Dynamic allocation of input-redundant control systems: theory and applications

Luca Zaccarian

Johannes Kepler Universität, Linz
February 4, 2010

Problem Data

\triangleright A linear plant with weak or strong input redundancy

- Weak: means that equilibria can be induced by different input patterns
- Strong: means that transients can be induced by different input patterns

$$
\begin{aligned}
\dot{x} & =A x+B u+B_{d} d \\
y & =C x+D u+D_{d} d,
\end{aligned}
$$

Def'n: A plant is input-redundant if one of the following two conditions is satisfied

- it is strongly input-redundant from u if it satisfies $\operatorname{Ker}\left(\left[\begin{array}{l}B \\ D\end{array}\right]\right) \neq \emptyset$; denote

$$
B_{\perp} \text { such that } \operatorname{Im}\left(B_{\perp}\right)=\operatorname{Ker}\left(\left[\begin{array}{l}
B \\
D
\end{array}\right]\right) ;
$$

- it is weakly input-redundant from u to y if $P^{\star}:=\lim _{s \rightarrow 0}\left(C(s I-A)^{-1} B+D\right)$ is finite and satisfies $\operatorname{Ker}\left(P^{\star}\right) \neq \emptyset$; denote

$$
B_{\perp} \text { such that } \operatorname{Im}\left(B_{\perp}\right)=\operatorname{Ker}\left(P^{\star}\right)
$$

Key idea

\triangleright Assume that a controller has been designed disregarding input redundancy

\triangleright Design an input allocator which

- exploits strong redundancy to achieve fast reallocation during transients
- exploits weak redundancy to achieve slow reallocation at the steady-state
\triangleright The allocator measures the controller output and adds a compensating signal
- Choose that signal as $B_{\perp} w$ for some w
- Pick w as the output of a pool of integrators (dynamic solution)

Linear solution - strong redundancy

$$
\begin{aligned}
\dot{w} & =-K B_{\perp}^{T} \bar{W}\left(u-u_{0}\right) \\
u & =y_{c}+B_{\perp} w,
\end{aligned}
$$

$\triangleright K$ diagonal allows to promote/penalize different redundant directions
$\triangleright \bar{W}$ diagonal allows to promote/penalize different actuators
Th'm: If $K>0$ and $B_{\perp}^{T} \bar{W} B_{\perp}>0$ then internal stability and output response y unaffected by allocator
\triangleright Role of K : changes convergence speed but not the steady-state input:

$$
u^{\star}=u_{0}+\left(I-B_{\perp}\left(B_{\perp}^{T} \bar{W} B_{\perp}\right)^{-1} B_{\perp}^{T} \bar{W}\right) y_{c}^{\star}
$$

which is the optimizer of $\min _{w} J(u):=\left(u-u_{0}\right)^{T} \bar{W}\left(u-u_{0}\right)$ (where $u=y_{c}^{\star}+B_{\perp} w$ is the steady-state plant input
\triangleright Role of \bar{W} : changes the steady-state input allocation
$\triangleright u_{0}$ is a useful drift term (will remove next for simplicity)

Example 1

\triangleright Randomly generated exponentially stable plant

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{cc|ccc}
-0.157 & -0.094 & 0.87 & 0.253 & 0.743 \\
-0.416 & -0.45 & 0.39 & 0.354 & 0.65 \\
\hline 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

\triangleright Plant is strongly input redundant (one direction) and weakly input redundant (two directions) - will use it during the rest of the talk
\triangleright Controller design:

- negative error feedback interconnection;
- inserting an integrator;
- stabilizing LQG controller only using first two input channels

Example 1 (simulation)

\triangleright Responses using $K=10 I$ and $\bar{W}=I$

Example 1 (changing \bar{W})

\triangleright Using $\bar{W}=\left[\begin{array}{ccc}100 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, then $\bar{W}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 100 & 0 \\ 0 & 0 & 1\end{array}\right]$ and finally $\bar{W}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 100\end{array}\right]$

Example 1 (changing K)

\triangleright Using $K=10$ (solid) and $K=0.01$ (dash-dotted)

Linear solution - weak redundancy

$$
\begin{aligned}
\dot{w} & =-\rho K B_{\perp}^{T} \bar{W} u \\
u & =y_{c}+B_{\perp} w
\end{aligned}
$$

$\triangleright K$ diagonal allows to promote/penalize different redundant directions
$\triangleright \bar{W}$ diagonal allows to promote/penalize different actuators
Th'm: If $K>0$ and $B_{\perp}^{T} \bar{W} B_{\perp}>0$ then internal stability and steady-state output response y unaffected by allocator for small enough ρ
\triangleright Proof uses two time scale arguments
\triangleright Same design procedures as before for K and \bar{W}
\triangleright Very useful when wanting signals to slowly drift in certain directions
\triangleright Can mix strong and weak redundant directions selecting the columns of B_{\perp}

Example 1 (revisited)

\triangleright Responses using $K=I$ and $\bar{W}=I$ (instability!)

Example 1 (revisited better)

\triangleright Responses using $K=0.1 I$ and $\bar{W}=I$

Example 1 (revisited even better)

\triangleright Responses using $K=\left[\begin{array}{cc}100 & 0 \\ 0 & 0.1\end{array}\right]$ and $\bar{W}=I$

Nonlinear solution - magnitude saturation

\triangleright Key idea is to make W nonlinear \Rightarrow penalize more and more each actuator as it approaches its magnitude saturation limit

$$
W\left(y_{u}\right)=\left(\operatorname{diag}\left((1+\epsilon) M-\operatorname{abs}\left(\operatorname{sat}_{M}\left(y_{u}\right)\right)\right)\right)^{-1}
$$

\triangleright Nonlinear allocation aims at keeping each input far from its saturation limits

$$
\begin{aligned}
\dot{w} & =-\rho K B_{\perp}^{T} W\left(y_{u}\right) y_{u} \\
y_{u} & =y_{c}+B_{\perp} w
\end{aligned}
$$

\triangleright Deal with saturation using existing tools: anti-windup compensation
\triangleright Rough idea: rely on nonlinear state feedback $v_{1}=k(x)$ ensuring that for a family of so-called feasible functions $y_{u}(\cdot)$, system

$$
\dot{x}_{a w}=A x_{a w}+B\left(\operatorname{sat}_{M}\left(y_{u}+k\left(x_{a w}\right)\right)-y_{u}\right)
$$

is \mathcal{L}_{2} stable from $y_{u}-\operatorname{sat}_{M}\left(y_{u}\right)$ to $x_{a w}$

Nonlinear solution - magnitude saturation (cont'd)

Th'm: The nonlinear system with allocator is GES before saturation. Moreover, for any feasible function $y_{u}(\cdot)$ the overall scheme (with saturation) recovers in an \mathcal{L}_{2} sense the response without saturation

Interpretation: anti-windup deals with saturation during transients; dynamic allocation avoids saturation at the steady-state

Example 1 (revisited with magnitude saturation)

\triangleright Input usage after allocation $[9.53 .377] \%\left(\right.$ note $\left.u_{2}^{*} \approx 0.5 \gg m_{2}=0.01\right)$

Nonlinear solution - magnitude and rate saturation

\triangleright Magnitude allocator $(K, W(\cdot))$ augmented with rate allocator $\left(K_{r}, W_{r}\right)$ only acting at transients
\triangleright Overall solution has an always well-posed algebraic loop

$$
\begin{aligned}
\dot{w} & =-K B_{\perp}^{T} W\left(y_{u}\right) y_{u}-K_{r} B_{\perp}^{T} W_{r} \mathrm{dz}_{R}\left(W_{r}\left(y_{c, d}+B_{\perp} \dot{w}\right)\right) \\
y_{u} & =y_{c}+B_{\perp} w \\
W\left(y_{u}\right) & =\left(\operatorname{diag}\left((1+\epsilon) M-\operatorname{abs}\left(\operatorname{sat}_{M}\left(y_{u}\right)\right)\right)\right)^{-1}
\end{aligned}
$$

\triangleright Algebraic loop can be replaced by arbitrarily fast strictly proper dynamics
\triangleright Anti-windup action generalizes to ensuring that for a family of so-called feasible functions $y_{u}(\cdot)$, system

$$
\begin{aligned}
\dot{x}_{a w} & =A x_{a w}+B\left(\operatorname{sat}_{M}\left(\delta_{a w}+y_{u}\right)-y_{u}\right) \\
\dot{\delta}_{a w} & =\operatorname{sat}_{R}\left(y_{u, d}+k_{r}\left(\left[\begin{array}{c}
x_{a w} \\
\delta_{a w}
\end{array}\right]\right)\right)-y_{u, d}
\end{aligned}
$$

is \mathcal{L}_{2} stable from $\left[\begin{array}{c}y_{u}-\operatorname{sat}_{M-\varepsilon}\left(y_{u}\right) \\ y_{u, d}-\operatorname{sat}_{R-\varepsilon}\left(y_{u, d}\right)\end{array}\right]$ to $\left(x_{a w}, \delta_{a w}\right)$.

Nonlinear solution - magnitude and rate saturation (cont'd)

Th'm The nonlinear system with allocator is semiglobally ES before saturation.
Moreover, for any feasible function $y_{u}(\cdot)$ the overall scheme (with saturation) recovers in an \mathcal{L}_{2} sense the response without saturation

\triangleright Interpretation: the two allocators are independent as long as the magnitude one is slow enough
\triangleright Once again AW deals with (rate and magnitude) saturation during transients while allocator affects transients (rate) and steady state (mag)
\triangleright Future research: combined recipes for AW and allocator to optimize transients

Example 1 (revisited with magnitude and rate saturation)

\triangleright Magnitude and rate saturation levels are $\left[\begin{array}{c}M \\ R\end{array}\right]=\left[\begin{array}{ccc}1 & 0.01 & 0.2 \\ 0.3 & 10 & 1\end{array}\right]$

Example 2

\triangleright Plant is ES. Magnitude and rate saturation levels are $\left[\begin{array}{c}M \\ R\end{array}\right]=\left[\begin{array}{ccc}100 & 1 \\ 0.1 & 100\end{array}\right]$

Application: plasma position and elongation control

\triangleright Frascati Tokamak Upgrade: $\Delta \Psi=$ plasma horiz. position, $I_{p}=$ plasma current

$\triangleright V$ coil: very slow and powerful; F coil: fast and squeezes the plasma
\triangleright Goal: Want to use the F coil to perform two actions:

- high bandwith disturbance rejection on $\Delta \Psi$
- low bandwith elongation regulation

Solution with allocator

\triangleright Transfer (slowly) the control authority from F to V using the dynamic allocator

\triangleright Zoom of the allocator block (note the drift term $u_{0}=u_{r}$ which is now a reference signal for I_{F})

Experiments: F current regulation

$\triangleright \mathrm{F}$ current is slowly regulated without affecting $\Delta \Psi$

From current to elongation regulation

\triangleright An approximately known nonlinear static map f relates I_{F} to the elongation e

\triangleright Invert the map f to perform elongation regulation

Experiments: Elongation regulation

Joint European Torus (JET) plasma shape control

- We want to control the plasma shape on a poloidal cross section.
- Shape is described by a finite number of geometrical parameters called gaps.
- Gaps are defined as the distances between the plasma boundary and the first wall along certain segments.
- Gaps values are evaluated from magnetic sensor measurements by estimation algorithms.
- We want to control:

32 outputs.

JET plasma shape control

- JET has 8 poloidal field (PF) coils available as actuators for plasma shape control.
- JET PF coils are connected to form 9 circuits.
- Control inputs represented by currents flowing in the circuits.
- Inputs available:

$$
9 \text { control inputs. }
$$

JET plasma shape control

- Nr. controlled outputs $>$ Nr. control inputs, so not all desired reference shapes can be obtained exactly.
- Current solution, XSC (eXtreme Shape Controller), is a linear compensator which minimizes the steady state error $\|r-y\|_{2}$; XSC is designed considering a linearized model (CREATE-L) of the plasma shape response around an equilibrium configuration.
- Problem: input saturations are not taken into account.
- Input saturations can cause losses in terms of: performance, disturbance rejection capability, stability.
- Proposed solution: add an input dynamic allocator block between the linear controller and the plant for saturation avoidance.

Allocator for input redundant plants

- Essential features of the dynamic allocator seen before

$$
\begin{aligned}
\dot{w} & =-\rho K B_{\perp}^{T} \bar{W}\left(u-u_{0}\right) \\
u & =y_{c}+B_{\perp} w
\end{aligned}
$$

- K diagonal allows to promote/penalize different redundant directions
- \bar{W} diagonal allows to promote/penalize different actuators
- ρ positive scalar gives convergence speed
- The interconnected system converges to a value u^{\star} which minimizes the function $J=\left(u-u_{0}\right)^{T} \bar{W}\left(u-u_{0}\right)$ under the constraint $u=y_{c}+B_{\perp} w$.

Allocator for input redundant plants

- In strongly input redundant plants $(\operatorname{ker}(B) \cap \operatorname{ker}(D) \neq \emptyset)$ choosing B_{\perp} so that $\operatorname{Im}\left(B_{\perp}\right)=\operatorname{ker}(B) \cap \operatorname{ker}(D)$ the allocator action results invisible at the plant output.
- In weakly input redundant plants $\left(\operatorname{ker}\left(P^{\star}\right) \neq \emptyset\right.$, with $P^{\star}:=P(0)$ and $\left.P(s)=C(s I-A)^{-1} B+D\right)$ choosing B_{\perp} so that $\operatorname{Im}\left(B_{\perp}\right)=\operatorname{ker}\left(P^{\star}\right)$ the allocator action perturbs the plant output just in the transient, but not at steady state.

Input allocation for non redundant plants

- Many plants are not even weakly redundant, namely

$$
\operatorname{ker}\left(P^{\star}\right)=\emptyset \quad \Longleftrightarrow \quad \operatorname{rank}\left(P^{\star}\right)=n_{u}
$$

this is a generic situation for "square" and "tall" plants, i.e. whenever $n_{u} \leq n_{y}$

- In this case, input allocation inevitably affects both the transient and the steady state output response
- A trade off arises between desirable input modifications, aimed at keeping the input inside a favorable region, and the correspondingly induced undesired output modifications, which should be kept as small as possible

Cost function and new allocator

- We introduce a more general cost function [before]

$$
J\left(u^{\star}, \delta y^{\star}\right) \quad\left[\left(u-u_{0}\right)^{T} \bar{W}\left(u-u_{0}\right)\right]
$$

measuring the trade-off between the modified steady state value of the plant input u^{\star} and the associated output modification δy^{\star} with respect to the original y^{\star} (the superscript \star denotes the steady state value).

- The new allocator is described by the relations [before] :

$$
\begin{aligned}
\dot{w} & =-\rho K\left(\nabla J\left[\begin{array}{c}
I^{\star}
\end{array}\right] B_{0}\right)^{T} \\
u & =y_{c}+B_{0} w
\end{aligned}\left[\begin{array}{rl}
\dot{w} & =-\rho K B_{\perp}^{T} \bar{W}\left(u-u_{0}\right) \\
u & =y_{c}+B_{\perp} w
\end{array}\right]
$$

where $w \in \mathbb{R}^{n_{w}}$ represents the allocator state, ρ is a positive scalar, K is a symmetric positive definite matrix and B_{0} is a suitable full column rank matrix, generalizing the matrix B_{\perp}.

Allocator interconnection

This new allocator should be interconnected to the unconstrained closed-loop via the equations

$$
\begin{aligned}
u_{c} & =y-P^{\star} B_{0} w \\
u & =y_{c}+B_{0} w .
\end{aligned}
$$

\triangleright The signal $P^{\star} y_{a}$ ensures that the allocator does not "fight" against the controller at the steady-state (use two time scales again in proof)

Allocator parameters and convergence theorem

\triangleright In the allocator equation given before:

$$
\begin{aligned}
\dot{w} & =-\rho K\left(\nabla J\left[\begin{array}{c}
I \\
P^{\star}
\end{array}\right] B_{0}\right)^{T} \\
u & =y_{c}+B_{0} w
\end{aligned}
$$

- The matrix B_{0} is selected considering that each of its columns corresponds to an "allocation direction", which will be dynamically weighted by the corresponding component of w.
- The selection of K as a diagonal positive definite matrix allows the designer to specify some fixed relative weights among the directions given by B_{0}.
- The parameter ρ specifies the allocator convergence speed.

Th'm Under some mild technical assumptions, the allocator is such that under constant inputs, $(u, \delta y)$ converge to the minimum of J.

Example of a cost function

A possible selection of the cost function is

$$
J(u, \delta y)=\sum_{i=1}^{n_{u}} a_{i} \mathrm{dz}\left(u_{i}\right)^{2}+\sum_{i=1}^{n_{y}} b_{i}\left(\delta y_{i}\right)^{2}
$$

where $\mathrm{dz}\left(u_{i}\right)=\operatorname{sign}\left(u_{i}\right) \max \left\{0,\left|u_{i}\right|-1\right\}, a_{i} \geq 0, i=1, \ldots, n_{u}$ and $b_{i}>0 i=1, \ldots, n_{y}$.

Alternative non symmetric choices are possible (see paper).

Choice of the matrix B_{0}

- If B_{0} is chosen as a full rank square matrix $B_{0} \in \mathbb{R}^{n_{u} \times n_{u}}$, the allocator can give a contribution in every direction of the input space.
- We can decide to trade some allocation degrees of freedom for ensuring that ν selected outputs will remain unchanged at steady state.
- In the same spirit, we can decide to trade some allocation degrees of freedom for ensuring that μ selected inputs will remain unchanged at every time.
- The maximum number of outputs or inputs we can maintain unchanged is given by:

$$
\nu+\mu<n_{u}
$$

Open loop simulations - Test 1

- Input ranges (red), controller output (blue), steady state allocated input (green).
- ID1 is moved away from saturation after the reallocation.
- The output (red shape) is consequently modified with respect to the nominal one (blue shape), but the error (red bars) is maintened quite small.

Open loop simulations - Test 1

Open loop simulations - Test 2

- By increasing the output penalties $\left(b_{i}=3 \cdot 10^{8}\right)$ the resulting output steady state error can be reduced.
- On the other hand, the distance of ID1 from thes aturation now is smaller.

Open loop simulations - Test 2

Open loop simulations - Test 3

- The output penalties are the same of Test $1\left(b_{i}=3 \cdot 10^{6}\right)$.
- The matrix B_{0} is changed in order to fix 5 outputs (CV-RX, CV-ZX, ZSOGB, RSIGB and RSOGB, i.e. X-point and strike points) and one input (IP4T current).
- Note that the fixed quantities actually take the nominal values.
- ID1 is kept far from saturation, while some output errors increas.

Open loop simulations - Test 3

Closed loop simulations

Shape references move from a configuration to a new one:

- constant until time $t_{1}=61 \mathrm{~s}$,
- ramp up in the interval $\left[t_{1}, t_{2}\right]$,
- constant again after $t_{2}=61.5 \mathrm{~s}$.

Without the allocator, the controller commands $100 k A$ of current (lower figure, red), way beyond the range [-19kA, $0 k A$].
So current in the D1 circuit is permanently saturated at 0 (upper figure,

 red).

With the allocator, current in the D1 circuit saturates only during the transient (upper figure, blue).

Closed loop simulations

Without the allocator before t_{1} the RMS shape error (red) is small, because the current in D1 is not saturated so much, but after t_{2} the steady state error increases.

With the allocator (blue) before t_{1} the current in D1 is moved away from the saturation at the price of an increased shape error, but after t_{2} the reallocation results in a smaller error.

Conclusions

- Dynamic allocation scheme proposed for the linear case
- Input redundancy can be fake, then trade-off minimizing a nonlinear cost
- No need to compute explicitly the minimum (hard for nonlinear): allocator converges to it with speed ρ
- Applications in plasma control: allocator parameters penalize physically relevant quantities

Extensions and future work

- Apply to nonlinear plants: some results with satellite control, compliant robotics
- Include actuators dynamics: preliminary results obtained with control of hybrid cars
- Extend set point regulation to reference tracking: results under investigation with application to HyperSonic Vehicles

