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0 Clegg integrators and First Order Reset Elements (FORE) and
an overview of hybrid dynamical systems

9 Exponential stability of reset control systems
e Set-point regulation of linear plants using adaptive FORE

e Some additional hybrid applications



Clegg and FORE are hybrid
®0

An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

’U» D T . T

Example: Pl controller

Xe = Acxe + Bev

c
|_
R ve
! —> % e In an analog integrator, the state
information is stored in a capacitor:
. 1
X = —vV



Clegg and FORE are hybrid
oce

An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

’U» D T . T

Example: Pl controller

Xe = Acxe + Bev

»@—»

C
it e Clegg's integrator (1956):
] e feedback diodes: the positive part of
—’\/\1/?\/\/ > o xc is all and only coming from the
AW —— _ upper capacitor (and viceversa)
v — fa ) Te e jnput diodes: when v < 0 the upper
LAAAA > capacitor is reset and the lower one
R Yoz integrates (and viceversa) [Ry < 1]
— P e As a consequence = v and x. never

have opposite signs

Q



Clegg and FORE are hybrid
°

Hybrid dynamics may flow or jump

Hybrid Clegg integrator:
1
Xe = EV’ allowed when x.v > 0, SC D
xr =0, allowed when x.v <0, -
e Flow set C: where x. may flow (1st eq'n) 5 C
e Jump set D: where x. may jump (2nd eq'n)
C
it e Clegg's integrator (1956):
i< e feedback diodes: the positive part of
_,\/\Ij\/\/ > o Xc is all and only coming from the
AW —tg— _ upper capacitor (and viceversa)
v — fa ) Te o ian.Jt di.odes: when v < 0 the upper
LAAAA > capacitor is reset and the lower one
R vez integrates (and viceversa) [Ry < 1]
—P—] e As a consequence = v and x. never

have opposite signs

Q



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: dynamics

H=(C,D,F,G) i€ F(z) ot e Ga)
e n € N (state dimension)
e C CR" (flow set)

e D CR" (jump set)

e F:C =3 R" (flow map)
e G:D = R"” (jump map) L.

[ xeF(x), xeC D
| xte G(x), xe€D



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: continuous dynamics

H=(C,,F, ) {)’q =X
e n € N (state dimension) o =—x+x(l-x)
e C CR" (flow set) Van der Pol
. : ‘ :
e F:C = R" (flow map) 2
¢ < 0
-2

7—[:{ x € F(x), xeC



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: discrete dynamics

H:( 7D7 )G)

e n € N (state dimension)

e D CR" (jump set)

e G:D =R" (jump map)

7-[:{x“‘E G(x), xe€D

0,1} ifx=0
xT el {0,2} ifx=1
(1,2} ifx=2

A possible sequence of states
from xp = 0 is:

(0-1-2-1) ieN



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: trajectories

Zo Ty

)

2y x € F(x), xeC
| xte G(x), x€D



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: hybrid time

The motion of the state is parameterized by two parameters:
e t € Ry, takes into account the elapse of time during the

continuous motion of the state;
e j € Z>o, takes into account the number of jumps during the

discrete motion of the state.

O/\é.§57 0)
0.0 :
f’€(57 1) "/ g(& 3) |
S Tesy
7
V1 > 8, &(7,3)

V1 € [0,5], £(7,0) V1 € [5,8], £(T,2)



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: hybrid time

E CR>q X Z>p is a compact
hybrid time domain if

J-1
E={Jt, il x (i)
j=0

where 0 =t < t7 <--- < ty.

E is a hybrid time domain if for
all (T, _/) S RZO X ZZO

En([0,T] x{0,1,...,J})

is a compact hybrid time domain.




Clegg and FORE are hybrid
°

Hybrid dynamical systems review: solution

e Formally, a solution satisfies the flow dynamics when flowing and
satisfies the jump dynamics when jumping




Clegg and FORE are hybrid
°

Hybrid dynamical systems review: Lyapunov theorem

Theorem Given the Euclidean norm |x| = v x"x and a hybrid system
| x=1f(x), xeC
| xT=g(x), x €D,

aassume that function V' : R” — R satisfies for some
scalars ¢, ¢ positive and c¢3 positive:

alx]? < V(x) < olx?, Vx € CUDU G(D)
(VV(x),f(x)) < —cs3|x|?, Vx e C,
V(g(x)) — V(x) < —cs3|x|?, Vx € D,

then the origin is uniformly globally exponentially stable (UGES)
for H, namely there exist K, A > 0 such that all solutions satisfy

(t, )] < Ke*TH1€(0,0)],  W(t,j) € dom &

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)



Clegg and FORE are hybrid
°

Hybrid dynamical systems review: Lyapunov theorem

Theorem Given a closed set A C R"” and a hybrid system

2y x € F(x), xeC
| xte G(x), x€eD,

aassume that function V' : R” — R satisfies for some
a1, ap € Ko and p positive definite:

a1(|x|a) < V(x) < aa(|x]a), Vx e CUDUG(D)
<VV(X)7 f) < _p(|X’A)v VxeC,f € F(X)v
V(g) - V(X) < _p(|X’A)7 VxeD,ge G(X)

then A is uniformly globally asymptotically stable (UGAS) for #,
namely there exists 5 € /ICL such that all solutions satisfy

|E(t./)‘./4 < ﬁ(‘f(oﬂ O)|.Aa t +./)7 v(thj) € dom é

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)



Clegg and FORE are hybrid
(1]

Hybrid dynamics and the Clegg integrator (recall)

Hybrid Clegg integrator:
1
Xe = EV’ allowed when x.v > 0, SC D
xr =0, allowed when x.v <0, -
e Flow set C: where x. may flow (1st eq'n) 5 C
e Jump set D: where x. may jump (2nd eq'n)
C
it e Clegg's integrator (1956):
i< e feedback diodes: the positive part of
_,\/\Ij\/\/ > o Xc is all and only coming from the
AW —tg— _ upper capacitor (and viceversa)
v — fa ) Te o ian.Jt di.odes: when v < 0 the upper
LAAAA > capacitor is reset and the lower one
R vez integrates (and viceversa) [Ry < 1]
—P—] e As a consequence = v and x. never

have opposite signs

Q



Clegg and FORE are hybrid
oe

Hybrid dynamics of the Clegg integrator (revisited)

Hybrid Clegg integrator:
c(t,) = (RC)"Mv(t,)), xc(t.j)v(t.j) =0,
x(t,j+1) =0, xe(t,j)v(t,j) <0,

Teh

SC D
e Flow set C := {(xc, V) : xcv > 0} is closed ;
e Jump set D := {(xc, V) : xcv < 0} is closed i o
e Stability is robust! (Teel 2006-2012)
Previous models (Clegg '56, Horowitz '73, Hollot '04):

% = (RC)"tv, ifv#0, Zep
xt =0, if v=0, @\

e Imprecise: solutions 3 s.t. x.v < 0, but C C
Clegg's x. and v always have same sign! f

e Unrobust: C is almost all R?
(arbitrary small noise disastrous)

e Unsuitable: Adds extra solutions ‘\@

= Lyapunov results too conservative!

=4
.’\/
3




Clegg and FORE are hybrid
.

Example: Clegg response to a sine input

I
[

e Input selected as v(t,j) = sin(t)
(dashed line below)
e Solution (bold black) as a function of
the hybrid time domain (red)
e State x. is reset upon entering the
2nd and 4th quadrants

« (in this case = at the zero crossing)

o -
G o~ @

i
&

Integrator value

P
Ot b o L& oo

!
®

0.5
the ordinary time axis t 0

e Solid: projection of x. on
e Dash: projection of uon ™|
the ordinary time axis t  -1st

2




Exponential Stability
.

Stabilization using hybrid jumps to zero

First Order Reset Element (Horowitz '74):

. d
Xe = acXe + bev, xcv >0, v
+ . PO e S X, y
X =0, xev =0, | FORE el P >
- — 1

Theorem If P is linear, minimum phase
and relative degree one, then
ac, be or (ac, bc) large enough = global exponential stability
Theorem In the planar case, 74, shrinks to zero as parameters grow

Simulation ! —— Linear (a 1)
08} - i
uses: ) e
5 06f — a7 n
P=- 3 o4l a=1 i
S E ac=3
o o02f N
be=1 il —
-0.2 1 I \—/ I 1 1
0 1 2 3 4 5 6 7 8 9 10

Time
Interpretation: Resets remove overshoots, instability improves transient



Exponential Stability

Piecewise quadratic Lyapunov function construction

e Given N > 2 (number of sectors)
e Patching angles:
e =60 <01 <+ <bn =7 +0.
e Patching hyperplanes (C, =1[0 --- 01])
. T
@,’ = [ 01><(n—2) S|n(9,-) COS(Q,’) } 0,
e Sector matrices:
So = @0@% + @N@g-
Si=—(©0],+0,.,00), i=1,...,

02

O(n—2)x(n—2) 0 0
Se1 = 0 0 sin(0)
i 0 sin(fe) —2cos(fe) | -
[ O(n—2)x(n—2) 0 0 | Hybrid closed-loop:
Sep 1= 0 —2cos(#.) sin(f.) X = Arx+ Byd, x€C
i 0 sin(6.) 0 | xt=Ax, x €D



Exponential Stability
.

Piecewise quadratic Lyapunov theorem

Theorem: If the following LMIs in the green unknowns (where
Z = [In—2 0(5_2)x2]) are feasible:

A,7_——P,'+P,'AF+TF,'5,' P,'Bd CT

(Flow) x 0 | <0i=1,...,N,
* * —~l
(Jump) AJP1A; = Po+75 <0
(Cont'ty) ©] (P~ Pi11)©;1 =0, i=0,...,N—1,
(Cont'ty) O (Py— Po)On. =0
(Overlap) ATPiA;— Py 4+ 7451 <0
(Overlap) AJP1A; — Py + TS <0
Z(AFPy + PoAR)ZT  ZPyBy ZCT
(Origin) * —~l 0 <0,
* * —~l

then global exponential stability + finite £ gain vg, from d to y



Exponential Stability

Example 1: Clegg (a. = 0) connected to an integrator

e Block diagram:
d

p—
Ve

Clegg =
x

a. =0

e Output response (overcomes
linear systems limitations)

1 T T T
. /\

— Clegg (a,=0) ||

Linear (ac=0)

L N [ 2 [ 4] 8 [5
| gain g, [[ 2834 | 1.377 | 0.914 [ 0.87

e A lower bound: \/g ~ 0.626

e Lyapunov func'n level sets for N = 4

e Gain g, estimates (N = # of sectors)
l

0 2 p 6 5
e Quadratic Lyapunov functions
are unsuitable

10

e Pi,..., Py cover 2nd/4th quadrants
e Py covers 1st/3rd quadrants



Exponential Stability
.

Example 2: FORE (any a.) and linear plant (Hollot et al.)

e Block diagram (P = 5(%012)) e Gain 4, estimates

8 :
d = = =Linear CLS
7 Reset CLS (Thm 3, ACC 2005) []
y 6F = = Reset CLS (this theorem)
T
FORE P .5 !
- xc S 4l -’
S
al
ol
4L
e a. = 1: level set with N =50 o . .
a
3
" e Time responses
20 15 1
Linear (a =—1)
10 ° az=-3 ’
5 05 C:—1
<= 0] < a1
-5 a=3 H
_10| o 0 e — a5 H
_20| -15
-20 -0.5
4 -2 0 2 4 4 -2 0 2 4
y y »



Set-point Regulation
°

Stabilization using hybrid jumps to zero (recall)

First Order Reset Element (Horowitz '74):

. d
Xe = acXe + bev, xcv >0, v
+ . PO e S X, y
X =0, xev =0, | FORE el P >
- — 1

Theorem If P is linear, minimum phase
and relative degree one, then
ac, be or (ac, bc) large enough = global exponential stability
Theorem In the planar case, 74, shrinks to zero as parameters grow

Simulation ! —— Linear (a 1)
08} - i
uses: ) e
5 06f — a7 n
P=- 3 o4l a=1 i
S E ac=3
o o02f N
be=1 il —
-0.2 1 I \—/ I 1 1
0 1 2 3 4 5 6 7 8 9 10

Time
Interpretation: Resets remove overshoots, instability improves transient



Set-point Regulation
°

Set point adaptive regulation using hybrid jumps to zero

e Parametric feedforward ug = W(r)

{ i;c_zoacxc + bev, xev > 0,
{ x =0, <0
v(r) XV > U

= A+ Agap e

Theorem: If FORE stabilizes with
r =0, then for constant r, y — r

Lemma: Tuning of X using
discrete-time rules (Ziegler-Nichols)

Unit
Circle

Example: EGR Experiment (next slide) -



Set-point Regulation
°

Fast regulation of EGR valve position in Diesel engines

Throttle Intake Manifold

MAP 02,

\/f\ |’n |’m 17| Swirl Valve

. Injection System
{ T

e EGR: Recirculates Exhaust Gas
in Diesel engines

Subject to strong disturbances
= need aggressive controllers
(recaII exp unstable tranS|ents)

0.45
0.4

Exper\mental
- - - Simulated

0.35
0.3
025

Valve Position [V]

0.2

e |dentified valve transfer function:

34.6 34.7 348 349 35 35.1 352 353 35.4

voltage EGR position

Valve

. 2200
N bl il (S)_(s+164.4)(s+10.69)'

34.6 34.7 348 349 35 35.1 352 353 35.4
Time [s]

)

!
o

!
o
o

Duty Cycle




Set-point Regulation
°

Feedforward: o converges to suitable parametrization

o4 Bare EGR valve
H = = = EGR valve with elastic band H
ot res steacy-site I e x: steady-state input/output

* Measured steady-state I/O pairs

pairs (stiction!!)

e Red Solid: ugr = WT(r)a*, with
o™ steady-state for o

Valve Input [V]
°
0

0.1 #ﬁ*”*# T —
ooel | e Black dashed: ug = V' (r)a*

ol ] when pulling the valve with an
70.050_"'__‘ _____ — o irenos elastic band

20 40 60 80 100




Set-point Regulation
°

Laboratory experiments close to time-optimal

70 T T
60} - L . .
£, e Time-optimal:
< unrobust, obtained via
=400 L Reference .
8 5l — Adaptive FORE || trial and error
— — —Time Optimal
20 - - Pl
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ® PI i
Tuned using standard
e pra \ \ \ 1 — MATLAB tools
n!
||||
3 0.5 - .
2 I:.i e e Adaptive FORE:
S :
e ° n Response after
8 _os5} II: 1 a— o=
b M ‘ ‘ ‘ ‘ L (0.128, 0.087, 0.115)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time [s]

e Note the exponentially diverging voltage:
aggressive action for disturbance rejection on the real engine



Set-point Regulation
°

Experiments on Diesel engine testbench (JKU)

Experimental testbench at the Johannes Kepler Universitet (Linz, Austria)

e Specs: 2 liter, 4 cylinder passenger
car turbocharged Diesel engine

e Compared: to factory EGR valve
controller coded in ECU
(gain scheduled Pl with feedforward)

e Test cycle: Urban part of
New European Driving Cycle

e Relevance: Faster EGR positioning
= Reduced NO, emissions




Set-point Regulation
°

Adaptive FORE provides substantial performance increase

Position y [%]

Position y [%]

(normalized)

x

NO

100 T T T T 3
Position
— — — Reference
50 |- .
l P
ok - Y 1 i o
115 116 123 124 125 126

100

50 -

Position
— — — Reference

0
115

116

120

121 122 123 124 125 126
Time [s]

e Mean squared error: ECU = 6.68 (100%), FORE = 1.53 (23 %)
e Improvement most important with EGR almost closed (t ~ 117, 124)



More on hybrid
°

From discrete + continuous to hybrid dynamical systems

Continuous dynamical system Discrete dynamical system
dx(t
& = f(x(t)), Vt € R>g x(k +1) = g(x(k)), Vk € Z>o
dt = . . .
(possible discrete variables)
4
Hybrid dynamical system
dx(t, k
X(dt’ ) _ f(x(t,k)), x(t,k)eCCR"

x(t,k+1) = g(x(t, k), x(t,k)yeDCR"

e Continuous time domain t € R>g and Discrete time domain
k € Z>o merged into Hybrid time domain (t, k) € R>¢ x Z>
e Solution x can “flow” if € C, can "jump” if € D

e Fundamental stability results now available (Converse Lyapunov
theorems, ISS, invariance principle, £, stability) [Teel '04 — '12]



More on hybrid
°

Hybrid systems tools utilized in diverse scenarios

Sampled-data control design with saturation
e uniform sampling time assumed
e jumps correspond to sampling actions

@ln

L D

continuous

sampler

discrete ui ]C L ’P E Yy
Lazy sensors for reduced transmission rate ; 1
e reduce sample transmission over networks e r]::---P--:
. . . iExtra
e a special case of event-triggered sampling ¢ information
A 4
e jumps occur at samples transmissions 3 Scheduling
N e | policy
IMeasuremen
L devices
— Nonlinear stabilization via hybrid loops
g .-/ e enforces jumps of the controller state in some sets
A C T, ® SO as to guarantee decrease of suitable functions
Lt e useful, e.g., for overshoot reduction with SISO plants

— e enables design of hybrid H., controllers



More on hybrid

Impacting systems: billiard tracks billiard

ons V;(z,z) along hybrid trajectory
: . :

I = N

Linear Feedback 3: .sén.gr R AT N A curz
Hybrid Feedback =g

Idea: Follow the “closest” ball

among all the target balls z mir- & ®
rored by the walls i -
I e ® o |
Use Hybrid Lyapunov function o~ 1
V(z,z) = min |z —m(z)|p | 2aus CNRS | 2Au :
ZE{O,...,Q}%/_/ =i i
where Vie,2) | SUND CUE2 | SUND |
mo(z) = z (real ball) 2l |
mg(z) = Mpz+cp, k=1,...,8 | o ~ .
(mirrored balls) N B C T S T



classic.avi
Media File (video/avi)


hybrid.avi
Media File (video/avi)


	Clegg integrators and First Order Reset Elements (FORE) and an overview of hybrid dynamical systems
	Exponential stability of reset control systems
	Set-point regulation of linear plants using adaptive FORE
	Some additional hybrid applications

