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Abstract— In this paper we propose a novel interpretation of
the well known Smith predictor scheme for dead-time plants.
By a suitable change of coordinates, it is revealed that the
system possesses a useful cascaded structure wherein extra
stabilizing signals can be successfully injected to make the
approach applicable to non Hurwitz plants. We emphasize here
the potential of this type of “enhanced” Smith predictor scheme
and suggest some preliminary ways to select the extra stabilizing
signals, in addition to clarifying what are the key properties
that these signals need to satisfy to induce desirable closed-
loop performance.

I. INTRODUCTION

Dead-time systems represent the simplest class of infinite
dimensional systems that often arises in control engineering
practice. Indeed, these systems are prevalent in classical pro-
cess control applications where measurements or actuating
signals can be only processed with a delay (i.e. transport
delay) or where the chemical reactions in the system natu-
rally occur with a considerable time delay (see [20]). Low
order dead-time systems can also be used in model reduction
to approximate the behavior of high dimensional delay-free
systems (see, e.g., [18]).

The first non-trivial solution to stabilization of dead-time
processes was given by O.J.Smith in [21] who presented
a controller-predictor structure in which the controller is
designed for the delay-free plant. The arising closed-loop
performance is then enforced on the actual plant with time-
delay via the action of a peculiar filter (the Smith predictor)
which has a model-based structure. In general, the classical
Smith predictor has some important limitations, the main one
being that it can only be applied to open-loop asymptotically
stable plants. Already in the 1980s generalizations of the
classical Smith predictor scheme were proposed (see, e.g.,
[23]). Useful extensions of the original Smith predictor
scheme were given in [1] to extend its applicability to plants
with integrating action, as well as in [6], [13], [12], [9] were
these results were also extended to open-loop unstable plants
(a nice summary and overview of these advances is given in
[20]).

Despite the large literature on stabilization of time-delay
systems (see, e.g., [19] for an extensive survey of a research
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area where Linear Matrix Inequalities are used to design
stabilizing compensators), in recent years the Smith predic-
tor has been a preferred technique for the design of high
performance control schemes for dead-time processes (see,
e.g., [17], [3], [11], [2]). Motivated by the increasing demand
for high-performance solutions that overcome the limitations
of the original scheme of [21], several constructive solutions
have been proposed in recent years: in [10], [4], [22], [24],
[5] schemes for automatic tuning of the Smith predictor are
proposed. In [14], [16] control design approaches for dead
time systems are proposed which rely on analysis tools that
address (and characterize) the time delay in different ways.
Moreover, in [8], [25], and references therein, important
characterizations of intrinsic properties of control systems
for dead time plants are given, mainly aimed at bringing
classical linear design and analysis tools to bear within the
dead time setting.

In this paper we revisit the classical Smith predictor
schemes and reveal a special cascade structure in the scheme
by way of a suitable coordinate transformation. This cas-
caded structure allows to focus on the possibility of en-
hancing the classical scheme with extra stabilizing signals
so that the standard approach (known to be only applicable
to Hurwitz plants) can easily extend to more complicated
settings. We do not pursue fully constructive tools for the
design of these extra stabilizing signals here but show that
they can be designed based on the solution of a stabilization
problem for a dead-time plant. As an example, the design ap-
proach proposed in [15] actually falls within this framework
wherein the extra stabilizing loop that we characterize here
is selected using a static feedback from an observed state.
The paper is organized as follows. In Section II we give the
problem definition. In Section III we discuss the problem
solution by first discussing the classical Smith predictor and
then discussing the enhanced Smith predictor. Finally, in
Section IV we illustrate the potential of the scheme on a
simple simulation example.

II. PROBLEM STATEMENT

Consider the following MIMO linear plant with delays at
its control inputs and measured outputs

P


ẋ(t) = Ax(t) +Buu(t− τI) +Bdd(t) + ψx(t)
y(t) = Cyx(t− τO) +Duyu(t− τI − τO)

+Ddyd(t− τO) + ψy(t− τO)
z(t) = Czx(t) +Duzu(t− τI) +Ddzd(t) + ψz(t),

(1)

where τI is a uniform delay at the plant control input, τO is
a uniform delay at the plant output. Moreover, y represents



the measured output, z represents the performance output
(without loss of generality we can assume that this output is
not delayed) and d represents a disturbance input. The three
extra signals ψx, ψy, ψz can be stacked in a single vector Ψ
representing the output of the following linear system

Ψ(t) =

 ψx(t)
ψy(t)
ψz(t)

 = ∆(s)

 x(t)
u(t)
d(t)

 (2)

which may be infinite dimensional (it may have internal
delays) and represents unmodeled dynamics and/or parameter
uncertainties in the model (1). We will need the following
assumption to hold for the system (2).

Assumption 1: The pair (Cz, A) is detectable. 1 The linear
system (2) is an exponentially stable linear retarded delay-
differential system with finite L2 gain equal to γ∆.

Remark 1: Note that assuming exponential stability of (2)
is not too restrictive when addressing the robustness of the
control scheme for the plant (1). A sufficient condition for
(2) to be exponentially stable is indeed that the number of
non asymptotically stable poles of A corresponds to that of
the real plant. All other uncertainties are captured by (2),
namely unmodeled dynamics, uncertainties in the input and
output delays, uncertainties on the entries of all the matrices
in (1) and uncertainties in the position of the poles of A
(regardless of their stability). ◦

Consider the plant (1) and assume that a (nonlinear, in
general) controller has been designed to guarantee desirable
stability and performance specifications on its undelayed
closed-loop interconnection with the nominal undelayed
plant, namely

P0

 ẋu(t) = Axu(t) +Buuu(t) + v1(t)
yu(t) = Cyxu(t) +Duyuu(t) + v2(t)
zu(t) = Czxu(t) +Duzuu(t),

(3a)

C
{
ẋc(t) = f(xc(t), uc(t), r(t))
u(t) = g(xc(t), uc(t), r(t)),

(3b)

uu(t) = u(t), uc(t) = yu(t), (3c)

where v1 and v2 are suitable signals to be specified later
and f(·, ·, ·) and g(·, ·, ·) are Lipschitz functions so that
uniqueness of solutions is guaranteed. We will assume that
the following assumption holds for the undelayed nominal
closed-loop system. (Note that this assumption is trivially
satisfied when the controller (3b) is a linear stabilizing
controller for (3a).)

Assumption 2: The undelayed nominal closed-loop system
(3a), (3b), (3c) is globally asymptotically stable, finite gain
L2 stable from r to xu, uu and finite gain incrementally L2

stable from (v1, v2) to xu, uu, namely there exists a positive
number γU such that for any selection of the reference signal
r(·) in L2 (assuming zero initial conditions, for simplicity),

1This assumption is only needed to prove the necessity of some of the
results in the paper. The sufficiency statements would still hold in the case
where (Cz , A) is not detectable.

1) if xu0(·), uu0(·) is the response of the system with
v1(·) ≡ 0 and v2(·) ≡ 0, then∥∥∥∥xu0(·)

uu0(·)

∥∥∥∥
2

≤ γU‖r(·)‖2; (4)

2) if xu(·), uu(·) is the response of the system to any
selection of L2 signals v1(·) and v2(·), then 2∥∥∥∥ (xu − xu0)(·)

(uu − uu0)(·)

∥∥∥∥
2

≤ γU
∥∥∥∥ v1(·)
v2(·)

∥∥∥∥
2

. (5)

τI τO
u(t) y(t)

∆ Plant

d(t) z(t)

P0C
r(t)

uc(t)

S

Fig. 1. The compensated closed-loop system.

The goal of this paper is to recover as much as possible
the desirable (ideal) output response zu(t) generated by
the undelayed closed-loop system in the case where the
nonlinear controller (3b) is interconnected in feedback with
the perturbed and delayed plant (1). To this aim, we will
consider the augmentation of the delayed control scheme
with a suitable model-based dynamic filter S, as represented
in Figure 1, which is driven by the plant input and output
signals u(t) and y(t) and provides a new input uc(t) to the
controller. The filter S should be suitably designed with the
goal of enforcing the following property on the compensated
closed-loop (1), (2), (3b).

Definition 1: The delay compensation system S is said to
solve the nominal prediction problem if there exists a positive
constant τ such that if d(·) ≡ 0 and Ψ ≡ 0, for any selection
of the reference signal r(·), and zero initial conditions, 3 the
output responses of the undelayed and of the compensated
closed-loops satisfy z(t) = zu(t− τ) for all t ≥ τ .

The delay compensation system S is said to solve the
robust prediction problem if

1) it solves the nominal prediction problem
2) for a sufficiently small gain γ∆ > 0 of the unmodeled

dynamics (2) and under Assumption 1, there exists γ >
0 such that the performance output responses of the
undelayed and of the compensated closed-loops satisfy

‖z(·)− zu(· − τ)‖2 ≤ γ(‖d(·)‖2 + γ∆‖r(·)‖2) . (6)

◦
Remark 2: Note that, in general, to even guarantee the

solvability of the only nominal prediction problem, it is
necessary that the input delay τI is uniform, namely that
all the input channels of the plant (1) are delayed of the
same quantity. 4 Indeed, consider an undelayed plant P0

2Different gains could be used in (4) and (5) but we use the same gain
here to simplify the notation.

3The initial conditions have been omitted to keep the discussion simple.
4It is emphasized that small uncertainties in these delays could be

incorporated in the perturbation (2).



whose input matrix Bu has full column rank and with non-
uniform delays at the input channels. Given an open-loop
input signal uu(t), t ≥ 0, inducing the performance output
response zu(t), t ≥ 0, as long as the plant is observable from
z and the input matrix is full column rank (namely the inputs
are not redundant), there doesn’t exist an open-loop signal
u(t), t ≥ 0, for the delayed plant (1) (with Ψ = 0) inducing
the response z(t) = zu(t−τ) for all τ < τImax, where τImax
is the largest delay at the plant inputs. Moreover, introducing
artificial input delays at the input channels to make the
overall vector delay uniform (and equal to τImax), it is
readily seen that the output response z(t) = zu(t − τImax)
can be easily obtained by the same input u(t) = uu(t),
therefore the uniform input delay assumption is necessary
(and sufficient), in general, for the solvability of the nominal
prediction problem and will be used throughout this paper.
Note however that the output delay might be taken to be non-
uniform. We choose it as uniform here for simplicity, but the
special cascade structure pointed out here would also hold for
non-uniform output delays. Nevertheless, non-uniform output
delays make the task of designing v1 and v2 in the next
section, quite involved. ◦

III. PROBLEM SOLUTION

A. The classical Smith predictor

The so-called “Smith predictor” [21], is a well known
solution to the nominal prediction problem specified in the
previous section in Definition 1. This scheme was originally
formulated for SISO systems but extends in a straightforward
way to the case where the delayed plant has uniform input
delays in the MIMO case. We revisit in this section the well-
known scheme to introduce a new interpretation in terms of
the cascade of two relevant subsystems. This interpretation is
the baseline for the extensions of the next section. The Smith
predictor solution corresponds to selecting the dynamics of
the filter S as a linear time-delay system with the following
transfer function:

S

 ẋs(t) = Axs(t) +Buu(t)
ys(t) = Cyxs(t) +Duyu(t)
uc(t) = ys(t) + y(t)− ys(t− τI − τO).

(7)

The block diagram corresponding to equation (7) is repre-
sented in Figure 2.

+

u(t)

y(t)
P0

τO τI

+

-
uc(t)

S

Fig. 2. The classical Smith predictor.

In the following theorem we formalize the well-known
result that the classical Smith predictor is a satisfactory
solution to the prediction problem as long as the plant is
asymptotically stable.

Theorem 1: Given any linear delayed plant (1) and any
nonlinear controller (3b), if Assumptions 1 and 2 hold,

1) the Smith predictor (7) (with xs(0) = 0) always solves
the nominal prediction problem of Definition 1;

2) the Smith predictor (7) solves the robust prediction
problem of Definition 1 if and only if the plant is
asymptotically stable.

Proof: Consider the compensated closed-loop sys-
tem (1), (2), (3b), (7), perform the change of coordinates
(x̃(t), xs(t), xc(t)) = (x(t) − xs(t − τI), xs(t), xc(t)) and
define ỹ(t) = y(t) − ys(t − τI − τO). Then, the overall
dynamics can be written in the following cascaded form:

{
˙̃x(t) = Ax̃(t) +Bdd(t) + ψx(t)
ỹ(t) = Cyx̃(t− τO) +Ddyd(t− τO) + ψy(t− τO)

(8a){
ẋs(t) = Axs(t) +Buu(t)
uc(t) = Cyxs(t) +Duyu(t) + ỹ(t),

(8b){
ẋc(t) = f(xc(t), uc(t), r(t))
u(t) = g(xc(t), uc(t), r(t)),

(8c)

where the first subsystem (8a) drives the second subsystem
(8b), (8c) through the signal ỹ(t). Moreover, the performance
output equation can be written in the new coordinates as

z(t) = z̃(t) + zs(t− τI), (9)

where

z̃(t) = Czx̃(t) +Ddzd(t) + ψz(t) (10)
zs(t) = Czxs(t) +Duzu(t), (11)

are two additional outputs of the first subsystem (8a) and of
the second subsystem (8b), (8c), respectively.

Proof of item 1. In this case, since Ψ and d are identically
zero, then x(0) = 0 implies x(τI) = 0, therefore x̃(τI) =
x(τI)− xs(0) = 0 and by uniqueness of solutions x̃(·) ≡ 0
and ỹ(·) ≡ 0. Moreover, by (10), also z̃(·) ≡ 0.

Since ỹ(·) ≡ 0, the closed-loop (8b), (8c) coincides
with the undelayed closed-loop and by (11), zs(t) = zu(t)
for all times. Finally, by (9), since z̃(·) ≡ 0, then
z(t) = zs(t − τI) = zu(t − τI) for all times, thus proving
item 1.

Proof of item 2. Based on the result of the previous item, we
don’t need to address the nominal property which is always
satisfied. We will then only focus on robustness. To show the
necessity assume that A is not Hurwitz and select d(·) ≡ 0
and Ψ ≡ 0. Then from (1) and (7) the Smith predictor and
plant state equations correspond to

ẋ(t) = Ax(t) +Buu(t− τI)
ẋs(t) = Axs(t) +Buu(t),

where A is non Hurwitz. It is then apparent that the states
x and xs are not stabilizable through the input u (this
property is invariant of the input delay), therefore by the
detectability condition in Assumption 1, the output z(·) will



grow unbounded for arbitrarily small initial conditions and
since zu(·) is bounded by Assumption 2, then the necessity
of the item follows.

To show the sufficiency, first observe that the second
subsystem (8b), (8c) coincides with the undelayed closed-
loop and that by the incremental stability property at item 2
of Assumption 2 (evaluated with v1(·) ≡ 0 and v2(·) ≡ ỹ(·)),
‖zu − zs(·)‖ ≤ γ∗‖ỹ(·)‖2, where γ∗ = γU (‖Cz‖+ ‖Duz‖).
Therefore, by (9),

‖z(·)− zu(· − τI)‖2 ≤ ‖zs(· − τI)− zu(· − τI)‖2
+ ‖z(·)− zs(· − τI)‖2

≤ γ∗‖ỹ(·)‖2 + ‖z̃(·)‖2
(12)

Since A is Hurwitz by assumption, then the subsystem
(8a) is exponentially stable and, by linearity, finite-gain input-
output stable from (d, ψx, ψy, ψx) to x̃, ỹ, z̃. Denote by γ̃ the
L2 gain of this system. Then,∥∥∥∥∥∥

x̃(·)
ỹ(·)
z̃(·)

∥∥∥∥∥∥
2

≤ γ̃

∥∥∥∥∥∥∥∥
d(·)
ψx(·)
ψy(·)
ψz(·)

∥∥∥∥∥∥∥∥
2

(13)

Since x(t) = x̃(t)− xs(t− τI), then, by Assumption 2, the
following holds:∥∥∥∥∥∥

ψx(·)
ψy(·)
ψz(·)

∥∥∥∥∥∥
2

≤ γ∆

∥∥∥∥∥∥
x̃(·)− xs(· − τI)

u(·)
d(·)

∥∥∥∥∥∥
2

(14)

Therefore, applying the small-gain theorem to (13) and (14)
we get∥∥∥∥ ỹ(·)
z̃(·)

∥∥∥∥
2

≤ γ̃ 1 + γ∆

1− γ∆

∥∥ d(·)
∥∥

2
+γ∆

γ̃

1− γ∆

∥∥∥∥xs(· − τI)u(·)

∥∥∥∥
2

.

Moreover, by both items of Assumption 2 (evaluated with
v1(·) ≡ 0 and v2(·) ≡ ỹ(·)), we can write∥∥∥∥xs(· − τI)u(·)

∥∥∥∥
2

≤ 2

∥∥∥∥xs(·)u(·)

∥∥∥∥
2

≤ 2γU
(∥∥ ỹ(·)

∥∥
2

+
∥∥ r(·)∥∥

2

)
,

which, applying once again the small-gain theorem, can be
combined with the previous inequality to yield∥∥∥∥ ỹ(·)

z̃(·)

∥∥∥∥
2

≤ γd
∥∥ d(·)

∥∥
2

+ γ∆γr
∥∥ r(·)∥∥

2
,

where

γd =
(

1− 2γ∆γ̃γU
1−γ∆

)−1
1+γ∆

1−γ∆
γ̃

γr =
(

1− 2γ∆γ̃γU
1−γ∆

)−1
2γ∆γ̃γU
1−γ∆

.
(15)

Finally, by equation (12) we get∥∥ z(·)− zu(· − τI)
∥∥

2
≤ (1 + γ∗)γd

∥∥ d(·)
∥∥

2

+γ∆(1 + γ∗)γr
∥∥ r(·)∥∥

2

which implies equation (6) with γ = (1 + γ∗) max(γd, γr).

B. The enhanced Smith predictor

In this section we will propose a generalization of the clas-
sical Smith predictor recalled in the previous section which
is aimed at addressing the lack of robustness established in
Theorem 1 (in particular, see item 2). The general class of
systems that we will consider is represented in Figure 3 and
corresponds to the following equation

S


ẋs(t) = Axs(t) +Buu(t) + v1(t)
uc(t) = Cyxs(t) +Duyu(t) + v2(t)
ỹ(t) = y(t)− Cyxs(t− τI − τO)

−Duyu(t− τI − τO),

(16)

where the two signals v1(t) and v2(t) represent the proposed
“enhancement” and are feedback signals from the prediction
error ỹ (so that, among other things, ỹ(·) ≡ 0 implies v1(·) ≡
0 and v2(·) ≡ 0). Note that the classical Smith predictor (7)
corresponds to a specific selection of these signals, namely
v1(t) = 0 and v2(t) = ỹ(t).

v1

u(t)

P0

uc(t)

+

+

τI + τO

v2
y(t)

S

+

-

Fig. 3. The enhanced Smith predictor.

The enhanced Smith predictor (16) represents a useful
generalization of the classical Smith predictor structure of
Figure 7 because as long as v1 and v2 are zero when ỹ is zero,
the nominal prediction property of Definition 1 will always
be satisfied regardless of the selection of these two signals.
On the other hand, all the possible selections of v1 and v2 that
arise from a (static or dynamic, linear or nonlinear) feedback
loop from the signal ỹ, parametrize a family of enhanced
Smith predictors that, as shown in the following sections,
is large enough to allow to solve the robust prediction
problem of Definition 1 for non exponentially stable plants
(thus reaching beyond the potentials of the classical Smith
predictor).

The selection of v1(·) and v2(·) within the enhanced Smith
predictor (16) can be carried out in several different ways
with the ultimate goal of robustifying the (pseudo)-cascaded
structure exploited in the proof of Theorem 1. In many cases
of practical interest, a very natural selection is

v1 = Ksỹ(t), v2 = ỹ(t). (17)

where Ks can often be tuned experimentally (or by simu-
lation) to guarantee desirable performance, as it is done in
our case study. In general for the minimum requirements on
v1 and v2 are that they are produced by a static or dynamic
filter driven by ỹ with Lipschitz right hand side and such
that the following property is satisfied:



Property 1: The delay-differential system
˙̃x(t) = Ax̃(t) + v1(t) + ηx(t)
ỹ(t) = Cyx̃(t− τI − τO) + ηy(t),

(18)

is finite gain L2 stable from (ηx(·), ηy(·)) to
(x̃(·), v1(·), v2(·)).

Remark 3: (On the selection of v1) We don’t pursue here
explicit selections of the signals v1 and v2 but in simple
cases, the selection can be very straightforward. For example,
when the plant is Hurwitz, a natural way is to select them as
in (17), with Ks = P−1X and where P and X satisfy the
following linear matrix inequality:

ATP + PA+R −XCy P X I
? −R 0 0 0
? ? −γ2

yI 0 0
? ? ? −γ2

xI 0
? ? ? ? −I

 < 0,

(this result can be easily proved by a standard Lyapunov-
Krasovskii approach). Alternative solutions can be derived by
modifying typical LMI approaches for static state feedback
for dead-time systems. Indeed, system (18) that has to be
stabilized by v1 is characterized by an interesting output
feedback peculiarity, where v1 has only output measurement
but full authority over the state equation (this resembles an
observer design structure). Approaches for v1 could be for
example derived from the LMI conditions in [7] or from
the static state feedback methods of [14] combined with
a dynamic observer (this last approach was actually used
in [15]). We don’t pursue here a detailed treatment of all
the possible approaches for the selection of v1 because we
regard it as later work. We rather concentrate here on the
key features of this extra signal and show on a simple
simulation example how even very intuitive selections of v1

can parametrize a wide variety of (more or less desirable)
closed-loop behaviors. ◦

Remark 4: (On the selection of v2) Note that when de-
signing Smith predictor schemes for systems with step dis-
turbances it is always convenient to select v2 = ỹ(t), as in
the classical Smith predictor. Since rejecting constant load
disturbances is typically required in control schemes with
Smith predictors, we will always make this selection. It is
important to emphasize, though, that alternative selections
may be desirable when constant disturbance are not present.
The reason why the selection v2 = ỹ(t) helps with constant
disturbance is easily seen by taking the unmodeled dynamics
to be zero in the cascaded structure (8) in the proof of
Theorem 1. Then ỹ(·) is generated by the following system
arising from (8a):

˙̃x(t) = Ax̃(t) +Bdd(t)

ỹ(t) = Cyx̃(t− τO) +Ddyd(t− τO),

which, taking x̂(t) = x̃(t− τO) can be written as
˙̂x(t) = Ax̂(t) +Bdd(t− τO)
ỹ(t) = Cyx̂(t) +Ddyd(t− τO).

(19)

Then, by linearity, equation (19) can be combined with the
second subsystem (8b), (8c) to obtain an exact (delayed)

copy of the undelayed closed-loop subject to the shifted
disturbance d(t − τO). Indeed, by defining x̄(t) = xs(t) +
x̂(t), we can replace (8b) by

˙̄x(t) = Ax̄(t) +Buu(t) +Bdd(t− τO)
uc(t) = Cyx̄(t) +Duyu(t) +Ddyd(t− τO),

(20)

and the shifted property of (20), (8c) becomes evident. Note
also that when d is not constant, one can add the quantity
d(t)− d(t− τO) and characterize the incremental version of
the disturbance as an undesired perturbation. ◦

Remark 5: (On measuring the disturbance d) It is well
known (see, e.g., [20]) that the classical Smith predictor can
be modified to achieve improved performance in cases when
the disturbance can be measured. Indeed, in that case it is
especially convenient to include the disturbance also in the
dynamics (16). This fact is convenient because the arising
cascaded structure (used in the proof of Theorem 1) allows
to fully recover (in a retarded way) the control performance
achieved on those measured disturbances. In this paper we
are not directly addressing this case to reduce the notational
burden, but we are showing its advantage in our simulation
example. ◦

Remark 6: (Controller-independence of the scheme) Note
that the enhanced Smith predictor in (16) preserves a key
feature of the original Smith predictor scheme, which is
the fact that the additional dynamics is independent of the
controller. Therefore, any controller can be used with the
same compensation scheme, even after the design of v1.
As a matter of fact, the requirements on v1 established in
Property 1 only involve the plant dynamics. ◦

Theorem 2: Given any linear delayed plant (1) and any
nonlinear controller (3b), if Assumptions 1 and 2 hold and
v1(·) and v2(·) are selected to satisfy Property 1, then the
enhanced Smith predictor (16) solves the (nominal and)
robust prediction problem of Definition 1.

Proof: The proof is a generalization of the proof of
Theorem 1, therefore it will follow the same steps (note that
the nominal prediction property is not directly addressed here
because it is automatically implied by the robust prediction
property proved next). Consider the compensated closed-loop
system (1), (2), (3b), (16), perform the change of coordinates
(x̃(t), xs(t), xc(t)) = (x(t) − xs(t − τI), xs(t), xc(t)) and
define ỹ(t) = y(t)−Cyxs(t−τI−τO)−Duyu(t−τI−τO).
Then, the overall dynamics can be written in the following
cascaded form:{

˙̃x(t) = Ax̃(t) +Bdd(t) + ψx(t) + v1(t− τI)
ỹ(t) = Cyx̃(t− τO) +Ddyd(t− τO) + ψy(t− τO)

(21a){
ẋs(t) = Axs(t) +Buu(t) + v1(t)
uc(t) = Cyxs(t) +Duyu(t) + v2(t),

(21b)

{
ẋc(t) = f(xc(t), uc(t), r(t))
u(t) = g(xc(t), uc(t), r(t)),

(21c)

where the first subsystem (21a) drives the second subsystem
(21b), (21c) through the signals v1(t), v2(t). Moreover, the



performance output equation can be written in the new
coordinates as

z(t) = z̃(t) + zs(t− τI), (22)

where

z̃(t) = Czx̃(t) +Ddzd(t) + ψz(t) (23)
zs(t) = Czxs(t) +Duzu(t), (24)

are two additional outputs of the first subsystem (21a) and
of the second subsystem (21b), (21c), respectively.

First observe that the second subsystem (21b), (21c)
coincides with the undelayed closed-loop and that by the
incremental stability property at item 2 of Assumption 2,

‖zu − zs(·)‖ ≤ γU
∥∥∥∥ v1(·)
v2(·)

∥∥∥∥
2

. Therefore, by (22),

‖z(·)− zu(· − τI)‖2 ≤ ‖zs(· − τI)− zu(· − τI)‖2
+ ‖z(·)− zs(· − τI)‖2

≤ γU

∥∥∥∥ v1(·)
v2(·)

∥∥∥∥
2

+ ‖z̃(·)‖2
(25)

Note that for suitable selections of η1 and η2 the subsystem
(21a) coincides with (a time-shifted version of) system (18).
Hence, the finite gain L2 stability stated in Property 1 and
equation (23) imply:∥∥∥∥∥∥∥∥

v1(·)
v2(·)
x̃(·)
z̃(·)

∥∥∥∥∥∥∥∥
2

≤ γ̃

∥∥∥∥∥∥
d(·)
ψx(·)
ψy(·)

∥∥∥∥∥∥
2

(26)

where γ̃ is a sufficiently large positive constant dependent
on the L2 gain of the system and on the matrices in (23).

Since x(t) = x̃(t) − xs(t − τI), then, by Assumption 2,
equation (14) holds. Therefore, applying the small-gain the-
orem to (26) and (14) we get∥∥∥∥∥∥
v1(·)
v2(·)
z̃(·)

∥∥∥∥∥∥
2

≤ γ̃ 1 + γ∆

1− γ∆

∥∥ d(·)
∥∥

2
+γ∆

γ̃

1− γ∆

∥∥∥∥xs(· − τI)u(·)

∥∥∥∥
2

.

Moreover, by both items of Assumption 2, we can write∥∥∥∥xs(· − τI)u(·)

∥∥∥∥
2

≤2

∥∥∥∥xs(·)u(·)

∥∥∥∥
2

≤2γU

(∥∥∥∥ v1(·)
v2(·)

∥∥∥∥
2

+
∥∥ r(·)∥∥

2

)
,

which, applying once again the small-gain theorem, can be
combined with the previous inequality to yield∥∥∥∥∥∥

v1(·)
v2(·)
z̃(·)

∥∥∥∥∥∥
2

≤ γd
∥∥ d(·)

∥∥
2

+ γ∆γr
∥∥ r(·)∥∥

2
,

with γd and γr defined in (15). Finally, by (25) we get∥∥ z(·)− zu(· − τI)
∥∥

2
≤ (1 + γU )γd

∥∥ d(·)
∥∥

2

+ γ∆(1 + γU )γr
∥∥ r(·)∥∥

2

which implies equation (6) with γ = (1 + γU ) max(γd, γr).

IV. SIMULATION EXAMPLE

We use a very simple example taken from [1] to illustrate
the potentials of the new feedback loop given by v1. The
example consists of a SISO linear plant with transfer function
P (s) = e−5s

s driven by a PID controller with constants Kp =
0.3, Ki = 0.3/18 and Kd = 0.3/3. The closed-loop system
is driven by a unit reference at time t = 0 and affected by
a load disturbance of size −0.1 at the plant input at time
t = 70.

Since the plant under consideration is a scalar SISO plant,
it is quite simple to select Ks in (17) to satisfy Property 1.
In particular, necessarily, Ks is a positive scalar and it can
be shown that selecting it in the range (0, 0.2) ensures
Property 1.
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Fig. 4. Nominal responses: Undelayed (bold); classical Smith predictor
(dashed); proposed scheme with Ks = 0.1 (thin solid); proposed scheme
with alternative selections of Ks (dotted); proposed scheme with disturbance
measurement (bold dashed).

Figure 4 reports on the closed-loop responses when there’s
not uncertainty on the plant model. The bold curve represents
the undelayed performance output, namely the response of
the closed-loop without delay and without Smith predictor.
The dashed line represents the response of the dead-time
closed-loop when using the classical Smith predictor. This
last response will exhibit a constant steady-state error due
to the fact that the stable plant mode is unobservable by
the controller (due to the presence of the Smith predictor
dynamics). The thin solid response shows the behavior of the
proposed scheme when using Ks = 0.1. Responses arising
from alternative selections of Ks are represented by the dot-
ted curves, where the most aggressive (and oscillatory) one
corresponds to Ks = 0.2 and the sluggish ones correspond
to the selections Ks = 0.03 and Ks = 0.01.

The bold dashed curve shows the closed-loop response
in the case where the disturbance can be measured by the
control system, so that it is directly accounted for in the
enhanced Smith predictor dynamics. Note that in this case
the prediction problem is perfectly solved by the scheme
(namely, we have a perfect equality z(·) ≡ zu(· − τ)).

Figure 5 shows the same responses reported in Figure 4
in the perturbed case where the estimate of the dead time
has a 50% error (namely, the estimated delay is 7.5). The
closed-loop exhibits oscillatory transients but the overall
performance is quite well preserved.
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Fig. 5. Perturbed responses: Undelayed (bold); classical Smith predictor
(dashed); proposed scheme with Ks = 0.1 (thin solid); proposed scheme
with alternative selections of Ks (dotted); proposed scheme with disturbance
measurement (bold dashed).

V. CONCLUSIONS

In this section we proposed a novel interpretation of the
classical Smith predictor scheme for dead time processes.
This interpretation reveals an intrinsic cascaded structure
which allows for extra degrees of freedom in the Smith
predictor design. The potential for high performance com-
pensation schemes has been shown via a simple scalar
example, but future work will involve more constructive tools
for the design of the enhanced schemes herein introduced.
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