical systems review: hybrid time

E ⊆ R≥0 × Z≥0 is a compact
hybrid time domain if

E =
J−1⋃
j=0

([tj , tj+1]× {j})

where 0 = t0 ≤ t1 ≤ · · · ≤ tJ .

E is a hybrid time domain if for
all (T , J) ∈ R≥0 × Z≥0

E ∩ ([0,T ]× {0, 1, . . . , J})

is a compact hybrid time domain.

t

j

(t0,0) (t1,0)

(t1,1) (t2,1)

(t2,2)=(t3,2)

(t3,3) (t4,3)

(t4,4) (t5,4)

(t5,5)
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Hybrid dynamical systems review: solution

• Formally, a solution satisfies the flow dynamics when flowing and
satisfies the jump dynamics when jumping

t

j

ξ

t1 t2 t3 t4

1

2

3

4
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Hybrid dynamical systems review: Lyapunov theorem

Theorem Lyap Given a closed set A ⊂ Rn and a hybrid system

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D,

aassume that function V : Rn → R≥0 satisfies for some α1, α2

∈ K∞ and ρ positive definite:

α1(|x |A) ≤ V (x) ≤ α2(|x |A), ∀x ∈ Rn

〈∇V (x), f 〉 ≤ −ρ(|x |A), ∀x ∈ C, f ∈ F (x),

V (g)− V (x) ≤ −ρ(|x |A), ∀x ∈ D, g ∈ G (x)

then A is unifromly globally asymptotically stable (UGAS) for H,
namely there exists β ∈ KL such that all solutions satisfy

|ξ(t, j)| ≤ β(|ξ(0, 0)|, t + j), ∀(t, j) ∈ dom ξ

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)
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Peaking phenomenon due to scaling of e (recall)

• Example from Esfandiari/Khalil ’92
• Closed-loop trajectory with

ė = `Aee︸︷︷︸
dominant

+

[
0

δ(x , x̂)︸ ︷︷ ︸
small

]
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• Actual error variables[
p − p̂
v − v̂

]
=

[
e1
`e2

]
exhibit peaking of e2 (recall: ` is large!)
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• Peaking is inevitable due to aggressive action of output injection:

˙̂p = v̂ + ψ(y) + `kp(y − p̂)
˙̂v = φi (x̂ , γ(x̂)) + `2kv (y − p̂)
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Unviable sol’n: avoid peaking by jumping to the other side

• Clean (but unviable) solution:{
˙̂pi = v̂i + ψi (y) + `kpepi
˙̂vi = φi (x̂ , γ(x̂)) + `2kvepi ,

epievi ≤ 0,{
p̂+i − pi = −α(p̂i − pi )
v̂+i − vi = v̂i − vi ,

epievi ≥ 0︸ ︷︷ ︸
e+i

︸ ︷︷ ︸
gα(ei )

pi − p̂i

v i
−

v̂ i

• Lemma U Consider any P such that AT
e P + PAe < 0 and the

corresponding V (e) = eT (P ⊗ In)e for the error dynamics, then

epievi ≥ 0⇒V (e+) = (e+)T (P ⊗ In)e+ ≤ eT (P ⊗ In)e = V (e),

for any α ∈ [0, 1]

• Proof: Uses PAe = [ p1 p2
p2 p3 ]

[
−kp 1
−kv 0

]
= [ ? ?

? p2 ] < 0

• Problem: Knowledge of sign(epievi ) is required



High-gain and peaking Hybrid Dynamical Systems Hybrid jumps reduce peaking Examples and Extensions Conclusions

Unviable sol’n: avoid peaking by jumping to the other side

• Clean (but unviable) solution:{
˙̂xi =

[
˙̂pi
˙̂vi

]
= fi (x̂ , y) epievi ≤ 0,{

x̂+i =

[
p̂+i
v̂+i

]
= gαi (x̂i , yi ) epievi ≥ 0︸ ︷︷ ︸

e+i

︸ ︷︷ ︸
gα(ei )

pi − p̂i

v i
−

v̂ i

• Lemma U Consider any P such that AT
e P + PAe < 0 and the

corresponding V (e) = eT (P ⊗ In)e for the error dynamics, then

epievi ≥ 0⇒V (e+) = (e+)TPee
+ ≤ eTPee = V (e),

for any α ∈ [0, 1]

• Proof: Uses PAe = [ p1 p2
p2 p3 ]

[
−kp 1
−kv 0

]
= [ ? ?

? p2 ] < 0

• Problem: Knowledge of sign(epievi ) is required



High-gain and peaking Hybrid Dynamical Systems Hybrid jumps reduce peaking Examples and Extensions Conclusions

Introduce hybrid dynamics to compute the integral of e2
pi

• Add extra hybrid states and use ξ = (x , x̂ , ζ, η)∈R2n×R2n×Rn×Rn

ξ ∈ D−i ,


x̂+i = gαi (x̂i , yi )

ζ+i = α2(yi − ŷi )
2

η+i = 0,

; ξ ∈ D+
i ,


x̂+i = x̂i
ζ+i = (yi − ŷi )

2

η+i = 0,

ξ ∈ C,


˙̂xi = fi (x̂ , y)

ζ̇i = 0
η̇i = (yi − ŷi )

2,

Result:
ζi (t, j) = e2pi (tj , j),

ηi (t, j) =
∫ t
tj
e2pi (τ, j)dτ

for all i = 1, . . . , n, where, for a fixed ∆ > 0,

C := {ξ ∈ R6n : −∆ ≤ e2pi − ζi + 2`kpηi ≤ ∆,∀i = 1, . . . , n},
D :=

n⋃
i=1
D+

i ∪ D−i ,
D+

i := {ξ ∈ R6n : e2pi − ζi + 2`kpηi ≥ ∆},
D−i := {ξ ∈ R6n : e2pi − ζi + 2`kpηi ≤ −∆},
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Sign of epievi estimated from the integral of e2
pi

• Flow set evaluated along solutions: ξ(t, j) ∈ C if

−∆ ≤ e2pi (t, j)− ζi (t, j) + 2`kpηi (t, j) ≤ ∆,∀i = 1, . . . , n

• First flow equation of error dynamics: ėpi = −`kpepi + `evi yields∫ t

tj

epi (τ, j)ėpi (τ, j)dτ = −`kp
∫ t

tj

e2pi (τ, j)dτ+`

∫ t

tj

epi (τ, j)evi (τ, j)dτ ,

⇒ 2`

∫ t

tj

epi (τ, j)evi (τ, j)dτ = 2`kpηi (t, j) + e2pi (t, j)− e2pi (tj , j)

• Lemma S Given any hybrid solution ξ and (t, j) ∈ dom ξ,

ξ(t, j) ∈ Di
− ⇒ epi (t, j)evi (t, j) ≤ 0

• Lemma U + S Given V (e) = eT (P ⊗ In)e and any solution ξ

V̇ (ξ(t, j)) ≤ −εV |e(t, j)|2, V (e(tj , j))− V (e(tj , j − 1)) ≤ 0
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Esfandiari’s example: response with α = 0.5
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Average dwell time despite multiple jumps in D+/−
i

• Lemma ADT Each solution ξ satisfies an average dwell-time
condition, namely there exist N, σ such that for each pair
(t, j) ≥ (s, k) in dom ξ,

j − k ≤ σ(t − s) + N.

Proof
• e is bounded because V is nonincreasing along both flows and

jumps (id est V̇ ≤ 0, ∆V ≤ 0 from Lemma U+S)

⇒ |e(t, j)| ≤ Me |e(0, 0)|, ∀(t, j) ∈ dom ξ.

• ė is bounded from the error dynamics and the Lδ assumption

• After jump of x̂i we have |e2pi (tj , j)− ζi (tj , j) + 2`kpηi (tj , j)| = 0

• Then at least ρ ordinary time elapses before ξ ∈ D−i ∪ D+
i :

|e2pi (τ, j)− ζi (τ, j) + 2`kpηi (τ, j)| < ∆, ∀τ ∈ [tj , tj + ρ)

• Solutions may however jump multiple times at each ordinary time t
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Persistent flow implies UGAS of origin of error dynamics

Theorem PF (persistent flow) Assume that, for a closed attractor A,
1 Lyapunov: V satisfies for some positive scalars a1, a2, a3:

a1|ξ|A ≤ V (ξ) ≤ a2|ξ|A
V̇ (ξ) ≤ −a3V (ξ), ∀ξ ∈ C,
V (ξ+)− V (ξ) ≤ 0, ∀ξ ∈ D.

2 ADT: for each r > 0, |ξ(0, 0)|A ≤ r implies that all solutions
satisfy an average dwell-time constraint.

THEN the set A is UGAS and ULES. In particular, for each r > 0,
there exist M > 0, λ > 0, such that

|ξ(0, 0)|A ≤ r ⇒ |ξ(t, j)|A ≤ e−λt |ξ(0, 0)|A, ∀(t, j) ∈ dom ξ

• Theorem PF can be applied to the closed set

A = {ξ = (x , x̂ , ζ, η) ∈ R6n : x − x̂ = 0}
to show that the estimation error satisfies an exponential bound.
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Cascaded results on hybrid systems allow to tackle GAS

Theorem C (cascaded hybrid systems) Given a hybrid dynamical
system on Rm, consider a closed set A ⊂ Rm and a compact set
A◦ ⊂ A. If

1 the set A is UGAS for the hybrid dynamics;

2 the set A◦ is UGAS for the hybrid dynamics restricted to A;

THEN the set A◦ is ULAS for the hybrid dynamics with domain of
attraction ≡ to the set from which all solutions bounded.

• Theorem C can be applied with

A = {ξ = (x , x̂ , ζ, η) ∈ R6n : x − x̂ = 0}
A◦ = {0},

to conclude UGAS of the hybrid observer closed loop
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Regularity of flow/jump sets and maps gives robustness

• The proposed solution H = (C,F ,D,G ) satisfies the basic conditions:
1 set C is closed;
2 set D is closed;
3 map F is (outer semi-)continuous, convex, nonempty and

locally bounded in C;
4 map G is (outer semi-)continuous, nonempty and locally

bounded in D.

• Under these conditions, the hybrid system is well posed, namely:
1 UGAS of compact A◦ is robust “in the small”
2 its UAS is semiglobally practically robust “in the large”
3 All solutions coincide with Hermes and Krasovskii solutions

• This requirement would still hold if we use C = R6n \ D and

D+
i := {ξ ∈ R6n : e2pi − ζi + 2`kpηi ≥ ∆ max(ζi ,∆)},
D−i := {ξ ∈ R6n : e2pi − ζi + 2`kpηi ≤ −∆ max(ζi ,∆)},

to get some homogeneity of solutions
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Example from Esfandiari/Khalil 1992

• System dynamics (no uncertainty){
ṗ = v
v̇ = 1.4 sin(p) + 0.8u

• Auxiliary function

µ(w) =

{ w
|w | , if |w | ≥ 1 ,

w , if |w | < 1 . −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

e
v

ep

 

 

Linear Observer

−4 −2 0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

4

v
−
v̂

p− p̂

• Control input

u = γ(x) = − sin(p)− p − v − 1.6

3
(2 + |x |)µ(p + 2v)

• Parameteres in proposition are P =

[
1 −0.5
−0.5 1

]
, ϑ = 2, ` = 20
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Various responses with α = 1

• Responses: Linear, Hybrid, Hybrid Continuous, Laurent
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Norm of the error |x − x̂ | 6= |e| and value of V (e)
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Hybrid response obtained with different α’s
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Solution gives discontinuous state estimate (α = 0.5)

• This causes a discontinuous plant input u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Time

e
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.02

0

0.02

0.04

Time

e
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

4

2

0

Time

u



High-gain and peaking Hybrid Dynamical Systems Hybrid jumps reduce peaking Examples and Extensions Conclusions

Solution gives discontinuous state estimate (α = 1)

• This causes a discontinuous plant input u
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For α = 1 can recover continuity of estimate and of input

• New logic variables qi ∈ {−1, 1}, i = 1, . . . , n toggling at each jump
• New overall state ξ̃ comprises old state plus q = (q1, . . . , qn):

ξ̃ = (ξ, q) = (x , x̂ , ζ, η, q) ∈ R2n×R2n×Rn×Rn×Rn

ξ̃ ∈ D̃−i ,


x̂+i = gαi (x̂i , yi )

ζ+i = α2(yi − ŷi )
2

η+i = 0,
q+i = −qi ,

; ξ̃ ∈ D̃+
i ,


x̂+i = x̂i
ζ+i = (yi − ŷi )

2

η+i = 0,
q+i = qi ,

ξ̃ ∈ C̃,


˙̂xi = fi (x̂ , y)

ζ̇i = 0
η̇i = (yi − ŷi )

2,
q̇i = 0,

C̃ = C×{−1, 1}n
D̃+

i = D+
i ×{−1, 1}

D̃−i = D−i ×{−1, 1}

• Select “continuous” output x̂ic =

[
qi p̂i + (1− qi )yi

v̂i

]
• Continuity (wrt ordinary time t) only makes sense because of ADT
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For α = 1 can recover continuity of estimate and of input

• Use logic variable q ∈ {−1, 1} toggling at each jump
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Laurent’s reduced order observer provides elegant solution

Theorem Consider plant and continuous-time observer:{
ẏ = fy (x , y),
ẋ = fx(x , y)

{
˙̂y = fy (x̂ , ŷ)− Kyey ,
˙̂x = fx(x̂ , ŷ)− Kxey ,

and assume that for some P̄ =
[

Py PT
xy

Pxy Px

]
> 0 and V (e) = eT P̄e:

V̇ =

[
ey
ex

]T [
Py PT

xy

Pxy Py

] [fy (x , y)−fy (x̂ , ŷ) + kyey
fx(x , y)−fx(x̂ , ŷ) + kxey

]
< 0

for all x̂ , ŷ , x , y such that e = (ex , ey ) 6= 0.
Then using ω = x + P−1x Pxyy , the reduced order observer

˙̂ω := fx(ω̂ − P−1x Pxyy , y) + P−1x Pxy fy (ω̂ − P−1x Pxyy , y),

provides an asymptotic estimate
[
ŷ
x̂

]
=
[

y

ω̂−P−1
x Pxyy

]
.

Note: x̂ − x = ω̂ − P−1x Pxyy − ω + P−1x Pxyy = ω̂ − ω
Note: Vω = (ω̂ − ω)TPx(ω̂ − ω) = (x̂ − x)TPx(x̂ − x) decreases
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Various responses with α = 1 (revisited)

• Responses: Linear, Hybrid, Hybrid Continuous, Laurent
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Example with n = 2: two link planar manipulator

• Dynamic equations:

D(q)q̈ + C (q, q̇)q̇ + h(q) = u[
d11 d12
d12 d22

]
q̈ + [ c11 c12

c12 c22 ] q̇ +
[
h1
h2

]
= u,

c11 = −m2a1l2 sin(q2)q̇2,
c12 = −m2a1l2 sin(q2)(q̇1 + q̇2),
c21 = m2a1l2 sin(q2)q̇1,
d12 = I2 + m2(l22 + a1l2 cos(q2)),
d22 = I2 + m2l

2
2 ,

q1

q2

m1, I1

m2, I2

g

l2

l1

a2

a1

z

x

d11 = I1 + m1l
2
2 + I2 + m2(a21 + l22 + 2a1l2 cos(q2)),

h1 = g(m1l1 + m2a1) cos(q1) + gm2l2 cos(q1 + q2),
h2 = gm2l2 cos(q1 + q2).

Link li [m] mi [kg ] Ii [kgm2] ai [m]

1 0.5 6 0.2 1

2 0.25 5 0.1 0.5
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Limiting speed satisfies Lipschitz assumption

• Controller is PD+gravity compensation: γ(x̂) = h(q)− kpq̂ − kd ˆ̇q:

φ(x , u = γ(x)) = D(p)−1(−C (q, q̇)q̇ + h(q) + u)
= D(p)−1(−C (q, q̇)q̇ − Kpq − Kd q̇)

• Lipschitz bound on δ(x , x̂) using |q̇| ≤ qMAX :

|δ(x , x̂)| ≤ |D(p)−1 − D(p̂)−1||Kpq̂ + Kd
˙̂q + C (q̂, ˙̂q) ˙̂q|

|D(p̂)−1||C (q̂, ˙̂q) ˙̂q − C (q, q̇)q̇|

• Using the mean value theorem on the red terms and setting
q̇MAX ≈ 100 deg/s, we get Lδ = 810

• Selecting a feasible P and solving an LMI problem coming from
Proposition, we get the super-high gain ` = 3600

• We fix ` = 100 to avoid crazy simulations

• With this selection Laurent’s solution does not work (which P?)
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Responses with α = 1 and continuous estimate

• Responses: First Joint, Second joint
Hybrid Linear

• Note the large peak in the second joint velocity
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Responses with α = 1 and continuous estimate

• Responses: Position 1, Position 2, Velocity 1, Velocity 2
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Summary and outlook

Summary
• Hybrid jumps in observer states can reduce peaking:

Discontinuous estimates lead to faster convergence
For α = 1 can produce continuous estimates

• A toy problem to play with hybrid dynamical systems

Possible extensions
• Establish a formal statement of “no peaking”:

Perhaps show that e2 does not increase along solutions

• Extend to higher dimensional systems

Given Hurwitz Ae =

[
−k1 1 0
−k2 0 1
−k3 0 0

]
can we always find P =

[× × 0
× × ×
0 × ×

]
?

• Test effectiveness of solution on larger dimensional systems

For example larger robot manipulators

• Perform more thorough comparison with Laurent’s solution

Direct use of y may be undesirable?
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