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Abstract
It is shown that uniform global exponential stability of
the input-free discrete-time model of a globally Lips-
chitz sampled-data time-varying nonlinear system with
inputs implies finite gain Lp stability of the sampled-
data system for all p ∈ [1,∞]. This result generalizes
results on Lp stability of sampled-data linear systems
and it is an important tool for analysis of robustness of
sampled-data nonlinear systems with inputs.
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1 Introduction
Prevalence of computer controlled systems strongly mo-
tivates investigation of sampled-data control systems.
Moreover, due to the fact that the plant model or the
control law are often nonlinear, we often need to con-
sider nonlinear sampled-data systems. While the area
of linear sampled-data systems has matured into a well
understood and developed discipline (see [1]), a range
of open problems still remains in the area of nonlinear
sampled-data systems. In particular, a complete analy-
sis of Lp stability properties of nonlinear sampled-data
systems with inputs appears to be lacking in the litera-
ture.

One of the first results on L2 stability of nonlinear
sampled-data systems that we are aware of can be found
in [8]. A result on L∞ stability of linear sampled-data
systems can be found in [3] and a complete characteri-
zation of Lp stability for any p ∈ [1,∞] of linear time-
invariant and time-varying sampled-data systems can
be found respectively in [2] and [6]. Related results on
integral stability properties with nonlinear gains, such
as input-to-state stability (ISS) and integral input-to-
state stability (iISS), for sampled-data systems with
inputs were addressed respectively in [11, 10, 13] and
[9]. In particular, preservation of the ISS property un-
der discretization (emulation) of the dynamic controllers
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for nonlinear sampled-data systems were presented in
[10, 13]. Results on achieving iISS and ISS for nonlinear
sampled-data systems via their approximate discrete-
time models were considered respectively in [9] and [11].

It is the purpose of this paper to present a result on Lp
stability of globally Lipschitz nonlinear sampled-data
systems with inputs. In particular, it is shown that if
the discrete-time model of the input-free sampled-data
system is uniformly globally exponentially stable, then
the sampled-data nonlinear system with inputs is Lp
stable for any p ∈ [1,∞]. This result generalizes sim-
ilar results on Lp stability of linear time-invariant and
time-varying sampled-data systems in [2] and [6], re-
spectively, and it is an important tool in analysis of ro-
bustness properties of sampled-data nonlinear systems.
Moreover, our proof technique is based on Lyapunov
arguments and it is different from the proof technique
exploited in [2, 6]. We also apply our results to the case
where the sampled-data system arises in feedback con-
trol schemes using discrete-time, dynamic controllers.

The paper is organized as follows. Preliminaries are
presented in Section 2. Section 3 contains the main
result and a discussion on how the same technique can
be used to address several related problems. The proof
of the main result is presented in Section 4.

1.1 Notation
We use Z≥j to denote all integers greater than or equal
to the integer j. For a function v : R≥0 → Rm, we
define the Lp norm of v(·) as follows:

‖v(·)‖Lp
:=

(∫ ∞
0

|v(t)|pdt
)1/p

for p ∈ [1,∞)

and ‖v(·)‖L∞ := ess.sup.t≥0|v(t)|, where the underlying
vector norm is, without loss of generality, the Euclidean
norm. Similarly, but in the discrete-time setting, given
a sequence ν : Z≥0 → Rm, we define the `p norm of ν(·)
as:

‖ν(·)‖`p :=

( ∞∑
k=0

|ν(k)|p
)1/p

for p ∈ [1,∞)

and ‖ν(·)‖`∞ := supk≥0|ν(k)|.
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2 Preliminaries
In this paper, we consider explicitly time-varying
sampled-data systems with inputs

ẋ = f(x(t), x(btcT ), t, u(t))

btcT = T max

{
j ∈ Z : j ≤ t

T

}
. (1)

In this system, T is the sampling period, u is an exoge-
nous input and x is the “state” (more precisely, values
of x at the initial time t◦ and at the possibly earlier
time bt◦cT are needed to compute the solution forward
in time) which, in a closed-loop control problem, may
include some (possibly discrete-time) controller dynam-
ics. The right-hand side’s dependence on x(btcT ) may
be due to the sample and hold nature of the control
system whose sampling times are fixed along the t axis.
See, for example, Section 3.2.

An equivalent representation of (1) which we will use is
given by

ẋ(t) = f(x(t), x(ts(t)), p(t), u(t))

ṗ(t) = 1

ts(t) = bp(t)cT − p(0)

(2)

where the initial time t0 is taken to be zero without loss
of generality. For this system, the sampling times are
fixed along the p axis but their locations along the t axis
depend on the initial value p(0). We can enumerate the
sampling times of interest as

tk := ts((k + 1)T ) = (k + 1)T − σ k ∈ Z≥−1 (3)

where σ := −ts(0) represents the distance between the
nearest sampling time not in the future and t = 0. See
Figure 1 for further clarification.
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Figure 1: A trajectory of the sampled-data system with
indications of its initial conditions.

Our main results for the system (1), equivalently (2),
will establish different finite gain Lp stability (p ∈
[1,∞)]) properties from u(·) to x(·). In particular, we
will use the following:

Definition 1 The sampled-data system (2) is

1. finite gain Lp to (Lp,L∞) stable if there exists c >
0 such that for all p(0) ≥ 0, x(0) ∈ Rn, x(ts(0)) ∈
Rn and u,

max{‖x(·)‖Lp
, ‖x(·)‖L∞} ≤

c
(
|x(0)|+ |x(ts(0))|+ ||u||Lp

)
.

(4)

2. finite gain Lp to (`p, `∞) stable if there exists c > 0
such that for all p(0) ≥ 0, x(0) ∈ Rn, x(ts(0)) ∈
Rn and u,

max{‖ξ(·)‖`p , ‖ξ(·)‖`∞} ≤
c
(
|x(0)|+ |x(ts(0))|+ ‖u‖Lp

)
,

(5)

where ξ(k) := x(tk), for all k ≥ 0.

We will need the following assumption on the regularity
and growth of f :

Assumption 1 The function f(·, ·, ·, ·) is globally Lip-
schitz in its first two arguments uniformly in its third
and fourth arguments, measurable in its third argument,
continuous in its fourth argument, f(0, 0, p, 0) = 0 for
all p ≥ 0 and, for all (x1, x2, u) and p ≥ 0,

|f(x1, x2, p, u)− f(x1, x2, p, 0)| ≤ L|u| . (6)

In order to state our main results we use the stability
properties of the zero-input discrete-time model of (1)
or (2), which is generated by (1) with initial times sat-
isfying t◦ = bt◦cT or by (2) with initial times satisfying
bp(0)cT −p(0) = 0. The discrete-time model of (2) with
u ≡ 0 uses

φ(τ, ξ, %) := ξ +

∫ τ

0

f(φ(s, ξ, %), ξ, q(s, ξ, %), 0)ds

q(τ, ξ, %) := %+ τ
(7)

(these definitions are well-posed due to Assumption 1)
and is defined by

ξ+ = φ(T, ξ, %)

%+ = %+ T

}
=: G(ξ, %) (8)

The motivation for calling this the zero-input discrete-
time model corresponding to (2) is that, with the defi-
nition of sampling times given in (3), the trajectories of
(2) with u ≡ 0 satisfy[

x(tk+1)
p(tk+1)

]
= G(x(tk), p(tk)) ∀k ∈ Z≥0 . (9)

To state our main results, we will use the following sta-
bility property of (8):

Definition 2 The system (8) is uniformly globally ex-
ponentially stable (UGES) if there exist M > 0 and
λ ∈ (0, 1) such that for all ξ(0) ∈ Rn, %(0) ≥ 0, and all
k ∈ Z≥0, the solutions of (8) satisfy

|ξ(k)| ≤M |ξ(0)|λk . (10)
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3 Main results
In this section we present our main result, which states
that uniform global exponential stability of the zero-
input discrete-time model of (2) implies Lp stability of
the sampled-data system for any p ∈ [1,∞]. The proof
of this result is postponed until the next section. Then,
in the second part of this section we discuss several pos-
sible generalizations of our results and relation to some
existing results in the literature. The main result of this
section is stated next.

Theorem 1 Suppose that Assumption 1 holds and the
system (8) is UGES. Then, the system (2) is

1. finite gain Lp to (`p, `∞) stable and

2. finite gain Lp to (Lp,L∞) stable.

Proof. See Section 4.1. •

In the next two subsections, we state two local versions
of the global result established in Theorem 1, and we ex-
plicitly discuss the application of the results to the case
where the sampled-data system is characterized by a dy-
namic (discrete-time) feedback function. In all cases, we
also discuss how our results compare to some existing
results in the literature.

3.1 Local results
Our methods also apply to the investigation of local
stability properties of nonlinear systems that are only
locally Lipschitz and whose zero-input discrete-time
model is only uniformly locally exponentially stable, ac-
cording to the following definition, which generalizes the
property in Definition 2.

Definition 3 The system (8) is uniformly locally expo-
nentially stable (ULES) if there exist M > 0, c > 0 and
λ ∈ (0, 1) such that the solutions of (8) satisfy (10) for
all ξ(0) ∈ Rn with |ξ(0)| ≤ c, %(0) ≥ 0, and all k ∈ Z≥0.

A first natural extension of Theorem 1 is to give suffi-
cient conditions for the sampled-data system (2) to sat-
isfy the following local version of the stability property
in Definition 1.

Definition 4 The sampled-data system (2) is

1. small signal finite gain Lp to (Lp,L∞) stable if
there exist c > 0, d1 > 0 and d2 > 0 such that (4)
holds for all p(0) ≥ 0, |x(0)| ≤ d1, |x(ts(0))| ≤ d1,
‖u(·)‖Lp

≤ d2.

2. small signal finite gain Lp to (`p, `∞) stable if
there exist c > 0, d1 > 0 and d2 > 0 such that (5)
holds for all p(0) ≥ 0, |x(0)| ≤ d1, |x(ts(0))| ≤ d1,
‖u(·)‖Lp

≤ d2.

The local result can then be stated based on the fol-
lowing relaxed version of Assumption 1. Based on this
assumption, we are able to prove the forthcoming The-
orem 2, which is a first local version of Theorem 1.

Assumption 2 The function f is locally Lipschitz in
its first two arguments, uniformly in its third and fourth
arguments, measurable in its third argument, continuous
in its fourth argument, f(0, 0, p, 0) = 0 for all p ≥ 0, and
there exists δ > 0 such that for all |x1| ≤ δ and |x2| ≤ δ,
% ≥ 0 and for all u, the bound (6) holds.

Theorem 2 Suppose that Assumption 2 holds and the
system (8) is ULES. Then, the system (2) is

1. small signal finite gain Lp to (`p, `∞) stable and

2. small signal finite gain Lp to (Lp,L∞) stable.

Proof. See Section 4.2. •

To establish Theorem 2 we impose that the bound (6)
holds for small x1, x2 and all u. This is assumed because
signals that have small Lp norm (p <∞) may have ar-
bitrarily large L∞ norm. We can relax Assumption 2,
asking that the bound (6) holds for small x1, x2 and
small u, if we change the input-output stability defini-
tion so that only inputs with sufficiently small L∞ norm
are considered:

Definition 5 The sampled-data system (2) is

1. small signal finite gain Lp,∞ to (Lp,L∞) stable if
there exist c > 0, d1 > 0 and d2 > 0 such that (4)
holds for all p(0) ≥ 0, |x(0)| ≤ d1, |x(ts(0))| ≤ d1,
‖u(·)‖L∞ ≤ d2.

2. small signal finite gain Lp,∞ to (`p, `∞) stable if
there exist c > 0, d1 > 0 and d2 > 0 such that (5)
holds for all p(0) ≥ 0, |x(0)| ≤ d1, |x(ts(0))| ≤ d1,
‖u(·)‖L∞ ≤ d2.

Definition 5 enforces an alternative small signal bound
on the infinity norm of u. (Note that when p = ∞,
Definition 5 coincides with Definition 4.) The stability
property in Definition 5 allows to draw conclusions that
have interesting connections with standard continuous
time input-output stability results (see the following Re-
mark 1). As a matter of fact, if we are interested in guar-
anteeing the input-output properties in Definition 5 for
the sampled-data system (2), then the following relaxed
version of Assumption 2 is sufficient, as stated in the
forthcoming Theorem 3.

Assumption 3 The function f is locally Lipschitz in
its first two arguments, uniformly in its third and fourth
arguments, measurable in its third argument, continuous
in its fourth argument, f(0, 0, p, 0) = 0 for all p ≥ 0 and
there exists δ > 0 such that for all |x1| ≤ δ, |x2| ≤ δ,
% ≥ 0 and |u| ≤ δ, the bound (6) holds.
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Theorem 3 Suppose that Assumption 3 holds and the
system (8) is ULES. Then, the system (2) is

1. small signal finite gain Lp,∞ to (`p, `∞) stable and

2. small signal finite gain Lp,∞ to (Lp,L∞) stable.

Proof. See Section 4.2. •

Remark 1 Theorem 3 is a sampled-data version of the
continuous-time result [7, Theorem 6.1]. Moreover, it
was shown in [4] that ULES of (1) can be deduced from
ULES of the zero-input discrete-time model of the lin-
earization of the system (1). Hence, combining our re-
sults in Theorem 3 with results of [4] we conclude that
ULES of the discrete-time model of the linearization of
the system (1) implies small signal finite gain Lp,∞ to
(`p, `∞) stability and Lp,∞ to (Lp,L∞) stability of the
nonlinear sampled-data system (1) for any p ∈ [1,∞].

◦

3.2 Application: dynamic feedback case
Our results cover the case of dynamic feedback if the
system has the following form:

ẋP (t) = fP (xP (t), ψ(t), t, u(t))
z(btcT + T ) = fC(xP (btcT ), z(btcT ))

ψ(t) = Ψ(xP (btcT ), z(btcT )) ,
(11)

where the first equation models the plant dynamics, the
second equation models the discrete-time controller dy-
namics and ψ is the control signal (output of the con-
troller that is passed through a zero order hold). Un-
der appropriate assumptions on fP , fC and Ψ we can
apply our results. Indeed, to see this we introduce
f̃C(xP , z) := 1

T (fC(xP , z) − z) and ζ(t) := z(btcT ) +

(t− btcT ) f̃C(xP (btcT ), z(btcT )). The definition of the
variable ζ is similar to that of the “numerical inter-
polant” that has found a widespread use in numerical
analysis literature (see [12, Definition 7.2.1]). Note that
ζ(btcT ) = z(btcT ) and the variable ζ is piecewise linear
in t and hence it is absolutely continuous in t. Hence,
we can write for almost all t:

ζ̇ = f̃C(xP (btcT ), ζ(btcT )) . (12)

Consider now the system

ẋP = fP (xP (t),Ψ(xP (btcT ), ζ(btcT )), t, u(t))

ζ̇ = f̃C(xP (btcT ), ζ(btcT )) ,
(13)

which has the same form as (1) if we identify a new
“state” x := (xP , ζ) and a new right hand side of
continuous-time part of the model

f(x(t), x(btcT ), t, u(t)) :=(
fP (xP (t),Ψ(xP (btcT ), ζ(btcT )), t, u(t))

f̃C(xP (btcT ), ζ(btcT ))

)
.

(14)

Then we can state the following result:

Corollary 1 Suppose that Assumption 1 holds for the
function (14) and the zero-input discrete-time model of
the system (11) is UGES. Then, the system (11) is

1. finite gain Lp to (`p, `∞) stable and

2. finite gain Lp to (Lp,L∞) stable.

Note that a sufficient condition for Assumption 1 to hold
for the function (14) is that fP , f̃C ,Ψ are all globally
Lipschitz and zero at zero, uniformly in t.

Remark 2 The above corollary generalizes [2, Corol-

lary 4] when fP , f̃C ,Ψ are linear and time invariant and

[6, Propositions 6 and 7] when fP , f̃C ,Ψ are linear and
fP is time varying. * To see this, we note that the state
of the system (11) that was used in [2, 6] is:

x̃(t) := (xTP (t) ΨT (xP (btcT ), z(btcT )) zT (btcT ))T

and the cited results prove that stability of the input-
free discrete-time model of (11) implies that u ∈ Lp
yields x̃ ∈ Lp for all p ∈ [1,∞]. Note that in the linear
case Ψ is globally Lipschitz and zero at zero since it
is linear. Moreover, whenever u ∈ Lp, then item 2 of
Corollary 1 implies that xP ∈ Lp and since Ψ is linear
item 1 of Corollary 1 implies that Ψ(xP (btcT ), z(btcT ))
and z(btcT ) are `p. Hence, we can conclude that x̃ ∈
Lp, p ∈ [1,∞]. Note that our conclusions are somewhat
stronger than the results of the cited references since,
for instance, we can also conclude from Corollary 1 that
u ∈ Lp for p ∈ [1,∞) implies x̃ ∈ L∞, which is not
explicitly stated in [2, 6]. ◦

The following corollaries are the local generalizations of
Corollary 1 corresponding, respectively, to Theorems 2
and 3.

Corollary 2 Suppose that Assumption 2 holds for the
function (14) and the zero-input discrete-time model of
the system (11) is ULES. Then, the system (11) is

1. small signal finite gain Lp to (`p, `∞) stable and

2. small signal finite gain Lp to (Lp,L∞) stable.

Corollary 3 Suppose that Assumption 3 holds for the
function (14) and the zero-input discrete-time model of
the system (11) is ULES. Then, the system (11) is

1. small signal finite gain Lp,∞ to (`p, `∞) stable and

*In fairness, due to the time-invariant nature of (12), the for-
mulation in this section only applies to the case where the output
of the continuous-time plant in [6] is time-invariant. The gen-

eral case treated in [6] can be considered by making f̃C and Ψ
time-varying too and suitably extending the proof of Theorem 1.
Note however that, as confirmed by Example 5 in [5], this time
variation needs to satisfy extra regularity conditions for the main
result to hold.
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2. small signal finite gain Lp,∞ to (Lp,L∞) stable.

Note that a sufficient condition for Assumption 3 to
hold for the function (14) is that fP , f̃C ,Ψ are all lo-
cally Lipschitz and zero at zero, uniformly in t. On the
other hand, for Assumption 2 to hold, we can impose
a uniform sector growth property on fP (xP , ψ, t, ·) −
fP (xP , ψ, t, 0).

Remark 3 We emphasize that the plant in (11) is
strictly proper with respect to the disturbance input
u (i.e., the disturbance u does not affect the controller
dynamics directly). This structure is crucial since there
exists a linear counterexample (see [2]) which shows that
if the plant is not strictly proper, then Lp stability can
not be achieved. If the plant is not strictly proper, then
one can insert a continuous-time strictly proper stable
filter at the output of the plant to make the plant+filter
system strictly proper with respect to the disturbance
and then our results apply. This approach was taken,
for instance, in [2, 6]. We also note that input-output
results for strictly proper plants with outputs easily fol-
low from our input-to-state results. ◦

4 Proof of Main Results
We will make use of the following fact which is proven
using Holder’s inequality.

Fact 1 Let the sequence tk, k ∈ Z≥−1 be such that
t−1 ≤ 0 and tk+1 − tk = T for all k ∈ Z≥−1. Given
a function u(·) defined on [t−1,∞) with u(t) = 0 for all
t ∈ [t−1, 0), define

ν̃(k) :=

∫ T

0

|u(tk + τ)|dτ ∀k ∈ Z≥−1 . (15)

Then, for each p ∈ [1,∞] (where for p = ∞ we let
p−1
p = 1),

||ν̃( · − 1)||`p ≤ T (p−1)/p||u(·)||Lp
. (16)

The proof of our results will rely heavily on the input
to state properties of the discrete-time system[

ξ+

%+

]
= G(ξ, %) +

[
ν
0

]
(17)

where G was defined in (8).

4.1 Proof of the global results
The following proposition can be proven based on an ap-
plication of a converse Lyapunov theorem for discrete-
time systems. The proof is omitted due to space con-
straints.

Proposition 1 Suppose Assumption 1 holds and the
system (8) is UGES. Then the discrete-time system (17)
is finite gain `p stable from ν(·) to ξ(·) for all p ∈ [1,∞],
i.e., for each p ∈ [1,∞], there exists cp such that, for
each ξ(0) ∈ Rn and %(0) ≥ 0,

||ξ(·)||`p ≤ cp
(
|ξ(0)|+ ||ν(·)||`p

)
. (18)

Proof of Theorem 1 Recall the definition of tk for
k ∈ Z≥−1 given in (3). Define

ξ(k) := x(tk) ∀k ∈ Z≥−1
%(k) := p(tk) ∀k ∈ Z≥0 .

(19)

Then define

ξ̃(−1) =

[
ξ(−1)
x(0)

]
, ξ̃(k) :=

[
ξ(k)
0n

]
, ∀k ∈ Z≥0. (20)

If t−1 < 0 then, for all t ∈ [t−1, 0), define x(t) := x(t−1)
and u(t) := 0. Also define

ν̃(k) :=

∫ T

0

|u(tk + τ)|dτ ∀k ∈ Z≥−1 (21)

and

ν(k) := φ̃(T, ξ(k), %(k), u(tk + .))−
φ̃(T, ξ(k), %(k), 0), ∀k ∈ Z≥0

(22)

where

φ̃(t, ξ, %, w(·)) = ξ+

∫ t

0

f(φ̃(τ, ξ, %, w(·)), ξ, %+τ, w(τ))dτ.

(23)
It follows from Assumption 1 that this definition is well-
posed. From the definition of ν(k) in (22), G(·, ·) in (8)
and ξ(k) and %(k) in (19), it follows that[
ξ(k + 1)
%(k + 1)

]
= G(ξ(k), %(k)) +

[
ν(k)

0

]
, k ∈ Z≥0. (24)

The following two claims (whose proofs are omitted) are
based on a simple application of the Gronwall lemma
and will serve to complete our proof.

Claim 1 Under Assumption 1, if ν(·) and ν̃(·) are de-
fined as in (21) and (22), then

|ν(k)| ≤ c ν̃(k) ∀k ∈ Z≥0 , (25)

with c := L exp(LT ). �

Claim 2 Under Assumption 1, if ν̃(·) and ξ̃(·) are de-
fined as in (20) and (21), then

|x(t)| ≤ c2|ξ̃(k)|+ c ν̃(k) , ∀k ∈ Z≥−1, t ∈ [tk, tk+1],
(26)

with c := L exp(LT ) and c2 := (1 + LT ) exp(LT ). �
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It follows from inequality (26), that

||x(·)||L∞ ≤ c2||ξ̃( · − 1)||`∞ + c||ν̃( · − 1)||`∞
≤ c2|ξ̃(−1)|+ c2||ξ(·)||`∞ + c||ν̃( · − 1)||`∞

(27)

and

||x(·)||pLp
≤

∑
k∈Z≥−1

∫ tk+1

tk

|x(t)|pdt

≤ T
∑

k∈Z≥−1

(
(2c2)p|ξ̃(k)|p + (2c)p ν̃(k)p

)
≤ T

(
(2c2)p|ξ̃(−1)|p+(2c2)p||ξ(·)||p`p+(2c)p||ν̃(· − 1)||p`p

)(28)

We also have, using the definition of ξ(·), the relation
(24), inequality (25), Proposition 1, and (26) with k =
−1 and t = t◦, that for all p ∈ [1,∞],

||ξ(·)||`p ≤ cp
(
|x(t0)|+ ||ν(·)||`p

)
≤ cp

(
c2|ξ̃(−1)|+ 2c||ν̃(· − 1)||`p

)
.

(29)

Combining (29) with (25), (27), (28), Fact 1 and using
the fact that, for each ζ : Z≥0 → Rm,

||ζ(·)||`∞ ≤ ||ζ(·)||`p ∀p ∈ [1,∞] (30)

establishes the results of the theorem. •

4.2 Proof of the local results
The proofs of Theorems 2 and 3 are similar in nature
to the proof of the global result. A key tool for these
proofs is the following local version of Proposition 1.

Proposition 2 Suppose that the function f(·, ·, ·, 0) is
locally Lipschitz in its first two arguments uniformly in
its third argument and that the system (8) is ULES.
Then the discrete-time system (17) is small signal finite
gain `p stable from ν(·) to ξ(·) for all p ∈ [1,∞], i.e.,
for each p ∈ [1,∞], there exist positive constants cp
and d such that, for each |ξ(0)| ≤ d, %(0) ≥ 0 and
‖ν(·)‖`∞ ≤ d,

||ξ(·)||`∞ ≤ ||ξ(·)||`p ≤ cp
(
|ξ(0)|+ ||ν(·)||`p

)
. (31)

Based on Fact 1 and Proposition 2, the proof of
Theorems 2 and 3 can be carried out in a similar way
as the proof of Theorem 1 reported in Section 4.1,
with a special attention to the fact that since the right
hand side of (2) is only locally Lipschitz, solutions may
escape in finite time and the function G(ξ, %) in (8), (7)
may be not well defined.

Proof of Theorems 2 and 3 The following two claims
(whose proofs are omitted due to space constraints) can
be easily proven by contradiction, using Gronwall’s in-
equality and Fact 1.

Claim 3 Under Assumption 2 (respectively, Assump-
tion 3), consider a value ξ(k) and a function u(·) such
that

|ξ(k)| < ξM :=
δe−LT

2(1 + LT )
,

‖u(·)‖Lp
< uM :=

δe−LT

2LT
p−1
p

,
(32)

(
respectively, ‖u(·)‖L∞ < uM := min

{
δe−LT

2LT
, δ

} )
.

Then, the value ν(k) in (22), (23) is well defined and
satisfies the bound

|ν(k)| ≤ cν,p‖u(·)‖Lp , p ∈ [1,∞].

�

Claim 4 Under Assumption 2 (respectively, Assump-
tion 3), given the discrete-time system (24) with the se-
lection (22), if

|ξ(0)| < min

{
d,
ξM
2cp

}
,

‖u(·)‖Lp
<

e−LT

LT
p−1
p

min

{
d,
ξM
2cp

,
δ

2

}
,(

respectively,

‖u(·)‖L∞ < min

{
e−LT

LT
p−1
p

min

{
d,
ξM
2cp

,
δ

2

}
, δ

} )
,

then ξ(k) and ν(k) are well defined and ξ(k) satisfies
(32) for all k ≥ 0. �

Based on the two claims above, the proof can be com-
pleted following the guidelines of the proof of Theo-
rem 1. In particular, if t−1 < 0 then, for all t ∈ [t−1, 0),
define x(t) := x(t−1) and u(t) := 0. By the definitions
in (19), (20), (21), setting ξ(0) = x(t0), ensures that, if

|x(t0)| < min

{
d,
ξM
2cp

}
, (33)

then the discrete-time solution ξ(·) to (24), (22) satis-
fies ξ(k) = x(tk) for all k ≥ 0, and the combination of
Claims 3 and 4 implies that the samples x(tk) are well
defined and bounded by ξM for all k ≥ 0.

To ensure that (33) holds, by Fact 1 we can enforce

an arbitrarily small bound on
∫ t0
0
|u(τ)|dτ by fixing

a sufficiently small bound on ‖u(·)‖Lp (respectively,
‖u(·)‖L∞). Moreover, following the same approach as
in the proof of Claim 3, it can be shown by contra-
diction that if |x(t−1)| and |x(0)| are sufficiently small,
equation (33) holds.

Finally, the proof is completed as in the proof of The-
orem 1 using Proposition 2, (25), (26), (27), and (28).

•
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