
Clegg and FORE are hybrid Exponential Stability Set-point Regulation More on hybrid

Clegg integrators and First Order Reset Elements:
theoretical and experimental results for

a class of hybrid dynamical systems

Luca Zaccarian
LAAS-CNRS, Toulouse and University of Trento

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

April 15, 2013



Clegg and FORE are hybrid Exponential Stability Set-point Regulation More on hybrid

Outline

1 Clegg integrators and First Order Reset Elements (FORE) and
an overview of hybrid dynamical systems

2 Exponential stability of reset control systems

3 Set-point regulation of linear plants using adaptive FORE
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An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

∫ xcẋcv Bc

Ac

Example: PI controller

ẋc = Acxc + Bcv

∫ xcv

kp

ki

C

R vC
v −xc

ẋc =
1

RC
v

• In an analog integrator, the state
information is stored in a capacitor:
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An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

∫ xcẋcv Bc

Ac

Example: PI controller

ẋc = Acxc + Bcv

∫ xcv

kp

ki
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg’s integrator (1956):
• feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never

have opposite signs
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Hybrid dynamics may flow or jump

Hybrid Clegg integrator:

ẋc =
1

RC
v , allowed when xcv ≥ 0,

x+
c = 0, allowed when xcv ≤ 0,

• Flow set C: where xc may flow (1st eq’n)
• Jump set D: where xc may jump (2nd eq’n)

DC

xc

v

C
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg’s integrator (1956):
• feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never

have opposite signs
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Hybrid dynamical systems review: dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (flow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn (flow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D

C

D

ẋ ∈ F (x) x+ ∈ G(x)
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Hybrid dynamical systems review: continuous dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (flow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn (flow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D

{
ẋ1 = x2

ẋ2 = −x1 + x2(1− x2
1 )

−4 −2 0 2 4

−2

0

2

x
1

x
2

Van der Pol
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Hybrid dynamical systems review: discrete dynamics

H = (C,D,F ,G )

• n ∈ N (state dimension)

• C ⊆ Rn (flow set)

• D ⊆ Rn (jump set)

• F : C ⇒ Rn flow map)

• G : D ⇒ Rn (jump map)

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D

x+ ∈




{0, 1} if x = 0
{0, 2} if x = 1
{1, 2} if x = 2

A possible sequence of states
from x0 = 0 is:

(0 · 1 · 2 · 1)i i ∈ N



Clegg and FORE are hybrid Exponential Stability Set-point Regulation More on hybrid

Hybrid dynamical systems review: trajectories

C

D

x1x0

x2

x4 x5

x7

x3

x6

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D
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Hybrid dynamical systems review: hybrid time

The motion of the state is parameterized by two parameters:

• t ∈ R≥0, takes into account the elapse of time during the
continuous motion of the state;

• j ∈ Z≥0, takes into account the number of jumps during the
discrete motion of the state.

ξ(0, 0)

ξ(5, 0)

ξ(8, 3)
ξ(5, 1)

ξ(5, 2)

∀τ ∈ [0, 5], ξ(τ, 0) ∀τ ≥ 8, ξ(τ, 3)∀τ ∈ [5, 8], ξ(τ, 2)

ξ(8, 2)
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Hybrid dynamical systems review: hybrid time

E ⊆ R≥0 × Z≥0 is a compact
hybrid time domain if

E =
J−1⋃

j=0

([tj , tj+1]× {j})

where 0 = t0 ≤ t1 ≤ · · · ≤ tJ .

E is a hybrid time domain if for
all (T , J) ∈ R≥0 × Z≥0

E ∩ ([0,T ]× {0, 1, . . . , J})

is a compact hybrid time domain.

t

j

(t0,0) (t1,0)

(t1,1) (t2,1)

(t2,2)=(t3,2)

(t3,3) (t4,3)

(t4,4) (t5,4)

(t5,5)
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Hybrid dynamical systems review: solution

• Formally, a solution satisfies the flow dynamics when flowing and
satisfies the jump dynamics when jumping

t

j

ξ

t1 t2 t3 t4

1

2

3

4
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Hybrid dynamical systems review: Lyapunov theorem

Theorem Given the Euclidean norm |x | =
√
xT x and a hybrid system

H :

{
ẋ = f (x), x ∈ C
x+= g(x), x ∈ D,

aassume that function V : Rn → R≥0 satisfies for some
scalars c1, c2 positive and c3 positive:

c1|x |2 ≤ V (x) ≤ c2|x |2, ∀x ∈ C ∪ D ∪ G (D)

〈∇V (x), f (x)〉 ≤ −c3|x |2, ∀x ∈ C,
V (g(x))− V (x) ≤ −c3|x |2, ∀x ∈ D,

then the origin is uniformly globally exponentially stable (UGES)
for H, namely there exist K , λ > 0 such that all solutions satisfy

|ξ(t, j)| ≤ Keλ(t+j)|ξ(0, 0)|, ∀(t, j) ∈ dom ξ

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)
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Hybrid dynamical systems review: Lyapunov theorem

Theorem Given a closed set A ⊂ Rn and a hybrid system

H :

{
ẋ ∈ F (x), x ∈ C
x+∈ G (x), x ∈ D,

aassume that function V : Rn → R≥0 satisfies for some
α1, α2 ∈ K∞ and ρ positive definite:

α1(|x |A) ≤ V (x) ≤ α2(|x |A), ∀x ∈ C ∪ D ∪ G (D)

〈∇V (x), f 〉 ≤ −ρ(|x |A), ∀x ∈ C, f ∈ F (x),

V (g)− V (x) ≤ −ρ(|x |A), ∀x ∈ D, g ∈ G (x)

then A is uniformly globally asymptotically stable (UGAS) for H,
namely there exists β ∈ KL such that all solutions satisfy

|ξ(t, j)|A ≤ β(|ξ(0, 0)|A, t + j), ∀(t, j) ∈ dom ξ

Note: Lyapunov conditions comprise flow and jump conditions.
Note: UGAS is characterized in terms of hybrid time (t, j)
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Hybrid dynamics and the Clegg integrator (recall)

Hybrid Clegg integrator:

ẋc =
1

RC
v , allowed when xcv ≥ 0,

x+
c = 0, allowed when xcv ≤ 0,

• Flow set C: where xc may flow (1st eq’n)
• Jump set D: where xc may jump (2nd eq’n)

DC

xc

v

C
C

R

v

C

R vC1

vC2

Rd xc

-

-

• Clegg’s integrator (1956):
• feedback diodes: the positive part of
xc is all and only coming from the
upper capacitor (and viceversa)
• input diodes: when v ≤ 0 the upper
capacitor is reset and the lower one
integrates (and viceversa) [Rd � 1]
• As a consequence ⇒ v and xc never

have opposite signs
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Hybrid dynamics of the Clegg integrator (revisited)

Hybrid Clegg integrator:

ẋc (t, j) = (RC )−1v(t, j), xc (t, j)v(t, j) ≥ 0,

xc (t, j + 1) = 0, xc (t, j)v(t, j) ≤ 0,

• Flow set C := {(xc , v) : xcv ≥ 0} is closed
• Jump set D := {(xc , v) : xcv ≤ 0} is closed
• Stability is robust! (Teel 2006–2012)

DC

xc

v

C
Previous models (Clegg ’56, Horowitz ’73, Hollot ’04):

ẋc = (RC )−1v , if v 6= 0,
x+

c = 0, if v = 0,

• Imprecise: solutions ∃ s.t. xcv < 0, but
Clegg’s xc and v always have same sign!

• Unrobust: C is almost all R2

(arbitrary small noise disastrous)
• Unsuitable: Adds extra solutions
⇒ Lyapunov results too conservative!

CC

xc

v

C
D

D
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Example: Clegg response to a sine input
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• Input selected as v(t, j) = sin(t)
(dashed line below)
• Solution (bold black) as a function of
the hybrid time domain (red)
• State xc is reset upon entering the
2nd and 4th quadrants
(in this case ≡ at the zero crossing)

• Solid: projection of xc on
the ordinary time axis t
• Dash: projection of u on
the ordinary time axis t
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Stabilization using hybrid jumps to zero

First Order Reset Element (Horowitz ’74):

ẋc = acxc + bcv , xcv ≥ 0,

x+
c = 0, xcv ≤ 0,

Theorem If P is linear, minimum phase
and relative degree one, then

FORE
y

d

Puv xc

ac , bc or (ac , bc) large enough ⇒ global exponential stability
Theorem In the planar case, γdy shrinks to zero as parameters grow

Simulation
uses:

P =
1

s

bc = 1
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Interpretation: Resets remove overshoots, instability improves transient
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Piecewise quadratic Lyapunov function construction

• Given N ≥ 2 (number of sectors)
• Patching angles:

−θε = θ0 < θ1 < · · · < θN =
π

2
+ θε

• Patching hyperplanes (Cp = [0 · · · 0 1])

Θi =
[

01×(n−2) sin(θi ) cos(θi )
]T

• Sector matrices:

S0 := Θ0ΘT
N + ΘNΘT

0

Si := −(Θi Θ
T
i−1 + Θi−1ΘT

i ), i = 1, . . . ,N,

Sε1 :=




0(n−2)×(n−2) 0 0
0 0 sin(θε)
0 sin(θε) −2 cos(θε)




Sε2 :=




0(n−2)×(n−2) 0 0
0 −2 cos(θε) sin(θε)
0 sin(θε) 0




xc axis

P1

PN

P2

PN−1

y axis

P0

Sε1

Sε2

θ1

θ2

θ0

θN−2

θN−1 θN

S0

S2

S0

SN−1

SN

S1

Hybrid closed-loop:

ẋ = AF x + Bdd , x ∈ C
x+ = AJx , x ∈ D
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Piecewise quadratic Lyapunov theorem

Theorem: If the following LMIs in the green unknowns (where
Z = [In−2 0(n−2)×2]) are feasible:

(Flow)




AT
F Pi + PiAF + τFiSi PiBd CT

? −γI 0
? ? −γI


 < 0, i = 1, . . . ,N,

(Jump) AT
J P1AJ − P0 + τJS0 ≤ 0

(Cont ′ty) ΘT
i⊥ (Pi − Pi+1) Θi⊥ = 0, i = 0, . . . ,N − 1,

(Cont ′ty) ΘT
N⊥(PN − P0)ΘN⊥ = 0

(Overlap) AT
J P1AJ − P1 + τε1Sε1 ≤ 0

(Overlap) AT
J P1AJ − PN + τε2Sε2 ≤ 0

(Origin)




Z (AT
F P0 + P0AF )ZT ZP0Bd ZCT

? −γI 0
? ? −γI


 < 0,

then global exponential stability + finite L2 gain γdy from d to y
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Example 1: Clegg (ac = 0) connected to an integrator

• Block diagram:

1
s

y
d

xc

Clegg

ac = 0

• Output response (overcomes
linear systems limitations)

0 2 4 6 8 10
−1

−0.5
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0.5
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Clegg (a
c
=0)

Linear (a
c
=0)

• Quadratic Lyapunov functions
are unsuitable

• Gain γdy estimates (N = # of sectors)
N 2 4 8 50

gain γdy 2.834 1.377 0.914 0.87

• A lower bound:
√

π
8 ≈ 0.626

• Lyapunov func’n level sets for N = 4
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• P1, . . . ,P4 cover 2nd/4th quadrants
• P0 covers 1st/3rd quadrants
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Example 2: FORE (any ac) and linear plant (Hollot et al.)

• Block diagram (P = s+1
s(s+0.2) )

P y
d

xc
FORE

• ac = 1: level set with N = 50
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• Gain γdy estimates
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Linear CLS

Reset CLS (Thm 3, ACC 2005)

Reset CLS (this theorem)

• Time responses
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Stabilization using hybrid jumps to zero (recall)

First Order Reset Element (Horowitz ’74):

ẋc = acxc + bcv , xcv ≥ 0,

x+
c = 0, xcv ≤ 0,

Theorem If P is linear, minimum phase
and relative degree one, then

FORE
y

d

Puv xc

ac , bc or (ac , bc) large enough ⇒ global exponential stability
Theorem In the planar case, γdy shrinks to zero as parameters grow

Simulation
uses:

P =
1

s

bc = 1
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Interpretation: Resets remove overshoots, instability improves transient
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Set point adaptive regulation using hybrid jumps to zero

• Parametric feedforward uff = Ψ(r)Tα{
ẋc = acxc + bcv ,
α̇ = 0,

xcv ≥ 0,

{
x+

c = 0,

α+ = α + λ Ψ(r)
|Ψ(r)|2 xc ,

xcv ≤ 0,

FORE
y

d

Pr
++
uxcv

α
uff

Theorem: If FORE stabilizes with
r = 0, then for constant r , y → r

Lemma: Tuning of λ using
discrete-time rules (Ziegler-Nichols)

λ = 0

λ = 0.32

λ = 0.64

Unit
Circle

Example: EGR Experiment (next slide)
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Fast regulation of EGR valve position in Diesel engines

• EGR: Recirculates Exhaust Gas
in Diesel engines

• Subject to strong disturbances
⇒ need aggressive controllers
(recall exp. unstable transients)
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Experimental

Simulated
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• Identified valve transfer function:

EGR
Valve

voltage position

P(s) =
2200

(s + 164.4)(s + 10.69)
.
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Feedforward: α converges to suitable parametrization
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Bare EGR valve

EGR valve with elastic band

Measured steady−state I/O pairs • ?: steady-state input/output
pairs (stiction!!)

• Red Solid: uff = ΨT (r)α∗, with
α∗ steady-state for α

• Black dashed: uff = ΨT (r)ᾱ∗

when pulling the valve with an
elastic band
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Laboratory experiments close to time-optimal
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Adaptive FORE

Time Optimal

PI

• Time-optimal:
unrobust, obtained via
trial and error

• PI:
Tuned using standard
MATLAB tools

• Adaptive FORE:
Response after
α→ α∗ =
(0.128, 0.087, 0.115)

• Note the exponentially diverging voltage:
aggressive action for disturbance rejection on the real engine



Clegg and FORE are hybrid Exponential Stability Set-point Regulation More on hybrid

Experiments on Diesel engine testbench (JKU)

Experimental testbench at the Johannes Kepler Universitet (Linz, Austria)

• Specs: 2 liter, 4 cylinder passenger
car turbocharged Diesel engine

• Compared: to factory EGR valve
controller coded in ECU
(gain scheduled PI with feedforward)

• Test cycle: Urban part of
New European Driving Cycle

• Relevance: Faster EGR positioning
⇒ Reduced NOx emissions
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Adaptive FORE provides substantial performance increase
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• Mean squared error: ECU = 6.68 (100%), FORE = 1.53 (23 %)

• Improvement most important with EGR almost closed (t ≈ 117, 124)



Clegg and FORE are hybrid Exponential Stability Set-point Regulation More on hybrid

From discrete + continuous to hybrid dynamical systems

Continuous dynamical system Discrete dynamical system
dx(t)

dt
= f (x(t)), ∀t ∈ R≥0 x(k + 1) = g(x(k)), ∀k ∈ Z≥0

(possible discrete variables)︸ ︷︷ ︸
⇓

Hybrid dynamical system



dx(t, k)

dt
= f (x(t, k)), x(t, k) ∈ C ⊂ Rn

x(t, k + 1) = g(x(t, k)), x(t, k) ∈ D ⊂ Rn

• Continuous time domain t ∈ R≥0 and Discrete time domain
k ∈ Z≥0 merged into Hybrid time domain (t, k) ∈ R≥0 × Z≥0

• Solution x can “flow” if ∈ C, can “jump” if ∈ D
• Fundamental stability results now available (Converse Lyapunov
theorems, ISS, invariance principle, Lp stability) [Teel ’04 → ’12]
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Hybrid systems tools utilized in diverse scenarios

P

K

w z

yc

u y

continuous
ZOH

discrete

sampler

Sampled-data control design with saturation
• uniform sampling time assumed
• jumps correspond to sampling actions

Lazy sensors for reduced transmission rate
• reduce sample transmission over networks
• a special case of event-triggered sampling
• jumps occur at samples transmissions

K P
P

u y

N
Scheduling

policy

Extra
information

ξ
Measurement
devices

xp

xc
Nonlinear stabilization via hybrid loops
• enforces jumps of the controller state in some sets
• so as to guarantee decrease of suitable functions
• useful, e.g., for overshoot reduction with SISO plants
• enables design of hybrid H∞ controllers
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Impacting systems: billiard ball x tracks billiard ball z

Lyapunov functions Vi(x, z) along hybrid trajectory

Idea: Follow the “closest” ball
among all the target balls z mir-
rored by the walls

Linear Feedback
Hybrid Feedback

where

mk(z) = Mkz + ck, k = 1, . . . , 8
m0(z) = z (real ball)

(mirrored balls)

Use Hybrid Lyapunov function

V (x, z) = min
i∈{0,...,9}

|x−mi(z)|P︸ ︷︷ ︸
Vi(x,z)


classic.avi
Media File (video/avi)


hybrid.avi
Media File (video/avi)
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