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Abstract— In this paper we provide explicit Lyapunov func-
tions that prove that a First Order Reset Element (FORE)
in negative feedback interconnection with an integrator is
exponentially stable for any, positive or negative, value of
the pole of the FORE. The Lyapunov functions also allow
to establish finite gain L2 stability from a disturbance input
acting at the input of the plant to the plant output. L2 stability
is established by giving a bound on the corresponding L2

gains. The framework used for the characterization of the
system dynamics and for the stability and performance analysis
corresponds to the ideas first proposed in (Nesic et al. IFAC
2005) and (Zaccarian et al. ACC 2005).

I. INTRODUCTION

First Order Reset Elements (FOREs) correspond to first
order linear systems whose state is reset to zero whenever
the input and the state values have opposite signs. First
order reset elements were first introduced in [11] as a
generalization of the so-called Clegg integrator [6], [15]
which is the special case of a FORE having its pole at
the origin. Despite their early origins (the first scheme of
[6] was presented still in the analog controllers era), reset
controllers didn’t capture much attention until recent years.
Perhaps because the mathematical tools for describing the
dynamics behind reset linear systems were not yet advanced
enough. A nice summary of the early research results on
reset control systems is given in the recent paper [3].

Reset controllers reach beyond the use of classical linear
and nonlinear control schemes because the state response of
the closed-loop is a discontinuous function of time (due to
the occurrence of resets). If on one hand this fact becomes
a difficulty for the analysis of stability and performance, on
the other hand, it is a peculiarity that may allow in certain
cases to achieve performance specifications that outperform
the intrinsic limitations of classical control architectures (see
[1], [7]). A nice feature of reset control systems is that they
are well described as hybrid systems, namely systems whose
dynamics are governed by the combination of a flow map
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of the type ẋ = f(x, v), only active in certain subsets of
the state space, called the flow set and a jump map of the
type x+ = g(x, v) which is active in another subset of the
state space, called the jump set. A necessary requirement of
the corresponding description is that the union of the flow
and the jump set coincides with the whole state space, so
that existence of solutions will be guaranteed for any initial
conditions. In fact, the matter of existence of solutions for
hybrid systems in general and reset systems as a special case
has been addressed in many different ways in the recent
literature and one of the main issues is to rule out solutions
that jump infinitely many times on compact time intervals
(the so-called Zeno solutions).

Several approaches have been taken in the recent literature
to model control systems involving FOREs, so that formal
statements about their stability and performance could be
proved. Some recent works (see, [12], [10], [4]) rely on
explicit characterization of the reset time, but this only
applies to second order systems. For higher order systems,
the trajectories are seen as a patching of different pieces
between reset times (this is why Zeno solutions need to be
ruled out) and patching them together (see, [9], [5], [2]).
In [16], [17], we proposed a novel interpretation of reset
systems, both in terms of the characterization of the flow and
jump sets and in terms of the notation used to characterize
the hybrid systems dynamics. In particular, for the first time,
we recognized in [17] that the analog circuit first proposed in
[6] for the Clegg integrator was forced to reset in half of the
state space, so that trajectories weren’t allowed to flow in a
very large set. Moreover, adopting the hybrid representation
for solutions proposed in [8], allowed us to cast the problem
of exponential stability as a problem of robust exponential
stability (where the distance between solutions was redefined,
as in [8] relying on hybrid domains). This new framework
allowed us to introduce novel stability and performance
conditions for FORE control systems and to establish for
the first time results about exponential stability and L2

performance of reset systems that would be exponentially
stable without resets (see [16], [17] for details).

In [16], [17] we addressed and solved the problem of Zeno
solutions by introducing the so-called “temporal regulariza-
tion” within our dynamic equations. Temporal regularization,
also used in [13], [4], corresponds to not allowing resets
unless a certain time interval ρ > 0 has passed since the
last reset. It is straightforward that updating the jump and
flow rules with this extra constraint referring to a new state
variable τ(t) whose flow equation is τ̇ = 1 rules out Zeno
solutions because in any compact time interval of length T



there can be no more than T/ρ resets. The same technique
will be used here.

In this paper we report on new developments about reset
control systems with FOREs. In particular we focus on the
simplest example of a FORE connected to an integrator and
we characterize stability and L2 performance of the closed-
loop for all values of the FORE pole by way of a pair of
parametric Lyapunov functions. We also comment on how
the analytic bounds herein obtained compare to the numerical
bounds obtained by using the techniques of [17].

The paper is structured as follows: in Section II we give
the dynamic equations of a FORE controlling an integrator.
In Section III we state our main theorem and compare the
corresponding bounds to the numerical bounds of [17] in
addition to giving some intuition about the meaning of certain
trends in the L2 gains. Finally, in Section IV we prove our
main result.

II. A FORE CONTROLLING AN INTEGRATOR

In this section, we discuss on how the Clegg integrator
model developed in the previous sections extend to the case
of reset control system involving a first order reset element
(FORE) controlling an integrator. If a disturbance affects the
plant input, the plant dynamics can be represented as

ẏ = u+ d, (1)

where u is the control input, d is a disturbance input and y
is the plant state and output.
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Fig. 1. An integrator controlled by a FORE.

For the plant (1), assume that a control system is designed,
according to Figure 1, where the FORE element is described
by the following dynamics:

FORE

{
ẋr = λrxr + e, if exr ≥ 0
x+
r = 0, if exr ≤ 0,

(2)

Interconnection

{
u = xr,
e = r − y (3)

where r is the reference input, λr ∈ R denotes the time
constant of the FORE. Note that λr can be any number
(including positive ones). Choosing k = 1 and λr = 0 cor-
responds to implementing in the FORE the Clegg integrator
commented in Section I.

The overall closed-loop system augmented with the tem-
poral regularization can then be described by the following

equations for x := [y xr]
T :{

τ̇ = 1,
ẋ = Ax+Bdd+Brr,

if xTMx ≥ 0 or τ ≤ ρ,{
τ+ = 0,
x+ = Arx,

if xTMx ≤ 0 and τ ≥ ρ,

y = Cx

(4)

where A denotes the flow matrix, Ar denotes the reset matrix
and M characterizes the flow and the jump sets (note that
these two sets have their boundaries in common). Based on
the values in (1), (2) and (3), the matrices in (4) are

A =

[
0 1
−1 λr

]
, Bd =

[
1
0

]
, Br =

[
0
1

]
,

Ar =

[
1 0
0 0

]
, M =

[
0 −1
−1 0

]
,

C =
[

1 0
]
.

(5)

III. GAIN ESTIMATION VIA ANALYTIC CONSTRUCTION OF
LYAPUNOV FUNCTIONS

One of the big advantages of the models introduced in
[16], [17] and recalled in the previous section stands in the
fact that the search for Lyapunov functions guaranteeing
stability properties can be carried out by only imposing
the flow condition in a subset of the state space and then
patching the Lyapunov level sets with an extra piece which
satisfies the jump condition. This idea can be exploited to
analytically construct a Lyapunov function. We address here
the simple, yet very relevant case of a FORE connected to an
integrator. This planar system has been widely studied in the
literature and its improved L2 performance properties are
here characterized by way of a pair of analytic Lyapunov
functions. The bounds corresponding to equation (7) are
graphically represented in Figure 2 in the following section,
where they are compared to the bounds obtained by using
the numerical optimization tools proposed in [17].

Proposition 1: Given any λr ∈ R, Consider the closed-
loop between

ẏ = u+ d, (6)

and the FORE (2), (3) with temporal regularization. Then for
any (positive or negative) value of λr ∈ R, the closed-loop
system is exponentially stable and a bound (depending on
the FORE’s pole λr) for the L2 gain estimate from d to y is
given by:

γ(λr) ≤


2

|λr|
+ |λr|, if λr < 0,

max

{
π

2
,

2π

4 + πλr

}
, if λr > −

4

π
.

(7)

Proof: See Section IV.
Remark 1: (Comparing analytic and numerical bounds) In

Figure 2, the L2 bounds obtained in Theorem 1 for different
values of λr are compared to the numerical bounds obtained
by applying the numerical results proposed in [17]. Note that
the numerical bounds are always tighter than the analytic
ones, however, the relevance of the analytic results stands
in the fact that exponential stability and a bound on the L2

gain is proved for all values of λr, whereas the numerical
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Fig. 2. The L2 gain estimates obtained by using PWQ Lyapunov functions
(solid) of [17] for different values of the FORE’s pole λr , compared to
the corresponding linear performance (dashed) and to the analytic bounds
established in Theorem 1 (dash-dotted).

tools of [17] lead to infeasibility for positive values of λr
that become too large. ◦

Remark 2: (A lower bound on the L2 gain for λr = 0)
An interesting question corresponds to asking how tight the
analytic and numerical bounds in Figure 2 are. A partial
answer to this question is given by the following result which
establishes that for the case λr = 0 (namely, the Clegg
integrator), the gain is not smaller than

√
π/8 ≈ 0.626,

which coincides with the star reported in Figure 2. Note that
the numerical upper bound determined by [17] is extremely
close to this lower bound.

To show this property for the gain, consider the closed-
loop without temporal regularization (the extension is trivial)
given by

ẏ = xr + d,
ẋr = −y, (8)

and select the following initial conditions y(0) ∈
(√

2
2 , 0

)
,

xr(0) = −y(0). Then select the following disturbance:

d(t) =

{
2 exp(t)y(0) t ∈ [0, t∗],

0 t > t∗,

where t∗ := ln
( √

2
−2y(0)

)
. Then it is immediate to check that

‖d‖2 =
√

4 · 1
2 [exp(2t∗)− 1]y2(0)

≤
√

2| exp(t∗)y(0)| = 1.

and that in the limit as y(0)→ 0, ‖d‖2 → 1. Then, by sub-
stituting in (8) and considering that xr(t) = − exp(t)y(0),
the following holds:

y(t) =

{
exp(t)y(0) t ∈ [0, t∗],

− cos(t− t∗ + π/4) t ∈ [t∗, t∗ + π/4].

It follows that in the first time interval [0, t∗], since y(t) =
0.5d(t), we have

‖y[0,t∗]‖22 =
1

2
[exp(2t∗)− 1]y2(0),

and that in the limit as y(0)→ 0, ‖y[0,t∗]‖22 → 1/4. For the
remaining time interval, we have∥∥y[t∗,t∗+π/4]

∥∥2

2
=

∫ π/2

π/4

cos2(τ)dτ

=

∣∣∣∣12 t+
1

4
sin(2t)

∣∣∣∣
=

π

4
− π

8
− 1

4
.

Since the state is reset to zero and remains there after t∗ +
π/4, then, in the limit as y(0)→ 0, we have

‖y‖2 →
√
π

8
=

√
π

8
‖d‖2,

which proves the claim. ◦
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Fig. 3. Simulations of step responses of closed-loops between FOREs and
an integrator for different values of λr .

Remark 3: (From intuition to formalization) The results
of Theorem 1 correspond to the mathematical formalization
of the following intuitive reasoning about the closed-loop
behavior of the control system of Figure 1. Since the plant
is an integrator, then the linear part of the control system
will always correspond to trajectories that spiral around the
origin of the phase plane. Having λr = 0 will correspond
to closed trajectories (circles in the phase plane), λr < 0
will lead to exponentially stable trajectories spiraling inward
toward the origin and λr > 0 will lead to exponentially
unstable trajectories spiraling outward toward infinity. When
resets come to place, any of these stable and unstable
trajectories will be blocked when they approach the second
and fourth quadrant, and will be reset to zero, no matter
what the value of λr is. Therefore, the conclusion about



exponential stability established in Theorem 1. Let’s consider
now the bounds on the L2 gain from d to y. Large negative
values of λr will correspond to exponentially stable branches
of trajectories that move very slowly toward the resetting
quadrants, therefore the L2 gain of the corresponding closed-
loops will be larger and larger as λr becomes more and
more negative (see also the very left of Figure 2). The
decreasing trend of the gain as λr approaches zero only
occurs up to a certain point in the linear case because the
linear trajectories approach the unstable cases (occurring
with λr > 0). Conversely, in the reset case, the branches
approaching the reset quadrants become increasingly fast
and steep, even for positive values of λr. The corresponding
gain becomes then smaller and smaller. This trend is easily
understood by inspecting the simulations of Figure 3, where
several step responses (corresponding to increasing values of
λr) are reported. From these simulations it becomes evident
that as λr approaches +∞, the step responses approach a
step output (so that the gain approaches zero) because they
correspond to an increasingly fast exponentially unstable
branch up to the desired set-point, followed by a constant
branch. The decreasing trend of the gain as λr approaches
+∞ is confirmed by the numerical results, whereas the
bound provided by our Lyapunov approach is non decreasing.
Recent preliminary results reveal that should be possible
to prove analytically that the L2 gain from d to y indeed
approaches zero as λr approaches +∞. ◦

IV. PROOF OF PROPOSITION 1

In [16] Lyapunov-based results for a general class of reset
systems have been given. These results allow us to establish
exponential stability of the closed-loop and L2 performance
properties. The main result of [16] can be written as follows
for the special reset control system in (4), when only focusing
on second order homogeneous Lyapunov functions.

Theorem 1: [16] Consider the reset control system (4)
with the matrix selection (5). Select either w = r and
Bw = Br or w = d and Bw = Bd. Assume that there
exists a locally Lipschitz function V (x) := xTP (x)x, and
strictly positive constants a1, a2, γ, εM and εS , such that

1) a1|x|2 ≤ V (x) ≤ a2|x|2 for all x ∈ Rn,
2) P (λx) = P (x) = PT (x) > 0 for all x ∈ Rn \ {0}

and for all λ ∈ R,

3)
∂V (x)

∂x
(Ax+Bww)+εS |x|2 +

1

γ
|y|2−γ|w|2 < 0, for

almost all x such that xT (M + εMI)x ≥ 0,
4) V (Arx)− V (x) ≤ 0 for all x such that xTMx ≤ 0.

Then there exists a small enough ρ∗ > 0 such that for
any fixed ρ ∈ (0, ρ∗), the FORE control system (4) is
exponentially stable and has a finite L2 gain from w to y
which is smaller than γ.

Remark 4: The condition at item 2 corresponds to requir-
ing that the Lyapunov function is homogeneous of degree
two. The condition at item 3 corresponds to requiring that
in a set that is slightly larger than the flow set the Lyapunov
function is a disturbance attenuation Lyapunov function for
the input w and the output y. The condition at item 4

corresponds to requiring that the Lyapunov function does
not increase along resets. As compared to the main result in
[16], Theorem 1 does not explicitly require that immediately
after the resets the closed-loop state belongs to the flow set.
Indeed, since resets will always drive the FORE state to zero,
the state after reset will necessary belong to the flow set (by
the structure of M ) and no extra requirement is needed on
the resetting strategy. ◦
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Fig. 4. Level sets of the two Lyapunov functions proposed in Theorem 1
and trajectories of the closed-loop (selecting θε = 0.05). Top: λr = −1.
Bottom: λr = 1.

Proof of Theorem 1. The proof consists in proposing two
Lyapunov functions (one for each one of the two bounds



in (7)) which satisfy the conditions in Theorem 1 and, as
ρ→ 0, provide the two bounds. In particular, as illustrated in
the level sets reported in Figure 4, both functions are defined
as follows:

V (x) :=

{
Vf (x), if xTMθεx ≥ 0,

xT P̂ x, if xTMθεx ≤ 0,
(9)

where x := (y, xr), θε is a small enough angle and Mθε :=[
sin(2θε) −1
−1 sin(2θε)

]
is associated with the white regions in

Figure 4, corresponding to the second and fourth quadrant
inflated by an angle θε. Given the selection (9), we will
next propose two smooth selections of Vf (·) which are both
positive definite in {x : xTMθεx ≥ 0} and that provide,
respectively, the two bounds in (7).

The matrix P̂ is selected so that continuity of V (·) is
ensured and the jump condition at item 4 is satisfied (this
is always possible for any smooth Vf (·) which is positive
definite in {x : xTMθεx ≥ 0} and for a small enough θε).
In particular, we pick P̂ diagonal with the following diagonal
entries:[

p̂1

p̂2

]
=

[
cos2 θε sin2 θε
sin2 θε cos2 θε

]−1 [
v1

v2

]
(10)

where v1 := V 2
f ((cos θε, sin θε)) and v2 :=

V 2
f ((sin θε, cos θε)) are the values of Vf (·) on the patching

hyperplanes.

Bound for λr < 0. We first prove the first bound in (7).
Consider the quadratic function

Vf (x) := xTPx := xT

[
− 2+λ2

r

λr
1

1 − 2
λr

]
x, (11)

which is positive definite for any λr < 0. The arising
function V (·) according to (9) is Lipschitz by smoothness
and by the continuity enforced in (10). 1 Moreover, it trivially
satisfies items 1 and 2 of Theorem 1. To show the remaining
item 3 of Theorem 1, compute the derivative of Vf (·) along
the dynamics of (6), (2), (3) (with k = 1) and complete
squares as follows:

V̇f = −|y|2 − |xr|2 −
2 + λ2

r

λr
yd+ xrd

≤ −|y|2 − |xr|2 + γ

(
y2

2γ
+
γd2

2

)
+

(
2x2

r

2
+
d2

4

)
≤ −|y|

2

2
+
γ2

2
|d|2,

where γ :=
2+λ2

r

λr
. Then the first bound in (7) follows from

Theorem 1 by picking εS in item 3 arbitrarily small and
using the scaled Lyapunov function Ṽ := 2

γV .

Bound for λr > − 4
π . For positive values of λr, the underly-

ing linear dynamics of the reset system are exponentially
unstable. Therefore, the technique used in the previous
bound will not work, as there’s no quadratic function which

1A level set of this Lyapunov function for λr = −1 and θε = 0.1 is
shown in the left plot of Figure 4.

decreases along the closed-loop trajectories. Instead, we will
use a function which becomes increasingly large in the
second and fourth quadrants and continuity will be ensured
by the quadratic function given by P̂ in the first and third
quadrants. To define Vf (·), it will be convenient to write
the dynamics in polar coordinates (r, θ), with the following
implicit definitions:

y = r cos θ,
xr = r sin θ.

(12)

Then, the flow dynamics of the closed-loop can be written
as follows (see also [14, §10.5]):

ṙ = d cos θ + λrr sin2 θ

θ̇ = −1− r−1d sin θ + λr sin θ cos θ.
(13)

Consider now the following selection:

Vf :=

{
1
2r

2ϕ(θ), if θ ∈
[
π
2 − θε, π + θε

]
,

1
2r

2ϕ(θ − π), if θ ∈
[

3π
2 − θε, 2π + θε

]
.

(14)

where ϕ(·), to be selected later, is such that there exist
scalars ϕM > ϕm > 0 satisfying ϕm ≤ ϕ(θ) ≤ ϕM
for all θ ∈ T :=

[
π
2 − θε, π + θε

]
. Then the arising V (·)

according to (9) trivially satisfies items 1 and 2 of Theorem 1.
Moreover, by the symmetry in (14) and by the linearity of
the flow dynamics, we only need to show item 3 for the
inflated second quadrant, namely for θ ∈ T .

Here we propose the following selection of ϕ(·)

ϕ(θ) = ϕ0(θ) + ϕε(θ), (15a)

where for any small ε > 0, picking

ϕ0(θ) := θ − π

2
+

1

2
sin 2θ (15b)

ϕε(θ) := ε

(
1

2 max{|λr|, 1}
− sin θ cos θ

)
(15c)

ensures that 2 there exists a small enough θε such that the
uniform lower and upper bounds on ϕ(·) exist.

Consider now the derivative of the Lyapunov function
(14), (15) along the dynamics (13). We will first consider
the simplified case with ε = 0, so that Vf (θ) = Vf0(θ) :=
1
2r

2ϕ0(θ) for all θ ∈ T , and then comment on how to extend
the result to the general setting. After some simplifications,
we get

V̇f0 = −r2 cos2 θ + dr cos θ
(
θ − π

2

)
+λr

2 r
2 sin θ ((2θ − π) sin θ + 2 cos θ) ,

(16)

First consider λr ≥ 0, which leads to the left term in the
maximum at the second line of (7). Note that

g(θ) := (2θ − π) sin θ + 2 cos θ ≤ 0, ∀θ ∈
[π

2
, π
]
, (17)

because g
(
π
2

)
= 0 and dg(θ)

dθ = (2θ − π) cos θ ≤ 0, for all
θ ∈

[
π
2 , π

]
. Then, since also sin θ ≥ 0 for all θ ∈

[
π
2 , π

]
,

2A level set of this Lyapunov function for λr = 1, θε = 0.05 and
ε = 0.1 is shown in the right plot of Figure 4.



the last term at the right hand side of (16) is negative and,
using (12) we get

V̇f0 ≤ −|y|2 + |x1||d| max
θ∈[π2 ,π]

(
θ − π

2

)
(18)

= −|y|2 +
π

2
|x1||d|, (19)

which implies the result by completion of squares and
suitably scaling Vf0(·).

Consider now the case − 4
π < λr < 0. By borrowing some

negativity from the first term at the right hand side, equation
(16) can be rewritten as

V̇f0 = −
(

4+λrπ
4

)
r2 cos2 θ

+dr cos θ
(
θ − π

2

)
+ r2ḡ(θ),

(20)

where ḡ(θ) := λrπ
4 cos2 θ + λr

2 sin(θ)g(θ). Then we have
ḡ
(
π
2

)
= 0 and,

2dḡ(θ)dθ = 2λr(θ − π) cos θ sin θ
+λrg(θ) cos θ ≤ 0, ∀θ ∈

[
π
2 , π

]
,

(21)

because λr ≤ 0 and, also by (17), cos θ ≤ 0 and g(θ) ≤ 0
in
[
π
2 , π

]
. Then the last term on the right hand side of (20)

is negative and, similar to the derivation in (19), using the
polar coordinates transformation (12), the following bound
holds:

4

4 + λrπ
V̇f0 ≤ −|y|2 +

2π

4 + πλr
|x1||d|, (22)

which implies the bound at the right hand side of the second
equation of (7) by scaling Vf0 and by completion of squares.

We consider now the case with θε > 0 and use the function
ϕε(θ) introduced in (15c) to guarantee positive definiteness
of Vf (·) and to guarantee the decrease condition at item 3 of
Theorem 1 for small enough εS > 0 and εM > 0 (namely,
θε). To this aim, consider the derivative V̇fε of the function
Vfε(r, θ) := 1

2r
2ϕε(θ) along the system dynamics for θ ∈ T

and note that since V̇f = V̇f0 + V̇fε, it is sufficient that
V̇fε provides an extra negative term of the type −εηr2 sin2 θ
in the V̇f equation. As a matter of fact, half of that term
will be used to provide the −εS |x|2 (when combined with
a small amount of the −r2 cos2 θ term of (16)). Moreover,
the remaining half will be used to complete squares with
mixed terms of the form sin θ cos θ arising both from θε
and ϕε(θ) (part of the −r2 cos2 θ will also be used in the
completion of squares). To avoid overwhelming the notation
of the proof with unnecessary technicalities, we only mention
here that after some calculations and suitable simplifications,
V̇fε satisfies for all θ ∈ T

V̇fε ≤ ε
2

(
− 1

2r
2 sin2 θ + rd

(
1

2 max{|λr|,1} cos θ − sin θ
)

−λrr2 cos θ sin θ + r2 cos2 θ
)
,

which is sufficient to complete the proof. •

V. CONCLUSIONS

In this paper we analyzed stability and performance of
a First Order Reset Element (FORE) connected to an inte-
grator. We first proved exponential stability of the closed-
loop system and then provided an estimate of the L2 gain
from a disturbance acting at the plant input to the plant
output. Interesting conclusions could be drawn about the
performance trend for asymptotic behavior of the pole of
the FORE.
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[17] L. Zaccarian, D. Nešić, and A.R. Teel. First order reset elements
and the Clegg integrator revisited. In Proc. of the American Control
Conference, pages 563–568, Portland (OR), USA, June 2005.


