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Abstract— In this paper we further develop on a novel
representation of First Order Reset Elements (FORE) control
systems for SISO plants. We study here the problem of
guaranteeing asymptotic tracking of constant references for
general plants, which may or may not contain an integrator
(namely, an internal model of the constant reference signal).
We propose a generalization of the FORE which allows to
guarantee asymptotic tracking of constant references when the
plant parameters are perfectly known. Robustness of the scheme
follows from the L∞ stability properties of the FORE control
schemes. The proposed approach is successfully illustrated on
a simulation example.

I. INTRODUCTION

First Order Reset Elements (FOREs) are a special class
of reset linear systems used in stabilization of single input
single output (SISO) plants. Perhaps the breakthrough idea
on reset linear systems was that of Clegg who in 1958 [5]
proposed a reset implementation of the integrator (the so-
called “Clegg integrator”) already discussing its advantages
using the mathematical tools available at that time. Reset
controllers were then further investigated in the 1970s (see,
e.g., [8], [7]) and recently they have been shown to overcome
intrinsic limitations of linear control loops [6], [1].

Reset controllers correspond to control systems involving
an element (a SISO element in the typical case) whose state
is reset to zero whenever the input and the state itself satisfy
a suitable algebraic condition. When the Clegg integrator was
first proposed (in 1958 [5]), its behavior was not specified in
terms of mathematical equations but only in terms of some
modifications to the well-known analog circuit implementing
a linear integrator (by way of an operational amplifier).
Subsequently, the Clegg integrator idea was generalized to
the so-called First Order Reset Element (FORE) [7] which
corresponds to generalizing the Clegg integrator to a linear
reset system with a real pole (that pole is at the origin for the
Clegg integrator). Reset control systems involving FOREs
and Clegg integrators have been formally shown to overcome
intrinsic limitations of linear control systems (see, [6], [1])
and have been recently the subject of renewed interest by the
control community (see, e.g., [3], [2] and references therein).
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It was recently pointed out in [9], [10] that when carefully
analyzing the modified circuit proposed in 1958 by Clegg, the
arising dynamical equations reveal the fact that the closed-
loop system is only allowed to flow in a strict subset of the
overall state space. Ruling out a non trivial subset of the
state space (where the state can never flow) allowed to show
guaranteed asymptotic stability and performance properties
in cases where the underlying linear dynamics without resets
was even exponentially unstable. As an example, the typical
case of a Clegg integrator connected to an integrator was
shown in [10] to be globally exponentially stable and to
guarantee finite L2 gain from d to y.

In this short note, we further develop on the novel rep-
resentation of SISO reset control systems proposed in [9],
[10] and study the problem of set-point stabilization. We
show here that FOREs can be well employed for set-point
stabilization also when an integrator is not present in the
forward control path and show how the FORE should be
implemented to guarantee asymptotic tracking of constant
references. In Section II we introduce the model of SISO
reset systems with FOREs and given the main result of the
paper. In Section III we provide a simulation example and
discuss the effectiveness of the proposed control strategy.

II. SET-POINT REGULATION FOR SISO RESET SYSTEMS
WITH FORES

Consider a strictly proper SISO linear plant whose dynam-
ics is described by

P
{
ẋp = Apxp +Bpuu+Bpdd,
y = Cpxp,

(1)

where u is the control input, d is a disturbance input and
y is the measured plant output (Ap, Bpu, Bpd and Cp are
matrices of appropriate dimensions).

For the plant (1), assume that a control system is designed
for stabilization purposes only, with r = 0, where the
FORE element dynamics and the interconnection equations
correspond to:

FORE

{
ẋr = λrxr + e, if exr ≥ 0
x+r = 0, if exr ≤ 0,

(2)

Interconnection

{
u = kxr,
e = −y (3)

where k > 0 denotes the loop gain and λr ∈ R denotes the
pole of the FORE.

The closed-loop (1), (2), (3) has been extensively studied
in the literature, already from the time of the introduction
of the Clegg integrator [5], which corresponds to selecting
λr = 0 in (2). Our recent developments of [9], [10] showed



a new understanding of these interconnections by way of a
revised model of the Clegg integrator and the corresponding
generalization to a generic FORE element.

Remark 1: (Temporal regularization and Zeno solutions)
It has been shown in [10] that reset linear systems are prone
to the presence of Zeno solutions (namely solutions that jump
infinitely many times in a compact time interval). To avoid
this phenomenon, we used in [9], [10] the notion of temporal
regularization already used, e.g., in [4]. To keep the notation
simple, we avoid using temporal regularization in this paper,
although it remains evident that any implementation of the
reset control systems here discussed would require that
modification or alternative ways to rule out Zeno solutions.

◦
Proposition 1: (FORE set point stabilizer) Suppose that

the transfer function of the plant (1) from u to y does not
have zeros at the origin. Also suppose that k 6= 0 and the
origin of the reset control system (1), (2), (3) with temporal
regularization is asymptotically stable. Then, the following
quantity is well defined:

F =


1

CpA
−1
p Bpuk

, if Ap is invertible,

0, otherwise.
(4)

Moreover, for any constant reference r ∈ R, the following
FORE implementation

FORE

{
ẋr = λrxr + e, if (r − y)(xr + Fr) ≥ 0
x+r = −Fr, if (r − y)(xr + Fr) ≤ 0,

(5)

Inter
conn.

{
u = kxr,
e = (1 + λrF )r − y

(6)

guarantees asymptotic stability of the equilibrium point x∗ =
(x∗p, x

∗
r), where y∗ = Cpx

∗
p = r.

Proof: Since CpA
−1
p Bpuk is the static loop gain of the

control system, then by the assumption on the zeros of the
plant it follows that CpA

−1
p Bpuk > 0 (note that the absence

of zeros at the origin is a necessary assumption to be able
to achieve set point regulation from the input u). Therefore,
F in (4) is well defined.

Consider now the dynamics (1), (5), (6) and for any
r ∈ R perform the change of coordinates (xp, xr) →
(x̃p, x̃r) := (xp − x∗p, xr − x∗r), where x∗p is a vector
satisfying the following (always solvable) set of equations:
Apx

∗
p = Bpukx

∗
r , Cpx

∗
p = r (note that if Ap is invertible,

then x∗p = −A−1p Bpukx
∗
r , otherwise xp ∈ ker(Ap) such

that Cpx
∗
p = r). The the arising dynamics coincide with the

dynamics (1), (2), (3), with (xp, xr) replaced by (x̃p, x̃r).
Therefore, by assumption, the origin of the reset closed-
loop in the (x̃p, x̃r) coordinates is asymptotically stable and
the equilibrium point x∗ = (x∗p, x

∗
r) for (1), (5), (6) is

asymptotically stable too.

III. SIMULATION EXAMPLE

The construction proposed in Proposition 1 generalizes the
FORE control system construction to the set point regulation
problem. This generalization is trivial when the plant (1) has
an integrator in it (such as in the classical case of a FORE
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Fig. 1. Example discussed in Section III. Linear response (dashed),
incorrect FORE response (solid) and correct FORE response (bold).

controlling an integrator widely studied in the literature). As
a matter of fact, in that case y∗ = r and x∗r = 0. Therefore,
equations (5), (6) reduce to a very intuitive implementation
which corresponds to keeping the FORE equations in (2)
unchanged and only exchanging the last interconnection
equation in (3) to e = r − y. However, when the plant
does not satisfy det(Ap) 6= 0, this intuitive generalization is
no longer effective and can lead to very undesirable closed-
loop behavior, including instability. On the other hand, the
implementation in (5), (6) always guarantees asymptotic
stability of the set point x∗.

The set-point stabilization properties of the FORE imple-
mentation (5), (6) is illustrated by the simulations of Figure 1,
which report the closed-loop responses to a doublet reference
input when the following parameters are used:

Ap = −1.5, Bpu = 1, Cp = 1, k = 2, λr = 1,

so that F = −0.75.
In Figure 1, the dashed line represents the response of the

system without resets, which is exponentially stable for these
parameters (with a suitable reference scaling to guarantee the
desired steady-state value), the solid line reports the response
of the FORE control system incorrectly implemented using
(2), (3) (replacing the last interconnection equation by e =
r− y) and the bold line reports the response of the set-point
FORE control system correctly implemented using (5), (6).

Remark 2: (On robustness of the set-point controller im-
plementation) When Ap is nonsingular, for the implementa-
tion of the FORE set point stabilizer in Proposition 1, it is
necessary to exactly know the static gain of the plant from
the input u to the output y (this corresponds to the quantity
CpA

−1
p Bpu). It is important to emphasize the effect of uncer-

tainties on this quantity on the closed-loop. This can be done
by writing the closed-loop system by taking the change of
coordinates (xp, xr)→ (x̃p, x̃r) := (xp−x∗p, xr+Fr), where
x∗p is the desired equilibrium that satisfies Cx∗p = r). Then
the closed loop in the transformed coordinates coincides with
the dynamics (1), (2), (3) with an extra constant disturbance



term acting on the plant state equation and corresponding
to d∗ := Apx

∗
p − Bpukx

∗
r . Hence, as long as the original

reset closed-loop satisfies a suitable L∞ property from a
disturbance acting at the plant input to the output y (see,
e.g., [9] for some directions on Lyapunov based conditions
that guarantee this property), the tracking error will be small
when the static gain estimation error is small. ◦
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