Clegg integrators and First Order Reset Elements: theoretical and experimental results for a class of hybrid dynamical systems

Luca Zaccarian

LAAS-CNRS, Toulouse and University of Trento

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano April 15, 2013

Outline

- Clegg integrators and First Order Reset Elements (FORE) and an overview of hybrid dynamical systems
- Exponential stability of reset control systems
- 3 Set-point regulation of linear plants using adaptive FORE
- 4 Some additional hybrid applications

An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

Example: PI controller

 In an analog integrator, the state information is stored in a capacitor:

An analog integrator and its Clegg extension (1956)

Integrators: core components of dynamical control systems

Example: PI controller

Clegg and FORE are hybrid

000000000000000

$$\dot{x}_c = A_c x_c + B_c v$$

- Clegg's integrator (1956):
- feedback diodes: the positive part of
 x_c is all and only coming from the
 upper capacitor (and viceversa)
 - input diodes: when $v \le 0$ the upper capacitor is reset and the lower one integrates (and viceversa) $[R_d \ll 1]$
- As a consequence ⇒ v and x_c never have opposite signs

Hybrid Clegg integrator:

Clegg and FORE are hybrid

00000000000000

$$\dot{x}_c = \frac{1}{RC}v$$
, allowed when $x_c v \ge 0$, $x_c^+ = 0$, allowed when $x_c v \le 0$,

• Jump set \mathcal{D} : where x_c may jump (2nd eq'n)

- Clegg's integrator (1956):
- feedback diodes: the **positive** part of x_c is all and only coming from the **upper** capacitor (and viceversa)
- input diodes: when v < 0 the upper capacitor is reset and the lower one integrates (and viceversa) $[R_d \ll 1]$
- As a consequence $\Rightarrow v$ and x_c never have opposite signs

Hybrid dynamical systems review: dynamics

$$\mathcal{H} = (\mathcal{C}, \mathcal{D}, \mathcal{F}, \mathcal{G})$$

Clegg and FORE are hybrid

000000000000000

- $n \in \mathbb{N}$ (state dimension)
- $\mathcal{C} \subseteq \mathbb{R}^n$ (flow set)
- $\mathcal{D} \subseteq \mathbb{R}^n$ (jump set)
- $F: \mathcal{C} \rightrightarrows \mathbb{R}^n$ (flow map)
- $G: \mathcal{D} \rightrightarrows \mathbb{R}^n$ (jump map)

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \\ x^+ \in G(x), & x \in \mathcal{D} \end{array} \right.$$

Hybrid dynamical systems review: continuous dynamics

$$\mathcal{H} = (\mathcal{C}, \mathcal{D}, \mathcal{F}, \mathcal{G})$$

- $n \in \mathbb{N}$ (state dimension)
- $\mathcal{C} \subseteq \mathbb{R}^n$ (flow set)
- $\mathcal{D} \subseteq \mathbb{R}^n$ (jump set)
- $F: \mathcal{C} \rightrightarrows \mathbb{R}^n$ (flow map)
- $G: \mathcal{D} \rightrightarrows \mathbb{R}^n$ (jump map)

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \\ x^+ \in G(x), & x \in \mathcal{D} \end{array} \right.$$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 + x_2(1 - x_1^2) \end{cases}$$

Hybrid dynamical systems review: discrete dynamics

$$\mathcal{H} = (\mathcal{C}, \mathcal{D}, \mathcal{F}, \mathcal{G})$$

- $n \in \mathbb{N}$ (state dimension)
- $C \subseteq \mathbb{R}^n$ (flow set)
- $\mathcal{D} \subseteq \mathbb{R}^n$ (jump set)
- $F: \mathcal{C} \rightrightarrows \mathbb{R}^n$ flow map)
- $G: \mathcal{D} \rightrightarrows \mathbb{R}^n$ (jump map)

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \\ x^+ \in G(x), & x \in \mathcal{D} \end{array} \right.$$

$$x^+ \in \left\{ egin{array}{ll} \{0,1\} & \mbox{if } x=0 \\ \{0,2\} & \mbox{if } x=1 \\ \{1,2\} & \mbox{if } x=2 \end{array}
ight.$$

A possible sequence of states from $x_0 = 0$ is:

$$(0\cdot 1\cdot 2\cdot 1)^i$$
 $i\in N$

Hybrid dynamical systems review: trajectories

Clegg and FORE are hybrid

000000000000000

Clegg and FORE are hybrid

The motion of the state is parameterized by two parameters:

- $t \in \mathbb{R}_{\geq 0}$, takes into account the elapse of time during the continuous motion of the state;
- $j \in \mathbb{Z}_{\geq 0}$, takes into account the number of jumps during the discrete motion of the state.

Hybrid dynamical systems review: hybrid time

 $E \subseteq \mathbb{R}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is a compact hybrid time domain if

$$E = \bigcup_{j=0}^{J-1} ([t_j, t_{j+1}] \times \{j\})$$

where
$$0 = t_0 \le t_1 \le \cdots \le t_J$$
.

E is a **hybrid time domain** if for all $(T,J) \in \mathbb{R}_{\geq 0} \times \mathbb{Z}_{\geq 0}$

$$E\cap ([0,T]\times \{0,1,\ldots,J\})$$

is a compact hybrid time domain.

Hybrid dynamical systems review: solution

 Formally, a solution satisfies the flow dynamics when flowing and satisfies the jump dynamics when jumping

Theorem Given the Euclidean norm $|x| = \sqrt{x^T x}$ and a hybrid system

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} = f(x), & x \in \mathcal{C} \\ x^+ = g(x), & x \in \mathcal{D}, \end{array} \right.$$

aassume that function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfies for some scalars c_1 , c_2 positive and c_3 positive:

$$\begin{aligned}
c_1|x|^2 &\leq V(x) \leq c_2|x|^2, & \forall x \in \mathcal{C} \cup \mathcal{D} \cup G(\mathcal{D}) \\
\langle \nabla V(x), f(x) \rangle &\leq -c_3|x|^2, & \forall x \in \mathcal{C}, \\
V(g(x)) - V(x) &\leq -c_3|x|^2, & \forall x \in \mathcal{D},
\end{aligned}$$

then the origin is uniformly globally exponentially stable (UGES) for \mathcal{H} , namely there exist $K, \lambda > 0$ such that all solutions satisfy

$$|\xi(t,j)| \le Ke^{\lambda(t+j)}|\xi(0,0)|, \quad \forall (t,j) \in \text{dom } \xi$$

<u>Note</u>: Lyapunov conditions comprise **flow** and **jump** conditions.

Note: UGAS is characterized in terms of hybrid time (t,j)

Hybrid dynamical systems review: Lyapunov theorem

Theorem Given a closed set $\mathcal{A} \subset \mathbb{R}^n$ and a hybrid system

$$\mathcal{H}: \left\{ \begin{array}{ll} \dot{x} \in F(x), & x \in \mathcal{C} \\ x^+ \in G(x), & x \in \mathcal{D}, \end{array} \right.$$

aassume that function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfies for some $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and ρ positive definite:

$$\alpha_{1}(|x|_{\mathcal{A}}) \leq V(x) \leq \alpha_{2}(|x|_{\mathcal{A}}), \qquad \forall x \in \mathcal{C} \cup \mathcal{D} \cup G(\mathcal{D})
\langle \nabla V(x), f \rangle \leq -\rho(|x|_{\mathcal{A}}), \qquad \forall x \in \mathcal{C}, f \in F(x),
V(g) - V(x) \leq -\rho(|x|_{\mathcal{A}}), \qquad \forall x \in \mathcal{D}, g \in G(x)$$

then \mathcal{A} is uniformly globally asymptotically stable (UGAS) for \mathcal{H} , namely there exists $\beta \in \mathcal{KL}$ such that all solutions satisfy

$$|\xi(t,j)|_{\mathcal{A}} \leq \beta(|\xi(0,0)|_{\mathcal{A}}, t+j), \quad \forall (t,j) \in \text{dom } \xi$$

Note: Lyapunov conditions comprise flow and jump conditions.

Note: UGAS is characterized in terms of hybrid time (t,j)

Hybrid Clegg integrator:

Clegg and FORE are hybrid

$$\dot{x}_c = \frac{1}{RC}v$$
, allowed when $x_c v \ge 0$, $x_c^+ = 0$, allowed when $x_c v \le 0$,

• Jump set \mathcal{D} : where x_c may jump (2nd eq'n)

- feedback diodes: the **positive** part of x_c is all and only coming from the **upper** capacitor (and viceversa)
- input diodes: when v < 0 the upper capacitor is reset and the lower one integrates (and viceversa) $[R_d \ll 1]$
- As a consequence $\Rightarrow v$ and x_c never have opposite signs

Hybrid dynamics of the Clegg integrator (revisited)

Hybrid Clegg integrator:

Clegg and FORE are hybrid

$$\dot{x}_c(t,j) = (RC)^{-1}v(t,j), \quad x_c(t,j)v(t,j) \ge 0,$$

 $x_c(t,j+1) = 0, \quad x_c(t,j)v(t,j) \le 0,$

- Flow set $\mathcal{C} := \{(x_c, v) : x_c v \ge 0\}$ is closed $\sqrt[s]{v}$
- Jump set $\mathcal{D} := \{(x_c, v) : x_c v \leq 0\}$ is closed
- Stability is robust! (Teel 2006–2012)

Previous models (Clegg '56, Horowitz '73, Hollot '04):

$$\begin{aligned} \dot{x}_c &= (RC)^{-1}v, & \text{if } v \neq 0, \\ x_c^+ &= 0, & \text{if } v = 0, \end{aligned}$$

- Imprecise: solutions \exists s.t. $x_c v < 0$, but Clegg's x_c and v always have same sign!
- Unrobust: \mathcal{C} is almost all \mathbb{R}^2 (arbitrary small noise disastrous)
- Unsuitable: Adds extra solutions

Example: Clegg response to a sine input

Clegg and FORE are hybrid

000000000000000

- Input selected as $v(t,j) = \sin(t)$ (dashed line below)
- Solution (bold black) as a function of the hybrid time domain (red)
- State x_c is reset upon entering the 2nd and 4th quadrants (in this case \equiv at the zero crossing)

- Solid: projection of x_c on the ordinary time axis t
- Dash: projection of u on the ordinary time axis t

Stabilization using hybrid jumps to zero

First Order Reset Element (Horowitz '74):

$$\dot{x}_c = \underset{c}{a_c} x_c + \underset{c}{b_c} v, \qquad x_c v \ge 0,
x_c^+ = 0, \qquad x_c v \le 0,$$

Theorem If \mathcal{P} is linear, minimum phase and relative degree one, then

 a_c , b_c or (a_c, b_c) large enough \Rightarrow global exponential stability

Theorem In the planar case, γ_{dv} shrinks to zero as parameters grow

Simulation uses: $b_c = 1$

Interpretation: Resets remove overshoots, instability improves transient

Piecewise quadratic Lyapunov function construction

- Given $N \ge 2$ (number of sectors)
- Patching angles:

Clegg and FORE are hybrid

$$-\theta_{\epsilon} = \theta_0 < \theta_1 < \dots < \theta_N = \frac{\pi}{2} + \theta_{\epsilon}$$

- Patching hyperplanes $(C_p = [0 \cdots 0 1])^{\theta_2}$ $\Theta_i = \begin{bmatrix} 0_{1 \times (n-2)} & \sin(\theta_i) & \cos(\theta_i) \end{bmatrix}^T_{\theta_i} \quad S_2$
- Sector matrices:

$$S_0 := \Theta_0 \Theta_N^T + \Theta_N \Theta_0^T$$

$$S_i := -(\Theta_i \Theta_{i-1}^T + \Theta_{i-1} \Theta_i^T), \quad i = 1, \dots, N,$$

$$S_{\epsilon 1} := \left[egin{array}{ccc} 0_{(n-2) imes(n-2)} & 0 & 0 \ 0 & 0 & \sin(heta_\epsilon) \ 0 & \sin(heta_\epsilon) & -2\cos(heta_\epsilon) \ \end{array}
ight]$$

$$S_{\epsilon 2} := \begin{bmatrix} 0_{(n-2)\times(n-2)} & 0 & 0 \\ 0 & -2\cos(\theta_{\epsilon}) & \sin(\theta_{\epsilon}) \\ 0 & \sin(\theta_{\epsilon}) & 0 \end{bmatrix} \begin{array}{l} \textbf{Hybrid closed-loop:} \\ \dot{x} = A_{F}x + B_{d}d, & x \in \mathcal{C} \\ x^{+} = A_{J}x, & x \in \mathcal{D} \end{array}$$

$$\dot{x} = A_F x + B_d d, \quad x \in C$$
 $x^+ = A_I x \qquad x \in C$

Clegg and FORE are hybrid

Theorem: If the following LMIs in the green unknowns (where $Z = [I_{n-2} \ 0_{(n-2)\times 2}]$) are feasible:

$$(Flow) \left[\begin{array}{cccc} A_F^T P_i + P_i A_F + \tau_{Fi} S_i & P_i B_d & C^T \\ & \star & -\gamma I & 0 \\ & \star & & -\gamma I \end{array} \right] < 0, i = 1, \dots, N,$$

$$(Jump) \quad A_J^T P_1 A_J - P_0 + \tau_J S_0 \leq 0$$

$$(Cont'ty) \quad \Theta_{i\perp}^T \left(P_i - P_{i+1} \right) \Theta_{i\perp} = 0, \quad i = 0, \dots, N-1,$$

$$(Cont'ty) \quad \Theta_{N\perp}^T \left(P_N - P_0 \right) \Theta_{N\perp} = 0$$

$$(Overlap) \quad A_J^T P_1 A_J - P_1 + \tau_{\epsilon 1} S_{\epsilon 1} \leq 0$$

$$(Overlap) \quad A_J^T P_1 A_J - P_N + \tau_{\epsilon 2} S_{\epsilon 2} \leq 0$$

$$(Origin) \left[\begin{array}{cccc} Z(A_F^T P_0 + P_0 A_F) Z^T & Z P_0 B_d & Z C^T \\ & \star & -\gamma I & 0 \\ & \star & -\gamma I \end{array} \right] < 0,$$

then global exponential stability + finite \mathcal{L}_2 gain γ_{dy} from d to y

Example 1: Clegg $(a_c = 0)$ connected to an integrator

• Block diagram:

• Output response (overcomes linear systems limitations)

 Quadratic Lyapunov functions are unsuitable • Gain γ_{dy} estimates (N=# of sectors)

, u y		•	,,		
Ν	2	4	8	50	
gain γ_{dy}	2.834	1.377	0.914	0.87	

- A lower bound: $\sqrt{\frac{\pi}{8}} \approx 0.626$
- Lyapunov func'n level sets for N=4

- P_1, \ldots, P_4 cover 2nd/4th quadrants
- P_0 covers 1st/3rd quadrants

Example 2: FORE (any a_c) and linear plant (Hollot et al.)

• Block diagram $(\mathcal{P} = \frac{s+1}{s(s+0.2)})$

Clegg and FORE are hybrid

• $a_c = 1$: level set with N = 50

• Gain γ_{dv} estimates

Time responses

First Order Reset Element (Horowitz '74):

$$\dot{x}_c = \underset{c}{a_c} x_c + \underset{c}{b_c} v, \qquad x_c v \ge 0,
x_c^+ = 0, \qquad x_c v \le 0,$$

Theorem If \mathcal{P} is linear, minimum phase and relative degree one, then

 a_c , b_c or (a_c, b_c) large enough \Rightarrow global exponential stability

Theorem In the planar case, γ_{dv} shrinks to zero as parameters grow

Simulation uses: $b_c = 1$

Clegg and FORE are hybrid

Interpretation: Resets remove overshoots, instability improves transient

Set point adaptive regulation using hybrid jumps to zero

Theorem: If FORE stabilizes with r=0, then for constant $r, y \rightarrow r$

Clegg and FORE are hybrid

Lemma: Tuning of λ using discrete-time rules (Ziegler-Nichols)

Example: EGR Experiment (next slide)

Fast regulation of EGR valve position in Diesel engines

- EGR: Recirculates Exhaust Gas in Diesel engines
- Subject to strong disturbances
 ⇒ need aggressive controllers
 (recall exp. unstable transients)

Identified valve transfer function:

$$P(s) = \frac{\text{EGR} \quad position}{(s+164.4)(s+10.69)}$$

Feedforward: α converges to suitable parametrization

Clegg and FORE are hybrid

- ★: steady-state input/output pairs (stiction!!)
- Red Solid: $u_{ff} = \Psi^T(r)\alpha^*$, with α^* steady-state for α
- Black dashed: $u_{ff} = \Psi^T(r)\bar{\alpha}^*$ when pulling the valve with an elastic band

Laboratory experiments close to time-optimal

Note the exponentially diverging voltage:
 aggressive action for disturbance rejection on the real engine

- Time-optimal: unrobust, obtained via trial and error
- PI: Tuned using standard MATLAB tools
- Adaptive FORE: Response after $\alpha \rightarrow \alpha^* =$ (0.128, 0.087, 0.115)

Experiments on Diesel engine testbench (JKU)

Experimental testbench at the Johannes Kepler Universitet (Linz, Austria)

- **Specs**: 2 liter, 4 cylinder passenger car turbocharged Diesel engine
- Compared: to factory EGR valve controller coded in ECU (gain scheduled PI with feedforward)
- **Test cycle**: Urban part of New European Driving Cycle
- Relevance: Faster EGR positioning
 ⇒ Reduced NO_x emissions

Adaptive FORE provides substantial performance increase

- Mean squared error: ECU = 6.68 (100%), FORE = 1.53 (23 %)
- Improvement most important with EGR almost closed ($t \approx 117,\ 124$)

From discrete + continuous to hybrid dynamical systems

Continuous dynamical system

Clegg and FORE are hybrid

$$\frac{dx(t)}{dt} = f(x(t)), \ \forall t \in \mathbb{R}_{\geq 0}$$

Discrete dynamical system

$$x(k+1) = g(x(k)), \ \forall k \in \mathbb{Z}_{\geq 0}$$
 (possible discrete variables)

Hybrid dynamical system

$$\begin{cases} \frac{dx(t,k)}{dt} &= f(x(t,k)), & x(t,k) \in \mathcal{C} \subset \mathbb{R}^n \\ x(t,k+1) &= g(x(t,k)), & x(t,k) \in \mathcal{D} \subset \mathbb{R}^n \end{cases}$$

- Continuous time domain $t \in \mathbb{R}_{>0}$ and Discrete time domain $k \in \mathbb{Z}_{\geq 0}$ merged into Hybrid time domain $(t, k) \in \mathbb{R}_{\geq 0} \times \mathbb{Z}_{\geq 0}$
- Solution x can "flow" if $\in \mathcal{C}$, can "jump" if $\in \mathcal{D}$
- Fundamental stability results now available (Converse Lyapunov theorems, ISS, invariance principle, \mathcal{L}_p stability) [Teel '04 \rightarrow '12]

Hybrid systems tools utilized in diverse scenarios

Sampled-data control design with saturation

- uniform sampling time assumed
- jumps correspond to sampling actions

 $\textbf{Lazy sensors} \ \text{for reduced transmission rate} \\$

- reduce sample transmission over networks
- a special case of event-triggered sampling
- jumps occur at samples transmissions

Nonlinear stabilization via hybrid loops

- enforces jumps of the controller state in some sets
- so as to guarantee decrease of suitable functions
- useful, e.g., for overshoot reduction with SISO plants
- enables design of hybrid \mathcal{H}_{∞} controllers

Impacting systems: billiard ball x tracks billiard ball z

