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Introduction Linear design and input saturation

. Many plants are well modeled locally as linear:

�
�

� ��� ��
�

P





ẋp = Ap xp + Bp,w w + Bp,u u
z = Cp,z xp + Dp,zw w + Dp,zu u
y = Cp,y xp + Dp,yw w + Dp,yu u

. For linear plant, many excellent methods exist to construct linear controller:

	 
�� � 

�

�

K

{
ẋk = Ak xk + Bk,w w + Bk,y y
u = Ck xk + Dk,w w + Dk,y y

. However, the primary deviation from
linear model is often input saturation
(on each of the inputs):

u sat(u)

time

u sat(u)

time
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Introduction Windup and Anti-windup

P(s)

K(s)

w

u` y`

z`

w

w

P(s)

K(s)

zs

ysus

w

y

zw

P(s)

K(s)

F

w

u

+

Given: Unconstrained closed-loop

• desirable performance
(for all signals)

Given: Saturated closed-loop

• desirable performance for
small signals

• “windup” effect for large signals:
– stability or performance loss

Goal: Design “anti-windup” closed-loop

• stability recovery

• When comparing unconstrained c.l.
to anti-windup c.l.:
– small signal preservation (never

saturation ⇒ never deviation)
– tracking (finite duration of u` in

saturation ⇒ convergence)
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Introduction Longitudinal F8 dynamics: unconstrained

. Eighth-order unconstrained controller induces highly desirable response
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Introduction Longitudinal F8 dynamics: saturated

. Saturation of both inputs at ±25deg causes severe performance loss
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Introduction
A historical overview

• mid 1950’s - mid 1970’s — Ad hoc designs for PI and PID controllers (e.g.,

integrator limiting, back-calculation for PID, integrator reinitialization, intelligent

integrator for PI).

• mid 1970’s - 1987 — Designs for more general controllers (e.g., conditioning

techniques, observer approach, IMC).

• 1987 - 1995 — Inadequate stability or performance of early schemes

demonstrated, followed by unification of most existing schemes.

• 1995 - 2000 — Systematic designs for general controllers with stability

guarantee (e.g., reference governors [unclear utility for disturbances], H∞

designs [some with unclear performance objective], BMI [nonconvex] methods.

• 2000 - present — Constructive design for high-performance anti-windup.

LMI methods for static and dynamic anti-windup. Nonlinear anti-windup for linear

and nonlinear plants.
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Linear anti-windup problem characterization

7



'

&

$

%

Characterization Linear anti-windup design

y

zw

P(s)

K(s)

F

w

u

+

Given:

. Continuous-time finite-dimensional
LTI plant P

. Continuous-time finite-dimensional
LTI unconstrained controller C

. Saturation function

Problem:

. Design the linear block F s.t. the anti-windup closed-loop

• is well-posed

• is internally stable

• guarantees some (perhaps large) finite performance gain γ

Enhanced problems:

. Given γ, design such F s.t. properties hold with the finite gain γ

. Find the minimum γ s.t. previous enhanced problem admits a solution
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Characterization Well-posedness

Definition: An interconnection is said to be well-posed if all signals are

well-defined by the exogenous inputs and by the state.

Example:

�

� � � �

�� � �

Solutions when (u1, u2) = (0, 0) are

(y1, y2) ∈ {(0, 0), (2, 1), (−2, −1)}

⇒ The interconnection is not well-posed (it locally is!)
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Characterization Classifying anti-windup structure

Internal structure of F :

. Linear or nonlinear?

. Static or dynamic?

(If dynamic, what order?)

External structure of F :

. What is measured by F?

. What is modified by F?

y

zw

P(s)

K(s)

F

w

u

+

K(s)

F

y

+

+

sat(u)− u

w

u

K(s)

F

y

+

+
+

+

sat(u)− u

w

u � �

� �

� ��� �

� �
� �

� �

� 	



�

� 
� �

� �

�

External Full-authority
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Characterization Measuring anti-windup success

Performance objective:

Finite input/output gain γ: For zero

initial condition, ‖z(·)‖2 ≤ γ ‖w(·)‖2

for all w(·)

Finite unconstrained response

recovery gain γ (Teel & Kapoor

’97): For zero i.c. for F and all w(·),

‖z`(·) − z(·)‖2 ≤

γ‖u`(·) − sat(u`(·))‖2

(
L2 norm: ‖s(·)‖2 :=

√∫
∞

0
|s(t)|2 dt

)

Anti-windup closed-loop

y

zw

P(s)

K(s)

F

w

u

+

Unconstrained closed-loop

P(s)

K(s)

w

u` y`

z`

w

. Unconstrained response recovery implies small signal preservation & tracking.

. Finite I/O and certain structure on F imply small signal preservation & tracking.
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Characterization Implication of finite gain

For the anti-windup closed-loop system

y

zw

P(s)

K(s)

F

w

u

+

to admit a finite gain, in general, the plant is necessarily asymptotically stable.

Example:

ẋp = u + w
z = xp ,

u ∈ [−1, 1]

Regardless of u, no finite L2 gain from w to z exists
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Characterization Absolute stability as a design tool

Internal structure of F : linear (static gain, plant order filter, nf -order filter)
External structure of F : either external or full-authority
Performance measure: either input/output or unconstrained response recovery

Idea: Consider class of input nonlinearities and quadratic Lyapunov function

• possible convex synthesis formulation via LMIs

• possible necessary and sufficient results

Def’n: φ(·) belongs to the sector [0, I]
if φT (s)(φ(s) − s) ≤ 0 for all s.

Def’n: φ(·) belongs to the incremental
sector [0, I] if w 7→ φ(w + s) − φ(s)
belongs to sector [0, I] for all s
and φ(0) = 0.

�� �� �� ��� 	�
 � 
� �� � � � � �� � �� �� � � ��� 	 
 �

Notice: sat(·) belongs to the incremental sector [0, I]
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CharacterizationLyapunov formulation of quadratic I/O performance

Property: The anti-windup closed-loop has quadratic I/O performance level γ if

• ∃ ε > 0, P = P T > 0 s.t. (with x := [xT
p xT

c xT
aw]T , V (x) := xT Px)

V̇ (along the dynamics of the anti-windup closed-loop) satisfies

V̇ < −εxT x −
1

γ
zT z + γwT w

for all (x, w) 6= 0 and all nonlinearities in incremental sector [0, I], and
• the interconnection is well posed.

u y

zw

w

P

+

C

- F

φ(·)

Note: Quadratic I/O performance level γ implies finite I/O gain γ of anti-windup

closed-loop. (For zero initial condition, ‖z(·)‖2 ≤ γ ‖w(·)‖2 for all w(·))
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Characterization URR performance: key systems

Finite URR gain γ established via anti-windup c.l. & unconstrained c.l. in parallel

u y

zw

w

P

+

C

- F

φ(·)

�
� � � �

��
�

�
�

(‖z`(·) − z(·)‖2 ≤ γ‖u`(·) − sat(u`(·))‖2)

or a cascade realization of unconstrained c.l. and mismatch system W

w

u` y`

z`

w

P

C

ϕ(·, u)(Id−φ)(·)

W

z − z`

15



'

&

$

%

CharacterizationLyapunov formuation of quadratic URR performance

Property: The anti-windup c.l. has quadratic URR performance level γ if

• ∃ ε > 0, P = P T > 0 s.t. (with x :=




xp − (xp)
`

xc − (xc)`
xaw


, V (x) := xT Px)

V̇ (along the dynamics of the anti-windup and unconstrained c.l.) satisfies

V̇ < −εxT x −
1

γ
|z − z`|

2 + γ|u` − φ(u`)|
2

for all (x, u`) 6= 0 and all nonlinearities in incremental sector [0, I], and
• the interconnection is well posed.

u y

zw

w

P

+

C

- F

φ(·)

�
� � � �

��
�

�
�

Note: Quadratic URR performance level γ implies finite URR gain γ of

anti-windup c.l. (For all w(·), ‖z`(·) − z(·)‖2 ≤ γ‖u`(·) − sat(u`(·))‖2)
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Feasibility of the anti-windup problem

17
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Feasibility Outline of the feasibility section

. Feasibility conditions of anti-windup design for some (perhaps large) quadratic
(I/O or URR) performance level (only worry about stability!)

• Full-authority schemes
? LMI formulation & interpretation

• External schemes
? LMI formulation & interpretation

K(s)

F

y

+

+

sat(u)− u

w

u

K(s)

F

y

+

+
+

+

sat(u)− u

w

u

. Given γ, feasibility conditions of anti-windup design for guaranteed quadratic
(I/O or URR) performance level γ (worry about performance too!)

• Full-authority schemes
? LMI formulation & interpretation

• External schemes
? LMI formulation & interpretation

Dc,u

Ac

1/sCc

Bc,u

Bc,w

Dc,w

s2

y

w

u

s1

C
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Feasibility Useful notation: key systems
. The “plant”

ẋp=Ap xp + Bp,w w + Bp,u u

z=Cp,z xp + Dp,zw w + Dp,zu u

. The “unconstrained closed-loop
system”

[
(ẋp)`

(ẋk)`

]
=ACL

[
(xp)`

(xk)`

]
+ BCL,w w

z`=CCL

[
(xp)`

(xk)`

]
+ DCL,w w

. The “open-loop system”
[

˙̂xp

˙̂xk

]
=AOL

[
x̂p

x̂k

]
+ BOL,w w + BOL,uu + BOL,v v

zOL=COL

[
x̂p

x̂k

]
+ DOL,w w + DOL,uu

�
�

� ��� ��
�

P(s)

K(s)

w

u` y`

z`

w

	 
�� 

� 
� 


�

�
�

� ��

� ��

� ���
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FeasibilityQuadratic Lyapunov and control Lyapunov functions

Def’n: Let P = P T > 0. The function x 7→ xT Px is said to be a quadratic

Lyapunov function for the system ẋ = A x if

x◦ 6= 0 ⇒ xT
◦ (AT P + PA)x◦ < 0 .

Note:
(
x◦ 6= 0 ⇒ xT

◦ (AT P + PA)x◦ < 0
)

iff P−1AT + AP−1 < 0

(Recall: Let M ∈ IRn1×n1 be full rank. Then N < 0 iff MT NM < 0 )

Def’n: Let P = P T > 0. The function x 7→ xT Px is said to be a quadratic

control Lyapunov function for the system ẋ = A x + B u if

x◦ 6= 0, BT Px◦ = 0 ⇒ xT
◦ (AT P + PA)x◦ < 0

Lemma: The function x 7→ xT Px is a quadratic control Lyapunov function for

the system ẋ = A x + B u iff BT
⊥

(
P−1AT + AP−1

)
B⊥ < 0

20
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Feasibility Static anti-windup design
Theorem: Consider either quadratic performance measure:

• There exists static full-authority anti-windup that guarantees some finite
quadratic performance level if and only if there exists a matrix R such that

R = RT =


 R11 R12

RT
12 R22


 > 0,

R11A
T
p + ApR11 < 0,

RAT
CL + ACLR < 0.

• There exists static external anti-windup that guarantees some finite quadratic
performance level if and only if there exists a matrix R such that (BOL,v⊥ maximal
full rank s.t. BT

OL,vBOL,v⊥ = 0)

R = RT > 0,
BT

OL,v⊥

(
RAT

OL + AOLR
)
BOL,v⊥ < 0,

RAT
CL + ACLR < 0.

R11A
T
p + ApR11 < 0,

RAT
CL + ACLR < 0.

⇔ ‘quasi’ common quadratic Lyapunov function
(common QLF if R11 = R) (with w = 0)

BT
OL,v⊥

(
RAT

OL + AOLR
)
BOL,v⊥ < 0,

RAT
CL + ACLR < 0,

⇔ a Lyapunov function for CL
is CLF for OL (with w = 0)

. Simple LMI necessary and sufficient existence conditions with interpretation.
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Feasibility Plant-order anti-windup design

Theorem: Consider either quadratic performance measure:

• There exists plant-order full-authority anti-windup that guarantees some finite
quadratic performance level if and only if there exist matrices R and S such that

R = RT > 0, RAT
p + ApR < 0,

S = ST > 0 SAT
CL + ACLS < 0.

• There exists plant-order external anti-windup that guarantees some finite
quadratic performance level if and only if there exist matrices R and S such that

R = RT > 0, RAT
p + ApR < 0,

S = ST > 0 SAT
CL + ACLS < 0.

RAT
p + ApR < 0,

SAT
CL + ACLS < 0.

⇔ Plant and unconstrained
closed-loop stable

. Simple LMI necessary and sufficient existence conditions with interpretation
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Feasibility Generic order anti-windup design
Theorem: Consider either quadratic performance measure:

• There exists an order nf full-authority anti-windup that guarantees
some finite quadratic performance level iff there exists a pair (R, S) such that

R = RT =


 R11 R12

RT
12 R22


 > 0,

R11A
T
p + ApR11 < 0,

SAT
CL + ACLS < 0

S = ST > 0 rank(R − S) ≤ nf

• There exists an order nf external anti-windup that guarantees some finite
quadratic performance level if and only if there exists a pair (R, S) such that

R = RT > 0,
BT

OL,v⊥

(
RAT

OL + AOLR
)
BOL,v⊥ < 0,

RAT
CL + ACLR < 0.

S = ST > 0 rank(R − S) ≤ nf

RAT
p + ApR < 0,

SAT
CL + ACLS < 0.

⇔ Plant and unconstrained
closed-loop stable

rank(R − S) ≤ nf ⇔ Nonconvex rank condition

. Necessary and sufficient conditions in terms of Nonlinear matrix inequalities

23
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FeasibilityQuadratic disturbance attenuation Lyapunov function

ẋ = Ax + Bww

z = Cx + Dww

Definition: The positive definite function x 7→ xT Px is said to be a quadratic

disturbance attenuation Lyapunov function (with attenuation γ) if (x, w) 6= 0

implies

2xT P (Ax + Bww) < −
1

γ
|Cx + Dww|

2
+ γ|w|2,

Lemma (BRL): The function x 7→ xT Px is a quadratic disturbance attenuation

Lyapunov function for the system ẋ = A x + Bw w , z = C x + Dw w iff

P−1 = P−T > 0


P−1AT + AP−1 ? ?

BT
w −γI ?

CP−1 Dw −γI


 < 0
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Feasibility Static anti-windup design for I/O performance

Th’m: Given γ, there exists a static linear full-authority anti-windup compensator

that guarantees quadratic I/O performance of level γ

if and only if

there exists a solution R to the following LMI problem:

R = R
T

=

[
R11 R12

RT
12

R22

]
> 0 ,




R11AT
p + ApR11 ? ?

BT
p,w −γInw ?

Cp,zR11 Dp,zw −γInz


 < 0 ,




RAT
CL + ACLR ? ?

BT
CL,w −γInw ?

CCL,zR DCL,zw −γInz


 < 0 .

(γ easily minimized as LMI eigenvalue problem)

Interpretation: There exists a (“quasi” if controller is dynamic) common quadratic
disturbance attenuation Lyapunov function between the plant and the
unconstrained closed-loop system with input w and output z.

25
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FeasibilityPlant-order anti-windup design for I/O performance
Th’m: Given γ, there exists a plant-order linear full-authority anti-windup

compensator that guarantees quadratic I/O performance of level γ

if and only if

there exists a solution (R11, S) to the following LMI problem:

R11 = R
T
11

> 0 ,

S = S
T

=

[
S11 S12

ST
12

S22

]
> 0 ,




R11AT
p + ApR11 ? ?

BT
p,w −γInw ?

Cp,zR11 Dp,zw −γInz


 < 0 ,




SAT
CL + ACLS ? ?

BT
CL,w −γInw ?

CCL,zS DCL,zw −γInz


 < 0

R11 − S11 ≥ 0
(γ easily minimized as LMI eigenvalue problem)

Where is np??: Plant-oder anti-windup provides globally optimal performance

(no need to increase the anti-windup compensator size)

26
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Feasibility
nf -order anti-windup design for I/O performance

Th’m: Given γ, there exists an nf -order (and larger) linear full-authority

anti-windup compensator that guarantees quadratic I/O performance of level γ

if and only if

there exists a solution (R11, S) to the following nonconvex feasibility problem:

R11 = R
T
11

> 0 ,

S = S
T

=

[
S11 S12

ST
12

S22

]
> 0 ,




R11AT
p + ApR11 ? ?

BT
p,w −γInw ?

Cp,zR11 Dp,zw −γInz


 < 0 ,




SAT
CL + ACLS ? ?

BT
CL,w −γInw ?

CCL,zS DCL,zw −γInz


 < 0

R11 − S11 ≥ 0 ,

rank(R11 − S11) ≤ nf

. Nonlinear conditions to be solved for “reduced order” anti-windup design
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Feasibility
nf -order anti-windup design for URR performance

Th’m: Given γ, there exists a nf -order linear full-authority anti-windup

compensator that guarantees quadratic URR performance of level γ

if and only if

there exists a solution (R11, S, π) to the following nonconvex problem:

R11 = R
T
11

> 0 ,

S = S
T

=

[
S11 S12

ST
12

S22

]
> 0 ,




R11AT
p + ApR11 ? ?

BT
p,u −γInu ?

Cp,zR11 Dp,zu −γInz


 < 0 ,




SAT
CL + ACLS ? ?

CCL,uS −πInu ?

CCL,zS 0 −γInz


 < 0

R11 − S11 ≥ 0 ,

rank(R11 − S11) ≤ nf

. Nonlinear constraints in general. Linear in the static and np-order case
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Feasibility Quadratic dist. att. control Lyapunov function

ẋ = Ax + Bww + Buu

z = Cx + Dww

Definition: The positive definite function x 7→ xT Px is said to be a quadratic

disturbance attenuation control Lyapunov function (with attenuation γ) if

(x, w) 6= 0 and BT
u Px = 0 implies

2xT P (Ax + Bww) < −
1

γ
|Cx + Dww|

2
+ γ|w|2.

Lemma: The function x 7→ xT Px is a quadratic dist. att. control Lyapunov

function for the system ẋ = A x + Bw w + Bu u , z = C x + Dw w iff

P−1 = P−T > 0


(Bu⊥)
T (

P−1AT + AP−1
)
Bu⊥ ? ?

BT
wBu⊥ −γI ?

CP−1Bu⊥ Dw −γI


 < 0
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FeasibilityExternal — Static anti-windup design for I/O performance

Th’m: Given γ, there exists a static linear external anti-windup compensator that

guarantees quadratic I/O performance of level γ

if and only if

there exists a solution R to the following LMI problem:
R = R

T
> 0 ,




(BOL,uc⊥)T
(

RAT
OL + AOLR

)
BOL,uc⊥ ? ?

BT
OL,wBOL,uc⊥ −γInw ?

COL,zRBOL,uc⊥ DOL,zw −γInz


 < 0 ,




RAT
CL + ACLR ? ?

BT
CL,w −γInw ?

CCL,zR DCL,zw −γInz


 < 0

(γ easily minimized as LMI eigenvalue problem)

Interpretation: There exists x 7→ xT R−1x that is
. a quadratic disturbance attenuation control Lyapunov function with gain γ for

the open-loop system with exogenous input w, control input uc and output z
. a quadratic disturbance attenuation Lyapunov function with gain γ for

the closed-loop system with input w and output z.

30



'

&

$

%

FeasibilityExternal — Plant-order anti-windup design for I/O perf.

Th’m: Given γ, there exists a plant-order linear external anti-windup compensator

that guarantees quadratic I/O performance of level γ

if (but not necessarily only if)

there exists a solution (R11, S) to the following LMI problem:

R = R
T

=

[
R11 S12

ST
12

S22

]
> 0 ,

S = S
T

=

[
S11 S12

ST
12

S22

]
> 0 ,




(BOL,uc⊥)T
(

RAT
OL + AOLR

)
BOL,uc⊥ ? ?

BT
OL,wBOL,uc⊥ −γInw ?

COL,zRBOL,uc⊥ DOL,zw −γInz


 < 0 ,




SAT
CL + ACLS ? ?

BT
CL,w −γInw ?

CCL,zS DCL,zw −γInz


 < 0

(γ easily minimized as LMI eigenvalue problem)
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FeasibilityExternal — nf -order anti-windup design for I/O perf.

Th’m: Given γ, there exists a nf -order linear external anti-windup compensator

that guarantees quadratic I/O performance of level γ

if and only if

there exists a solution (R, S) to the following LMI problem:

R = R
T

> 0 ,

S = S
T

> 0 ,



(BOL,uc⊥)T
(

RAT
OL + AOLR

)
BOL,uc⊥ ? ?

BT
OL,wBOL,uc⊥ −γInw ?

COL,zRBOL,uc⊥ DOL,zw −γInz


 < 0 ,




SAT
CL + ACLS ? ?

BT
CL,w −γInw ?

CCL,zS DCL,zw −γInz


 < 0

R − S ≥ 0

rank(R − S) ≤ nf .

. Nonlinear conditions to be solved for “reduced order” anti-windup design
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FeasibilityExternal — nf -order anti-windup design for URR performance

Th’m: Given γ, there exists an nf -order linear external anti-windup compensator

that guarantees quadratic URR performance of level γ

if and only if

there exists a solution (R, S, π) to the following nonconvex problem:

R = R
T

> 0 ,

S = S
T

> 0 ,



(BOL,uc⊥)T
(

RAT
OL + AOLR

)
BOL,uc⊥ ? ?

BT
OL,up

BOL,uc⊥ −γInu ?

COL,zRBOL,uc⊥ DOL,zup −γInz


 < 0 ,




SAT
CL + ACLS ? ?

CT
CL,uS −πInu ?

CCL,zS 0 −γInz


 < 0

R − S ≥ 0

rank(R − S) ≤ nf .

. Nonlinear constraints in general. Linear in the static and np-order case

33



'

&

$

%

Anti-windup synthesis
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Synthesis Static anti-windup for I/O gain

Step 1: Given γ, determine a solution R to the appropriate (full-authority or

external) feasibility LMI problem.

Step 2: Select any scalar δ > 0 and define U = δI .

Step 3: Define

Ψ :=




RAT
CL + ACLR ? ? ?

UBT
CL,q + CCL,uR DCL,uqU + UDT

CL,uq − 2U ? ?

BT
CL,w DT

CL,uw −γInw ?

CCL,zR DCL,zqU DCL,zw −γInz




,

G :=
[

0 −U 0 0
]

,

H :=
[

BT
CL,s DT

CL,us 0 DT
CL,zs

]
.

(BCL,s, DCL,us, DCL,zs) depend on external structure

Step 4: Construct F s.t. s1 = Daw,1 uaw, s2 = Daw,2 uaw using a solution
(Daw,1, Daw,2) to the LMI problem

Ψ + G
T

[
Daw,1

Daw,2

]T

H
T

+ H

[
Daw,1

Daw,2

]
G < 0 .

(Once Step 1 is completed, all steps can be completed)
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Synthesis Static anti-windup for URR gain

Step 1: Given γ, determine a solution (R, π) to the appropriate (full-authority or

external) feasibility LMI problem.

Step 2: Select a scalar δ > 0 s.t. γδ2 + 2δ > π and define U = δI .

Step 3: Define

Ψ :=




RAT
CL + ACLR ? ? ?

UBT
CL,q + CCL,uR DCL,uqU + UDT

CL,uq − 2U ? ?

BT
CL,q DT

CL,uq −γInu ?

CCL,zR DCL,zqU DCL,zq −γInz




,

G :=
[

0 −U −Inu 0
]

,

H :=
[

BT
CL,s DT

CL,us 0 DT
CL,zs

]
.

(BCL,s, DCL,us, DCL,zs) depend on external structure

Step 4: Construct F s.t. s1 = Daw,1 uaw, s2 = Daw,2 uaw using a solution
(Daw,1, Daw,2) to the LMI problem

Ψ + G
T

[
Daw,1

Daw,2

]T

H
T

+ H

[
Daw,1

Daw,2

]
G < 0 .

(Once Step 1 is completed, all steps can be completed)
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Synthesis Dynamic anti-windup

Step 1: Given γ, determine a solution (R, S) to the appropriate (full-authority or

external) feasibility LMI problem.

Step 2: If R is not defined, R :=

[
R11 S12

ST
12 S22

]
. Define Q12 ∈ IRnCL×naw

and Q22 via RS−1R − R = Q12Q
T
12 and Q22 :=

[
R Q12

QT
12 Q22

]
.

Step 3: Select any scalar δ > 0 and define U = δI .

Step 4: Define appropriate Ψ, G and H explicitly from realization of P and C.

Step 5: Find state-space realization of F by finding a solution (Aaw, Baw,
Caw,1, Caw,1, Daw,1, Daw,2) to the LMI problem

Ψ + G
T




Aaw Baw

Caw,1 Daw,1

Caw,1 Daw,2




T

H
T

+ H




Aaw Baw

Caw,1 Daw,1

Caw,1 Daw,2


 G < 0 .

(Once Step 1 is completed, all steps can be completed)
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Examples
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Examples The F8 aircraft

. Longitudinal dynamics of an F8 aircraft (Kapasouris et al, 1988)

. Plant: four states, two inputs, two outputs, exponentially stable

• S: Pitch rate (rad/s); forward speed (ft/s); angle of attack (rad); pitch angle (rad)

• I: Elevator angle (deg); Flaperon angle (deg)

• O: Pitch angle (deg); Flight path angle (deg)

. Eighth-order unconstrained controller induces highly desirable response.

Saturation of both inputs at ±25deg causes sever performance loss
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Examples The F8 aircraft: unconstrained response

Unconstrained response

−1 0 1 2 3 4 5
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Time [s]
(Desirable response!)

Output: pitch angle (thick) and flight path angle (thin)

Input: elevator angle (thick) and flaperon angle (thin)
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Examples The F8 aircraft: saturated response

Saturated response
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(Substantial degradation of response!)
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Examples The F8 aircraft: anti-windup designs

STATIC ANTI-WINDUP

Full-authority anti-windup: There does exist static linear full-authority anti-windup

that guarantees quadratic performance since the associated LMI is feasible.

. Use finite I/O gain synthesis

. Use finite URR gain synthesis

External anti-windup: There does not exist static linear external anti-windup that

guarantees quadratic performance since the associated LMI is infeasible.

PLANT-ORDER ANTI-WINDUP (always feasible)

Full-authority anti-windup:

. Use finite I/O gain synthesis

. Use finite URR gain synthesis

External anti-windup:

. Use finite I/O gain synthesis

. Use finite URR gain synthesis
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Examples The F8 aircraft (static full-authority I/O)

Anti-windup closed-loop response
(Static linear full-authority anti-windup designed for quadratic I/O performance)
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Examples The F8 aircraft (static full-authority URR)

Anti-windup closed-loop response
(Static linear full-authority anti-windup designed for quadratic URR performance)
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Examples The F8 aircraft (np-order full-authority I/O)

Anti-windup closed-loop response
(Plant-order full-authority anti-windup designed for quadratic I/O performance)
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(Significant improvement over static anti-windup designs:

quick convergence, no oscillations, no added overshoot)
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Synthesis The F8 aircraft (np-order full-authority URR)

Anti-windup closed-loop response
(Plant-order full-authority anti-windup designed for quadratic URR performance)
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(Also significant improvement over static anti-windup designs:

quick convergence, no oscillations, no added overshoot)
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Examples The F8 aircraft (np-order external I/O)

Anti-windup closed-loop response
(Plant-order external anti-windup designed for quadratic I/O performance)
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(Recall no static linear external anti-windup design for quadratic performance)
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Examples The F8 aircraft (np-order external URR)

Anti-windup closed-loop response
(Plant-order external anti-windup designed for quadratic URR performance)
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(Recall no static linear external anti-windup design for quadratic performance)
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Examples Experiment: Spring-gantry system (I)

� � �

�

�

�

�

Output: y =

[
p

θ

]
=

[
(cart position)

(pendulum angle)

]

Control input: u = (voltage to DC motor applying force f ) ∈ [−5, 5]

Disturbance input: w =(force applied on pendulum)

• Construct LQG controller to regulate pend. angle despite small disturbances

• No quadratically stabilizing static anti-windup compensator exists.
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Examples Experiment: Spring-gantry system (II)

P(s)

K(s)

w

u` y`

z`

w

p (cart position)

θ (pend. angle)

u (Volts)

w

P(s)

K(s)

zs

ysus

w

Simulation
(thick)

Experiment
(thin)

y

zw

P(s)

K(s)

F

w

u

+

External,
plant-order
anti-windup
designed for
quadratic
input/output
performance.
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Conclusions

The following facts have been shown for both I/O and URR performance

measures

. Convexity

• Fixed order anti-windup design

≡ nonconvex problem in general (rank condition)

• Static and plant-order anti-windup design

≡ convex problem formulation via LMIs

. Feasibility

• Plant-order anti-windup designs ≡ always feasible

• Static anti-windup designs ≡ existence of “quasi-common” quadratic

Lyapunov functions and quadratic CLFs between plant, unconstrained

closed-loop and open-loop systems

. Optimality (full-authority case only)

• Plant-order optimal anti-windup provides globally optimal performance level
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