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Problem Data

⊲ A linear plant with weak or strong input redundancy

• Weak: means that equilibria can be induced by different input patterns

• Strong : means that transients can be induced by different input patterns

ẋ = Ax + Bu + Bdd

y = Cx + Du + Ddd,

Def’n: A plant is input-redundant if one of the following two conditions is satisfied

• it is strongly input-redundant from u if it satisfies Ker ([ B
D ]) 6= ∅; denote

B⊥ such that Im(B⊥) = Ker ([ B
D ]) ;

• it is weakly input-redundant from u to y if P ⋆ := lim
s→0

(C(sI − A)−1B+D)

is finite and satisfies Ker(P ⋆) 6= ∅; denote

B⊥ such that Im(B⊥) = Ker(P ⋆).
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Key idea

⊲ Assume that a controller has been designed disregarding input redundancy

ẋc = Acxc + Bcy + Brr

yc = Ccxc + Dcy + Drr,

r

d

u y
Plant

yc Input
AllocatorController

⊲ Design an input allocator which

• exploits strong redundancy to achieve fast reallocation during transients

• exploits weak redundancy to achieve slow reallocation at the steady-state

⊲ The allocator measures the controller output and adds a compensating signal

• Choose that signal as B⊥w for some w

• Pick w as the output of a pool of integrators (dynamic solution)
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Linear solution - strong redundancy

ẇ = −KBT
⊥W̄ (u − u0)

u = yc + B⊥w,

⊲ K diagonal allows to promote/penalize different redundant directions

⊲ W̄ diagonal allows to promote/penalize different actuators

Th’m : If K > 0 and BT
⊥

W̄B⊥ > 0 then internal stability and output response y

unaffected by allocator

⊲ Role of K : changes convergence speed but not the steady-state input:

u⋆ = u0 +
(

I − B⊥(BT
⊥W̄B⊥)−1BT

⊥W̄
)

y⋆
c

which is the optimizer of min
w

J(u) := (u − u0)
T W̄ (u − u0) (where

u = y⋆
c + B⊥w is the steady-state plant input

⊲ Role of W̄ : changes the steady-state input allocation

⊲ u0 is a useful drift term (will remove next for simplicity)
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Example 1

⊲ Randomly generated exponentially stable plant





A B

C D



 =









−0.157 −0.094 0.87 0.253 0.743

−0.416 −0.45 0.39 0.354 0.65

0 1 0 0 0









.

⊲ Plant is strongly input redundant (one direction) and weakly input redundant

(two directions) - will use it during the rest of the talk

⊲ Controller design:

• negative error feedback interconnection;

• inserting an integrator;

• stabilizing LQG controller only using first two input channels
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Example 1 (simulation)

⊲ Responses using K = 10I and W̄ = I
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Example 1 (changing W̄ )

⊲ Using W̄ =
[

100 0 0
0 1 0
0 0 1

]

, then W̄ =
[

1 0 0
0 100 0
0 0 1

]

and finally W̄ =
[

1 0 0
0 1 0
0 0 100

]
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Example 1 (changing K)

⊲ Using K = 10 (solid) and K = 0.01 (dash-dotted)
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Linear solution - weak redundancy

ẇ = −ρKBT
⊥

W̄u

u = yc + B⊥w,

⊲ K diagonal allows to promote/penalize different redundant directions

⊲ W̄ diagonal allows to promote/penalize different actuators

Th’m : If K > 0 and BT
⊥

W̄B⊥ > 0 then internal stability and steady-state

output response y unaffected by allocator for small enough ρ

⊲ Proof uses two time scale arguments

⊲ Same design procedures as before for K and W̄

⊲ Very useful when wanting signals to slowly drift in certain directions

⊲ Can mix strong and weak redundant directions selecting the columns of B⊥
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Example 1 (revisited)

⊲ Responses using K = I and W̄ = I (instability!)
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Example 1 (revisited better)

⊲ Responses using K = 0.1I and W̄ = I
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Example 1 (revisited even better)

⊲ Responses using K = [ 100 0
0 0.1 ] and W̄ = I
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Nonlinear solution - magnitude saturation

⊲ Key idea is to make W nonlinear ⇒ penalize more and more each actuator as

it approaches its magnitude saturation limit

W (yu) =
(

diag((1 + ǫ)M − abs(satM (yu)))
)−1

⊲ Nonlinear allocation aims at keeping each input far from its saturation limits

ẇ = −ρKBT
⊥

W (yu)yu

yu = yc + B⊥w

⊲ Deal with saturation using existing tools: anti-windup compensation

⊲ Rough idea: rely on nonlinear state feedback v1 = k(x) ensuring that for a

family of so-called feasible functions yu(·), system

ẋaw = Axaw + B (satM (yu + k(xaw)) − yu)

is L2 stable from yu − satM (yu) to xaw

12



'

&

$

%

Nonlinear solution - magnitude saturation (cont’d)

Th’m : The nonlinear system with allocator is GES before saturation. Moreover,

for any feasible function yu(·) the overall scheme (with saturation) recovers in an

L2 sense the response without saturation

r

Controller
yc

Allocator
Input

yaw

+

+

v1

+

- +

-

Anti-windup
compensator

yu

Saturation
Magnitude

u y
Plant

d

⊲ Interpretation : anti-windup deals with saturation during transients; dynamic

allocation avoids saturation at the steady-state
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Example 1 (revisited with magnitude saturation)

⊲ Input usage after allocation [9.5 3.37 7]% (note u∗
2 ≈ 0.5 ≫ m2 = 0.01)
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Nonlinear solution - magnitude and rate saturation

⊲ Magnitude allocator (K, W (·)) augmented with rate allocator (Kr, Wr) only

acting at transients

⊲ Overall solution has an always well-posed algebraic loop

ẇ = −KBT
⊥W (yu)yu − KrB

T
⊥WrdzR(Wr(yc,d + B⊥ẇ))

yu = yc + B⊥w

W (yu) =
`

diag((1 + ǫ)M − abs(satM (yu)))
´

−1

,

⊲ Algebraic loop can be replaced by arbitrarily fast strictly proper dynamics

⊲ Anti-windup action generalizes to ensuring that for a family of so-called feasible

functions yu(·), system

ẋaw = Axaw + B(satM (δaw + yu) − yu)

δ̇aw = satR

(

yu,d + kr

([ xaw

δaw

]))

− yu,d

is L2 stable from
[

yu−satM−ε(yu)
yu,d−satR−ε(yu,d)

]

to (xaw, δaw).
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Nonlinear solution - magnitude and rate saturation (cont’d)

Th’m The nonlinear system with allocator is semiglobally ES before saturation.

Moreover, for any feasible function yu(·) the overall scheme (with saturation)

recovers in an L2 sense the response without saturation

yaw

+

- +

Anti-windup
compensator

1

s

+

-

δ u y
Plant

d
Saturation Saturation

MagnitudeRate

r

Controller Allocator
Input

yc,d

yc

yu,d

v1

yu
+

⊲ Interpretation : the two allocators are independent as long as the magnitude

one is slow enough

⊲ Once again AW deals with (rate and magnitude) saturation during transients

while allocator affects transients (rate) and steady state (mag)

⊲ Future research: combined recipes for AW and allocator to optimize transients
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Example 1 (revisited with magnitude and rate saturation)

⊲ Magnitude and rate saturation levels are [ M
R ] = [ 1 0.01 0.2

0.3 10 1 ]
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Example 2

⊲ Plant is ES. Magnitude and rate saturation levels are [ M
R ] = [ 100 1

0.1 100 ]
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Application: plasma position and elongation control

⊲ Frascati Tokamak Upgrade: ∆Ψ = plasma horiz. position, Ip = plasma current

iFFF

iVFF iP

∆Ψ

PlantiFPID

iV

iF
PID +

⊲ V coil: very slow and powerful; F coil: fast and squeezes the plasma

⊲ Goal: Want to use the F coil to perform two actions:

• high bandwith disturbance rejection on ∆Ψ

• low bandwith elongation regulation
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Solution with allocator

⊲ Transfer (slowly) the control authority from F to V using the dynamic allocator

∆iF

∆iV

Allocator iVr

iFr

iFFF

iVFF iP

∆Ψ

PlantiFPID

iV

iFPID
+

++

⊲ Zoom of the allocator block (note the drift term u0 = ur which is now a

reference signal for IF )

gδya ue

Allocator

1
s

ur

u

−
+

B⊥ −ρBT
⊥

W
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Experiments: F current regulation

⊲ F current is slowly regulated without affecting ∆Ψ
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From current to elongation regulation

⊲ An approximately known nonlinear static map f relates IF to the elongation e

∆iF

∆iV

Allocator

îF
iVr

ˆiFr

κ

κr

iFFF

iVFF iP

∆Ψ

PlantiFPID

iV

iFPID + +

+

f−1

f−1

⊲ Invert the map f to perform elongation regulation
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Experiments: Elongation regulation
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Joint European Torus (JET) plasma shape control

• We want to control the plasma shape on a poloidal cross section.

• Shape is described by a finite number of geometrical parameters called gaps .

• Gaps are defined as the distances

between the plasma boundary and

the first wall along certain seg-

ments.

• Gaps values are evaluated from

magnetic sensor measurements by

estimation algorithms.

• We want to control:

32 outputs .
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JET plasma shape control

• JET has 8 poloidal field (PF) coils

available as actuators for plasma

shape control.

• JET PF coils are connected to form

9 circuits.

• Control inputs represented by cur-

rents flowing in the circuits.

• Inputs available:

9 control inputs .

Iron Core

Vacuum

Vessel

Coil P3
Coil P2

Coil P3

Coil P2

C
o

il 
P

1

Toroidal Coils

Divertor Coils

(D1, D2, D3 and D4)

Coil P4

Coil P4
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JET plasma shape control

• Nr. controlled outputs > Nr. control inputs , so not all desired reference

shapes can be obtained exactly.

• Current solution, XSC (eXtreme Shape Controller), is a linear compensator

which minimizes the steady state error ‖r − y‖2; XSC is designed

considering a linearized model (CREATE-L) of the plasma shape response

around an equilibrium configuration.

• Problem : input saturations are not taken into account.

• Input saturations can cause losses in terms of: performance, disturbance

rejection capability, stability.

• Proposed solution : add an input dynamic allocator block between the

linear controller and the plant for saturation avoidance .
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Allocator for input redundant plants

• Essential features of the dynamic allocator seen before

ẇ = −ρKBT
⊥W̄ (u − u0)

u = yc + B⊥w

Controller
Plant

d
r yc u y

Allocator

+

• K diagonal allows to promote/penalize different redundant directions

• W̄ diagonal allows to promote/penalize different actuators

• ρ positive scalar gives convergence speed

• The interconnected system converges to a value u⋆ which minimizes the

function J = (u − u0)
T W̄ (u − u0) under the constraint u = yc + B⊥w.
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Allocator for input redundant plants

• In strongly input redundant plants (ker(B) ∩ ker(D) 6= ∅) choosing B⊥ so

that Im(B⊥) = ker(B) ∩ ker(D) the allocator action results invisible at

the plant output.

• In weakly input redundant plants (ker(P ⋆) 6= ∅,with P ⋆ := P (0) and

P (s) = C(sI −A)−1B + D) choosing B⊥ so that Im(B⊥) = ker(P ⋆)

the allocator action perturbs the plant output just in the transient, but not at

steady state.
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Input allocation for non redundant plants

• Many plants are not even weakly redundant, namely

ker(P ⋆) = ∅ ⇐⇒ rank(P ⋆) = nu

this is a generic situation for “square” and “tall” plants, i.e. whenever nu ≤ ny

• In this case, input allocation inevitably affects both the transient and the

steady state output response

• A trade off arises between desirable input modifications , aimed at keeping

the input inside a favorable region, and the correspondingly induced

undesired output modifications , which should be kept as small as possible
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Cost function and new allocator

• We introduce a more general cost function [before]

J(u⋆, δy⋆) [(u − u0)
T W̄ (u − u0)]

measuring the trade-off between the modified steady state value of the plant

input u⋆ and the associated output modification δy⋆ with respect to the

original y⋆ (the superscript ⋆ denotes the steady state value).

• The new allocator is described by the relations [before] :

ẇ = −ρK
(

∇J
[

I
P ⋆

]

B0

)T

u = yc + B0w





ẇ = −ρKBT
⊥

W̄ (u − u0)

u = yc + B⊥w





where w ∈ R
nw represents the allocator state, ρ is a positive scalar, K is a

symmetric positive definite matrix and B0 is a suitable full column rank

matrix, generalizing the matrix B⊥.
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Allocator interconnection

This new allocator should be interconnected to the unconstrained closed-loop via

the equations

uc = y − P ⋆B0w

u = yc + B0w.

Controller
Plant

d
r yc u y

Allocator

+

ya δy

uc

P ⋆
+

−

⊲ The signal P ⋆ya ensures that the allocator does not “fight” against the

controller at the steady-state (use two time scales again in proof)
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Allocator parameters and convergence theorem

⊲ In the allocator equation given before:

ẇ = −ρK
(

∇J
[

I
P ⋆

]

B0

)T

u = yc + B0w

• The matrix B0 is selected considering that each of its columns corresponds

to an “allocation direction” , which will be dynamically weighted by the

corresponding component of w.

• The selection of K as a diagonal positive definite matrix allows the designer

to specify some fixed relative weights among the directions given by B0.

• The parameter ρ specifies the allocator convergence speed .

Th’m Under some mild technical assumptions, the allocator is such that under

constant inputs, (u, δy) converge to the minimum of J .
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Example of a cost function

A possible selection of the cost function is

J(u, δy) =

nu
∑

i=1

aidz(ui)
2 +

ny
∑

i=1

bi(δyi)
2

where dz(ui) = sign(ui) max{0, |ui| − 1}, ai ≥ 0, i = 1, . . . , nu and

bi > 0 i = 1, . . . , ny .
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Alternative non symmetric choices are possible (see paper).
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Choice of the matrix B0

• If B0 is chosen as a full rank square matrix B0 ∈ R
nu×nu , the allocator can

give a contribution in every direction of the input space.

• We can decide to trade some allocation degrees of freedom for ensuring that

ν selected outputs will remain unchanged at steady state .

• In the same spirit, we can decide to trade some allocation degrees of freedom

for ensuring that µ selected inputs will remain unchanged at every time .

• The maximum number of outputs or inputs we can maintain unchanged is

given by:

ν + µ < nu.
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Open loop simulations - Test 1

IPRIM IP4T IP4IM IPFX ISHP ID1  ID2  ID3  ID4  
−5

0

5x 10
4 Poloidal coils currents

u 
[A

]

• Input ranges (red), controller output (blue), steady state allocated input

(green).

• ID1 is moved away from saturation after the reallocation.

• The output (red shape) is consequently modified with respect to the nominal

one (blue shape), but the error (red bars) is maintened quite small.
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Open loop simulations - Test 1
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Open loop simulations - Test 2

IPRIM IP4T IP4IM IPFX ISHP ID1  ID2  ID3  ID4  
−5

0

5x 10
4 Poloidal coils currents

u 
[A

]

• By increasing the output penalties (bi = 3 · 108) the resulting output steady

state error can be reduced.

• On the other hand, the distance of ID1 from thes aturation now is smaller.
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Open loop simulations - Test 2
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Open loop simulations - Test 3

IPRIM IP4T IP4IM IPFX ISHP ID1  ID2  ID3  ID4  
−5

0

5x 10
4 Poloidal coils currents

u 
[A

]

• The output penalties are the same of Test 1 (bi = 3 · 106).

• The matrix B0 is changed in order to fix 5 outputs (CV-RX, CV-ZX, ZSOGB,

RSIGB and RSOGB, i.e. X-point and strike points) and one input (IP4T

current).

• Note that the fixed quantities actually take the nominal values.

• ID1 is kept far from saturation, while some output errors increas.
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Open loop simulations - Test 3
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Closed loop simulations

Shape references move from a configuration to a new one:

• constant until time t1 = 61 s,

• ramp up in the interval [t1, t2],

• constant again after t2 = 61.5 s.

Without the allocator , the controller

commands 100 kA of current (lower

figure, red), way beyond the range

[-19 kA, 0 kA].

So current in the D1 circuit is perma-

nently saturated at 0 (upper figure,

red).

58 59 60 61 62 63 64 65 66

−2

−1

0

1

2

Time [s]

ID
1 re

f [k
A

]

Current reference in the D1 circuit − saturated

 

 

58 59 60 61 62 63 64 65 66
0

50

100

Time [s]
ID

1 re
f [k

A
]

Current reference in the D1 circuit − before saturation

 

 

without allocator
with allocator

without allocator
with allocator

With the allocator , current in the D1 circuit saturates only during the transient

(upper figure, blue).
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Closed loop simulations

Without the allocator before t1 the RMS shape error (red) is small, because the

current in D1 is not saturated so much, but after t2 the steady state error

increases.

With the allocator (blue) before t1 the current in D1 is moved away from the

saturation at the price of an increased shape error, but after t2 the reallocation

results in a smaller error.
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Conclusions

• Dynamic allocation scheme proposed for the linear case

• Input redundancy can be fake, then trade-off minimizing a nonlinear cost

• No need to compute explicitly the minimum (hard for nonlinear): allocator

converges to it with speed ρ

• Applications in plasma control: allocator parameters penalize physically

relevant quantities
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Extensions and future work

• Apply to nonlinear plants: some results with satellite control, compliant

robotics

• Include actuators dynamics: preliminary results obtained with control of

hybrid cars

• Extend set point regulation to reference tracking: results under investigation

with application to HyperSonic Vehicles
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