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Abstract: In this paper we show the effectiveness of a novel control scheme for dead-
time systems recently proposed in (Zaccarian and Nešić, 2006 American Control
Conference). In that paper, the prediction problem is formally stated and shown to
be achievable for any type of dead-time system, as long as it is possible to determine
a stabilizing control law. We propose here the employment of an LMI-based control
strategy for this stabilization task and show the advantages of the novel modified
Smith predictor scheme on a MIMO example. In particular, satisfactory simulation
results are given both for the linearized model and for the nonlinear model of an
inverted pendulum subject to disturbances. Copyright © 2006 IFAC.

1. INTRODUCTION

The first non-trivial solution to stabilization
of dead-time processes was given by O.J.Smith
in (Smith, 1957) who presented a controller-
predictor structure in which the controller is de-
signed for the delay-free plant. The arising closed-
loop performance is then enforced on the actual
plant with time-delay via the action of a pe-
culiar filter (the Smith predictor) which has a
model-based structure. In general, the classical
Smith predictor has some important limitations,
the main one being that it can only be applied
to open-loop asymptotically stable plants. Al-
ready in the 1980s generalizations of the classical
Smith predictor scheme were proposed (see, e.g.,
(Watanabe and Ito, 1981)). Useful extensions of
the original Smith predictor scheme were given in
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(Astrom et al., 1994) to extend its applicability
to plants with integrating action, as well as in
subsequent works where these results were also
extended to open-loop unstable plants (a nice
summary and overview of these advances is given
in (Palmor, 1996)). Despite the large literature
on stabilization of time-delay systems, in recent
years the Smith predictor has been a preferred
technique for the design of high performance con-
trol schemes for dead-time processes (see the ref-
erences in (Zaccarian and Nešić, 2006) for some re-
cent works where modified Smith predictors have
been successfully employed in many relevant case
studies).

In the recent paper (Zaccarian and Nešić, 2006)
we have proposed a framework for the enhance-
ment of the classical Smith predictor with the goal
of making it applicable to generic (also exponen-
tially unstable) MIMO plants with input delay.
The proposed framework has the advantage of not
being specific to a special structure of the plant
dynamics but doesn’t provide a fully constructive
solution to the problem as it reduces the Smith



prediction problem to the design of a stabilizer
for the dead-time plant which acts like a key
feedback loop within the enhanced compensation
scheme (this loop has zero gain in the classical
Smith predictor). In this paper we make a step
forward with respect to the technique proposed
in (Zaccarian and Nešić, 2006) because we pro-
pose a dynamic selection of the stabilizer which
is able to induce very desirable results even on
MIMO exponentially unstable plants. The result-
ing performance can be appreciated on a relevant
case study corresponding to the linearized (and
nonlinear) dynamics of a fully actuated inverted
pendulum around the “up” position.

The paper is organized as follows. In Section 2 we
give the problem data. In Section 3 we recall the
main result from (Zaccarian and Nešić, 2006) and
propose the novel selection of the extra stabilizing
feedback. Finally, in Section 4 we use a nonlinear
and linearized model of the inverted pendulum
about the “up” position and show the great ad-
vantages of the scheme when the control input is
delayed.

2. PROBLEM DATA

Consider the following MIMO linear plant having
a uniform delay τ at its control input:

P

ẋ(t)=Ax(t) +Buu(t− τ) +Bdd(t) + ψx(t)
y(t)=x(t) +Ddyd(t) + ψy(t)
z(t)=Czx(t) +Duzu(t− τ) +Ddzd(t) + ψz(t).

(1)

In (1), x ∈ Rnp is the plant state, y ∈ Rnp

is the measured output, z ∈ Rnz is the per-
formance output, u ∈ Rnu is the control input
and d ∈ Rnd is a disturbance input. The three
extra signals ψx, ψy, ψz can be stacked in a single
vector Ψ representing the output of the following
linear system resembling plant uncertainties and
unmodeled linear dynamics:

Ψ(t)=

 ψx(t)
ψy(t)
ψz(t)

 = ∆(s)

 x(t)
u(t)
d(t)

 (2)

which may be infinite dimensional (it may have
internal delays). We will need the following as-
sumption to hold for the system (1), (2).

Assumption 1. The pair (Cz, A) is detectable.
The linear system (2) is an exponentially stable
linear retarded delay-differential system with fi-
nite L2 gain equal to γ∆.

Remark 1. In general, the linear system (2) can
be used to represent several aspects of the plant
which don’t appear in the model (1). In this paper,
we will use it to represent the dynamics of an
observer which estimates the state of the plant.

In particular, assume that full state measurement
is not available for the plant (1). Then, assuming
for simplicity that all the parameters in (1) are
perfectly known (in the opposite case, extra terms
would appear in (2)), the following selection for
(2) represents the presence of an observer from an
output ym(t) = Cymx(t)+Dymu(t−τ)+Ddymd(t)
with observation gain L:

ẋδ(t) = (A− LC)xδ(t) + (Bu − LDdym)d(t)

ψx(t) = 0, ψy(t) = −xδ(t), ψz(t) = 0

where xδ is the state of the system (2) and
represents the observation error. Note that as
long as the observer is an asymptotic observer
(namely, A−LC is Hurwitz), the dynamics (2) is
exponentially stable, as required in Assumption 1.
Moreover, by appropriately selection L, the gain
from d to ψy can be made small. ◦

Consider the plant (1) and assume that a linear
controller has been designed 4 to guarantee de-
sirable stability and performance specifications on
its undelayed closed-loop interconnection with the
nominal undelayed plant (see Figure 1), namely

P0

 ẋu(t) = Axu(t) +Buuu(t) + v1(t)
yu(t) = xu(t) + v2(t)
zu(t) = Czxu(t) +Duzuu(t),

(3a)

C
{
ẋc(t) = Acxc(t) +Bcuc(t) +Brr(t)
u(t) = Ccxc(t)Dcuc(t) +Drr(t),

(3b)

uu(t) = u(t), uc(t) = yu(t), (3c)

where v1 and v2 are suitable signals to be specified
later. We will assume that the following assump-
tion holds for the undelayed nominal closed-loop
system.

Assumption 2. The undelayed nominal closed-
loop system (3a), (3b), (3c) (with v1 ≡ v2 ≡ 0)
is globally exponentially stable.

P0C
r(t)

uc(t)
uu(t)

zu(t)

yu(t)

Fig. 1. The undelayed nominal closed-loop system.

The main contribution of (Zaccarian and Nešić,
2006) was to provide a framework for the re-
covery of the linear performance characterizing

4 In general, the controller (3b) may be nonlinear as long
as it guarantees suitable L2 and incremental L2 stability

conditions (see (Zaccarian and Nešić, 2006) for details).
Since we use a linear controller in this paper, we decided to

simplify the discussion and concentrate only on the linear

case.
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Fig. 2. The compensated closed-loop system.

the undelayed closed-loop also on the dead-time
plant. To this aim, it was shown in (Zaccarian and
Nešić, 2006) that while a standard Smith predic-
tor scheme could be used whenever the plant (1)
is exponentially stable, an extra stabilizing action
is necessary for the case when this exponential
stability condition is not satisfied. In particular,
the problem addressed and solved in (Zaccarian
and Nešić, 2006) was to design an enhanced Smith
predictor S as in Figure 2 such that the following
property is satisfied by the compensated closed-
loop.

Definition 1. (Zaccarian and Nešić, 2006) The de-
lay compensation system S is said to solve the
nominal prediction problem if under the assump-
tion that d(·) ≡ 0 and Ψ ≡ 0, for any selection
of the reference signal r(·), and zero initial con-
ditions, the performance output responses of the
undelayed and of the compensated closed-loops
satisfy z(t) = zu(t− τ) for all t ≥ τ .

The delay compensation system S is said to solve
the robust prediction problem if

(1) it solves the nominal prediction problem
(2) for a sufficiently small gain γ∆ > 0 of the

unmodeled dynamics (2) and under Assump-
tion 1, there exists γ > 0 such that the per-
formance output responses of the undelayed
and of the compensated closed-loops satisfy

‖z(·)−zu(·−τ)‖2≤γ(‖d(·)‖2+γ∆‖r(·)‖2) (4)

3. THE ENHANCED SMITH PREDICTOR

We recall in this section the solution proposed
in (Zaccarian and Nešić, 2006) to the nominal
and robust prediction problems introduced in the
previous section. In particular, we rewrite all the
conditions of the theorem assuming that the state
of the plant is completely available for measure-
ment. The solution proposed in (Zaccarian and
Nešić, 2006) generalizes the classical Smith pre-
dictor scheme of (Smith, 1957) and corresponds
to the insertion of the following filter:

S

ẋs(t) = Axs(t) +Buu(t) + v1(t)
uc(t) = xs(t) + v2(t)
x̃(t) = y(t)− xs(t− τ),

(5)

where the two signals v1(t) and v2(t) represent the
“enhancement” and are feedback signals from the
prediction error x̃ (so that, among other things,
x̃(·) ≡ 0 implies v1(·) ≡ 0 and v2(·) ≡ 0). We recall
that the classical Smith predictor corresponds to a
specific selection of these signals, namely v1(t) = 0
and v2(t) = x̃(t).

−

v1v2
y(t)+

u(t)

P0

uc(t)

+

+

S

τ

xs(t)

xs(t− τ)

Fig. 3. The enhanced Smith predictor.

The enhanced Smith predictor (5) represents a
useful generalization of the classical Smith predic-
tor because as long as v1 and v2 are zero when x̃
is zero, the nominal prediction property of Defini-
tion 1 will always be satisfied regardless of the se-
lection of these two signals. On the other hand, all
the possible selections of v1 and v2 that arise from
a (static or dynamic, linear or nonlinear) feedback
loop from the signal x̃, parametrize a family of
enhanced Smith predictors that, as shown in the
following sections, is large enough to allow to
solve the robust prediction problem of Definition 1
for non exponentially stable plants (thus reach-
ing beyond the potentials of the classical Smith
predictor). Then, the solution to the (nominal
and robust) prediction problem is reduced to the
solution of a simpler delayed stabilization problem
via the two signals v1 and v2.

In (Zaccarian and Nešić, 2006) we didn’t provide
an effective selection of the signals v1 and v2, as a
matter of fact, we only focused on the most trivial
selection corresponding to:

v1(t) = Ksx̃(t)
v2(t) = x̃(t),

(6)

where Ks was determined by solving a very sim-
ple linear matrix inequality (LMI) guaranteeing
finite-gain L2 stability for any value of the de-
lay τ (a delay-independent condition). It is well
known that delay-independent conditions are very
conservative and, indeed, the underlying LMIs are
rarely feasible with non Hurwitz plants (moreover,
in those cases where a solution is found, it typi-
cally leads to poor performance). We propose here
a different approach aimed at high performance
compensation for MIMO exponentially unstable
plants and we rely for this on delay-dependent
conditions for a dynamic selection of v1(t). As far
as v2(t) is concerned, as extensively discussed in
(Zaccarian and Nešić, 2006, Remark 4), it is quite



important that it is selected as in (6) because the
arising closed-loop system will preserve a possi-
ble asymptotic rejection of constant disturbances
acting on the plant. This feature is commonly
implemented in control systems and the example
treated in the next section characterizes one of
those cases.

In this paper we propose the following selection
of v1 which has shown very good performance
on several examples and guarantees feasibility for
sufficiently small τ on any (possibly exponentially
unstable) plant.

Theorem 1. Consider a linear delayed plant (1)
and a controller (3b), Assume that Assumptions 1
and 2 hold. Given any Hurwitz matrix Aa ∈
Rnu×nu , consider the following dynamic selection
of the signal v1(t):

ẋa(t) = Aaxa(t) +Ka

[
xa(t)
x̃(t)

]
,

v1(t) = xa(t),
(7)

where, given the optimal solution U∗
0 , η

∗, X∗, Y ∗

to the following generalized eigenvalue problem
in the variables Γ = ΓT > 0, U0 = UT0 > 0,
X = XT > 0, Y and η > 0:

min
U0,X,Y,η

η, subject to (8)U0

[
0 Aa
0 0

]
X +

[
0
I

]
Y

? −U0

 < [ Γ 0
0 0

]
,

Γ < ηHe

(
−
[
A I
0 Aa

]
X −

[
0
I

]
Y

)
,

the matrix Ka is selected as Ka = Y ∗(X∗)−1. (In
(8), “?” denotes the transpose of its symmetric en-
try and He(M) := M +MT .) Then, the enhanced
Smith predictor (5), (7) solves the (nominal and)
robust prediction problem of Definition 1 for all
τ ≤ 1/η∗.

Remark 2. Note that the selection strategy for v1

proposed in Theorem 1 corresponds to transform-
ing a control problem for a plant with delayed
input into a control problem for a plant with
delayed state. This fact is obtained by augmenting
the plant with extra states whose derivative will
be imposed by way of an artificial external input.
This trick is quite well known in the time-delay
literature and has been used in several papers (see,
e.g., (Pandolfi, 1995; Germani et al., 1995)). ◦

4. A MIMO EXAMPLE: THE INVERTED
PENDULUM

In this section we apply the enhanced Smith pre-
dictor design methodology illustrated in Section 3

to the nonlinear model of a fully actuated in-
verted pendulum. The reason why we consider
full actuation (namely both a motor exerting a
force on the cart and a motor exerting a torque
on the pendulum hinge) is that we would like to
illustrate the advantages of the proposed Smith
prediction scheme when trying to recover (in a
delayed way) the performance induced by a de-
coupling controller. In general, obtaining a decou-
pling controller for a MIMO dead-time system is
a hard task to accomplish. Moreover, if the sys-
tem under consideration is exponentially unstable
(such as the linearized dynamics of the inverted
pendulum), this task becomes quite hard with the
existing construction schemes. We show here how
the enhanced Smith predictor scheme provides a
simple to design and simple to implement solu-
tion to this problem. Moreover we show that the
arising solution is quite robust toward the model
nonlinearities and rejects quite well external dis-
turbances and unmodeled observer dynamics.

4.1 Nonlinear and linearized models of the inverted
pendulum

Here the model of the inverted pendulum Labo-
ratory Experiment PS600, by AMIRA, is consid-
ered (AMIRA, 1996). To allow experimentation
of extreme control law inducing decoupled perfor-
mance, we assume that an extra motor is present
on the experimental system, which exerts a torque
on the pendulum hinge, so that the arising struc-
ture is fully actuated.

The linearized model around the equilibrium
point xe = [0 0 0 0]T corresponding to the “up”
position of the pendulum is

ẋ(t) = Ax(t) +Bu(t), (9a)

with the following selection for the matrices [A|B]:


0 1 0 0 0 0
0 −2.47 −0.76 6.8e− 4 0.247 −0.475
0 0 0 1 0 0
0 4.75 20.3 −0.0185 −0.475 12.77

 (9b)

where the system matrix A has four real eigenval-
ues in [4.44 0 − 2.23 − 4.7], namely it is expo-
nentially unstable with a dominant pole around
4.

4.2 Design of the decoupling controller

For the linearized system (9) it is possible to
design a decoupling controller from a reference
input r(t) = [rs(t) rφ(t)]T to the position and
angular outputs of the system z(t) = [ 1 0 0 0

0 0 1 0 ]x(t)
(we adopt here the method in (Chen, 1984)).
The decoupling controller has been designed as
represented in the block diagram of Figure 4 which
represents the undelayed closed-loop.
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Fig. 4. The undelayed closed-loop between the
plant and the decoupling controller.

In Figure 4 the structure of the controller cor-
responds to the a pre-stabilizing action via state
feedback (by way of the block Kp) followed by
a dynamic decoupler D(s) which corresponds to
a right inverse matrix for the process transfer
matrix. Then, the forward control path (which has
been made diagonal by the decoupler action) is
augmented with an internal model of a constant
reference (namely, an integrator) on each chan-
nel, so that constant references are asymptotically
tracked and constant disturbances at the plant
input (or output) are asymptotically rejected. Fi-
nally, the system is stabilized by way of the diag-
onal static stabilizing gain matrix Ks.

To resemble an actual implementation of the de-
coupling controller, we assume that the state of
the system is not available for measurement but
only the output ym(t) = [s(t) φ(t)]T is avail-
able and design a high-gain observer following the
well-known technique widely used in the velocity
estimation of mechanical systems (see, e.g., the
pioneering paper (Nicosia et al., 1990)).

4.3 Enhanced Smith predictor design and simulation
results

We design here an enhanced Smith predictor for
the control system in Figure 4 so that the aug-
mented controller can tolerate a delay at the plant
input. To this aim, we apply the construction of
Theorem 1 and select the matrix Aa in (7) as
Aa = −diag(0.1, 0.2, 0.3, 0.4) (note that this selec-
tion is not crucial at all, since the actual dynamics
of the filter will be determined by the selection of
Ka in the optimization (8). The selection of Ka is
carried out by solving the optimization problem
(8). To improve the numerical robustness of the
optimizer, we add the following extra constraint
to the optimization problem:

[
mkI Y

Y T mkX

]
> 0, X > I

which by Schur complement (conservatively) guar-
antees the constraint KT

a Ka < m2
kI, thus keeping

the entries of the matrix Ka limited. For our
computation we have selected mk = 107. The
arising optimal gain is

Ka =



−0.6993 −0.20793 0.032351 −0.0012797
2.3685 −5.703 −26.472 −14.752

17.767 −36.673 −171.75 −95.493

3.9785 −8.1996 −38.508 −21.333
−1.1682 −0.27185 0.041338 0.0026028

0.37212 −1.6539 −5.8757 −3.2881

3.9591 −8.1344 −38.424 −21.221
0.87982 −1.8452 −8.56 −4.8682



T

corresponding to an optimal value of η∗ =
4.97. This means that the compensation system
is guaranteed to tolerate an input delay of the
process up to a maximum of τM = 1/η∗ = 0.201 s.

We report next on the simulation results using the
decoupling controller synthesized in Section 4.2
both on the plant with state measurement and
on the plant without state measurement and aug-
mented with the high-gain observer (which should
be regarded as unmodeled dynamics resembled by
equation (2)). We fix the input time delay to the
value τ = 0.15 which is below the value for which
closed-loop stability is guaranteed by Theorem 1.

In each set of simulations we represent three
curves: the first curve corresponds to the linear
delayed response zu(·) which is reported as a thin
solid line in the time histories. This performance
output corresponds to the ideal response to be
recovered by the enhanced Smith predictor and
corresponds to the ideal case where the time delay
is pulled out from the feedback loop and inserted
at the performance output of the plant. This re-
sponse is of course not achievable on the actual
dead-time plant because it supposes that the plant
has no input delay. The second curve that we
report using dotted lines is the response obtained
by the mere interconnection of the decoupling
controller to the dead-time plant without any ex-
tra compensating action. This response is always
unacceptable and never converging. Finally, the
third response that we report using bold solid
line is the response obtained by the compensated
system with dead-time and enhanced Smith pre-
diction. This response aims at recovering the thin
solid undelayed response. We don’t report here on
the simulations arising from the use of a classical
Smith predictor because they all are exponentially
diverging. As it is well known, when applied to
exponentially unstable plants, the classical Smith
predictor makes certain unstable modes unobserv-
able, therefore always leading to non converging
responses.

Figure 5 reports on a first set of simulations where
we only consider the linear dynamics (9). The
disturbance input is set to zero and full state
measurement is assumed from the plant (namely,
no observer is used for the plant state x). The
following reference signal is selected:
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Fig. 5. Full state measurement and no dist.

rs(t) =

{
1 m, if t ∈ [0, 8] s,
0 m, otherwise

rφ(t) =

{
1 rad, if t ∈ [4, 12] s,
0 rad, otherwise

(10)

From the simulation it is evident that the en-
hanced Smith predictor fully recovers the un-
delayed performance. Note that the closed-loop
without compensation already loses the stability
properties.

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

C
a

rt
 P

o
s
it
io

n
 [

m
]

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

P
e

n
d

u
lu

m
 P

o
s
it
io

n
 [

ra
d

]

Fig. 6. High gain observer and no disturbances.

In the next Figure 6, we simulate the same exact
scenario, assuming that full state measurement is
not available to the controller, so that the high-
gain observer is inserted at the plant output z
(see Figure 4). The arising responses show a slight
performance degradation both of the undelayed
closed-loop and of the compensated closed-loop.
The closed-loop without compensation becomes
exponentially unstable.

We consider then in Figure 7 the action of a dis-
turbance d acting at the same input as the control
input. This disturbance resembles the presence
of uncertainties in the power amplifiers driving
the actuators and is selected as a constant offset
of 0.1 (N or Nm) plus a band limited white
noise with sample time 0.001 and noise power
0.00001 acting from time t = 0. The simulation
is carried out on the linearized model (9) without
full state measurement. As expected, the closed-
loop performance further degrades but closed-loop
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Fig. 7. High gain observer and step + white noise
disturbances.
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Fig. 8. Full nonlinear model.

stability of the compensated system is preserved.
Finally, to illustrate the extreme robustness of the
compensation scheme, in Figure 8 we test the con-
trol system on the full nonlinear model by keeping
the same reference signal (10) which reaches far
beyond the equilibrium point about which the
linearization is carried out. A severe performance
degradation is now experienced but closed-loop
stability is still preserved. A degradation, espe-
cially in the pendulum position is to be expected
due to the mismatch between the linearized and
the nonlinear model when the pendulum angle is
equal to 1 rad. Note that the response without
compensation cannot be completed in this case
due to excessively high values of the simulated
response.

5. CONCLUSIONS

In this paper we revisited a novel enhanced Smith
predictor framework proposed in the recent pa-
per (Zaccarian and Nešić, 2006 ACC). Within
this framework, we proposed a compensation law
which is able to induced delayed linear perfor-
mance on generic exponentially unstable dead-
time plants via the solution of delay-dependent
Linear Matrix Inequality. A relevant simulation
study has been carried out using decoupling con-
troller on the linearized and nonlinear models
of an inverted pendulum. The simulation results



show extreme performance and robustness of the
compensation scheme.

REFERENCES

AMIRA, GmbH (1996). Laboratory equipment for
reasearch and practical of control engineering,
documentation PS600 inverted pendulum. In:
Duisburg, Germany.

Astrom, K.J., C.C. Hang and B.C. Lim (1994).
A new smith predictor for controlling a pro-
cess with an integrator and long dead-time.
IEEE Transactions on Automatic Control
39(2), 343–345.

Chen, C.T. (1984). Linear system theory and de-
sign. Holt Rinehart and Winston.

Germani, A., C. Manes and P. Pepe (1995). Im-
plementation of an LQG control scheme for
linear systems with delayed feedback action.
In: 3rd European Control Conference. Rome,
Italy. pp. 2886–2891.

Nicosia, S., A. Tornambè and P. Valigi (1990).
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