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Abstract: We characterize finite gain Lp stability properties for hybrid dynamical systems. By
defining a suitable concept of hybrid Lp norm, we provide sufficient Lyapunov conditions for
Lp stability of hybrid dynamics, which cover the well known continuous-time and discrete-time
Lp stability notions as special cases. We also focus on homogeneous hybrid systems and prove
a result stating the equivalence between Lp stability, ISS, global exponential stability and local
asymptotic stability of the hybrid system with no inputs. Finally, we provide some input-output
results and an LMI based L2 gain estimate for a class of homogeneous hybrid systems.
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1. INTRODUCTION

When focusing on hybrid dynamical systems, some input-
output stability notions have been investigated in the
context of input-to-state stability (ISS) in Cai and Teel
(2009) (see also references therein for earlier solutions in
similar directions) where the ISS concept introduced by
Sontag in the late 1980’s, and well developed in the past
two decades both for the continuous-time (CT) and the
discrete-time (DT) cases, is extended to the hybrid context
within the general framework described in Goebel et al.
(2009) (see also Goebel et al. (2012)). Despite the ISS
results cited above, there seems to be a lack of results on
Lp stability properties of hybrid systems in the literature.
The goal of this paper is to provide some results in this
direction. Computing the finite Lp gain from a control
input or an exogenous disturbance can help to define the
performance of interconnected systems by analyzing its
components separately. In particular, since these results
are obtained within the hybrid systems framework of
Goebel et al. (2009), the dissipativity results that recently
appeared in Sanfelice (2010); Teel (2010) can be applied
by using the specific supply rates introduced here, thereby
providing small gain conditions for interconnected Lp

stable hybrid systems.

In this paper we first introduce the concept of hybrid Lp

norms by incorporating sums and integrals in them, so that
the well known continuous-time and discrete-time norms
are recovered as special cases. Then, we illustrate how the
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use of suitable Lyapunov-like conditions can be enforced
in terms of some Lp storage functions in such a way that
finite gain input-to-state Lp and Lp to L∞ stability can be
established, for a given hybrid system, from its input to its
state. Then we focus on homogeneous hybrid systems and
establish for this special class of systems a result stating
the equivalence among local asymptotic stability, global
exponential stability (this is a straightforward consequence
of the results in Goebel and Teel (2010)), ISS and Lp

stability. These results are important especially in light
of the recent results in Goebel and Teel (2010) about
homogeneous approximations of hybrid systems. Indeed
we establish here that, for these homogeneous approxi-
mations, local asymptotic stability of the system with no
inputs implies ISS and finite gain Lp stability which can
be usefully exploited for establishing properties of their in-
terconnections. Some preliminary statements along similar
directions to the ones of this paper have been reported in
Nesic et al. (2011) with reference to temporally regularized
homogeneous systems. Those results were instrumental to
proving suitable stability properties of interconnected reset
systems. In Nesic et al. (2011) the following special case
was addressed: 1) systems with temporal regularization
(or dwell time) and 2) external inputs only appearing in
the flow map. For this special case, there was no need to
introduce hybrid Lp norms and the results were stated in
terms of classical continuous-time Lp norms.

The paper is organized as follows. Preliminaries are pre-
sented in Section 2. In Section 3 we show how to obtain
finite gain Lp stability bounds from storage functions for
hybrid systems. Then, in Section 4 we focus on homo-
geneous systems and characterize a number of equivalent
properties, including ISS, LAS, GES and existence of suit-



able Lyapunov functions. Quadratic L2 gain estimates for
a class of homogeneous systems are given in Section 5.

Notation: B(r) denotes the ball of radius r. |v| denotes
the Euclidean norm of a vector v ∈ R

n. R≥0 denotes
the set of non-negative real numbers. Let X ⊂ R

n and
Y ⊂ R

n X + Y = {x+ y : x ∈ X, y ∈ Y }. A function
α(·) : R≥0 → R≥0 is of class K∞ if it is strictly increasing,

α(0) = 0 and lims→∞ α(s) = +∞. The vector [x′ d′]
′
is

denoted (x, d).

2. PRELIMINARIES

A solution to a hybrid system is defined on a hybrid
time domain, which is a subset of R≥0 × Z≥0. A compact
hybrid time domain is any subset of R≥0 × Z≥0 that can
be written as ∪i∈{1,...,J}([ti, ti+1] × {i}) where J ∈ Z≥0

and 0 = t0 ≤ t1 ≤ . . . ≤ tJ+1. A hybrid time domain is
any set E ⊂ R≥0 × Z≥0 such that (TD, JD) ∈ E implies
that E ∩ ([0, TD]× {0, . . . , JD}) is a compact hybrid time
domain. A hybrid signal is a function defined on a hybrid
time domain. A hybrid arc is a hybrid signal x such that
t 7→ x(t, j) is locally absolutely continuous for each j.

Definition 1. (Lp norm). For a hybrid signal z, with do-
main dom(z) ⊂ R≥0 × Z≥0, and a scalar T ∈ R≥0 the
T -truncated Lp-norm of z is given by

‖z[T ]‖p :=





j(T )
∑

i=1

|z(ti, i− 1)|p +
j(T )
∑

i=0

∫ σi

ti

|z(s, i)|pds





1

p

(1)
where t0 = 0, j(T ) = max k such that (t, k) ∈ dom(z),
t+k ≤ T and for all i ∈ {0, . . . , j}, σi = min(ti+1, T−i−ti).
Based on (1), the Lp-norm of z is defined as

‖z‖p = lim
T→∞

‖z[T ]‖p. (2)

Moreover, we say z ∈ Lp whenever the limit above exists
and is finite.

Remark 1. The Lp norms for continuous-time and discrete
time systems are particular cases of the above defined
norm. Indeed, if the solution only flows, we have for any
T , j(T ) = 0 and the first sum in (1) disappears 1 so that
the hybrid norm becomes the continuous-time Lp norm
(Khalil, 2002, Chapter 5). Moreover, if the solution only
jumps, then tk = σk = 0 for all k, and all the integral terms
in (1) disappear so that (2) corresponds to the discrete-
time ℓp norm (Vidyasagar, 2002, Section 6.7). y

Remark 2. In (1) the value of the hybrid arc just before
the jump z(ti, i−1) is considered. An alternative definition
can be given in terms of the values of the hybrid arc after
the jump, that is, z(ti, i). Then parallel computations to
the ones reported in this paper can be carried out. We
choose this option here for consistency with the approach
in Cai and Teel (2009) reported below (see, in particular,
the definition of Γ(z) below). y

Definition 2. (L∞ norm). For a hybrid signal z, with do-
main dom(z) ∈ R≥0 × Z≥0, the T -truncated L∞ norm is
given by

1 We adopt the convention
∑

0

i=1
f(i) := 0.

‖z[T ]‖∞ := max

{

ess. sup
(t,j)∈dom(z)\Γ(z), t+j≤T

|z(t, j)|,

sup
(t,j)∈Γ(z),t+j≤T

|z(t, j)|
}

(3)

And the L∞ norm of z is given by

‖z‖∞ = lim
T→∞

‖z[T ]‖∞ (4)

where Γ(z) denotes the set of all (t, j) such that (t, j) ∈
dom(z) and (t, j +1) ∈ dom(z). Moreover, we say z ∈ L∞

whenever the above limit exists and is finite.

Consider the following nonlinear hybrid system
{

ẋ = f(x, d),
x+ = g(x, d),

(x, d) ∈ C
(x, d) ∈ D (5)

where x ∈ R
n is the state vector, d ∈ R

n is an exogenous
input, f(·, ·) is the flow map, g(·, ·) is the jump map,
C ⊆ R

n × R
m is the flow set and D ⊆ R

n × R
m is the

jump set. We assume the following regularity condition
for the parameters of system (5).

Assumption 1. The sets C and D are closed sets and f(·, ·)
and g(·, ·) are continuous in both their arguments.

In this paper we study the finite gain Lp stability for
system (5) which is defined as follows.

Definition 3. Given p ∈ [1, +∞), system (5) is finite gain
Lp stable from d to x with gain (upper bounded by) γp ≥ 0
if there exists a scalar β ≥ 0 such that any solution to (5)
satisfies

‖x‖p ≤ β|x(0, 0)|+ γp‖d‖p. (6)
for all d ∈ Lp. Moreover, it is finite gain Lp,∞ (Lp to L∞

) stable from d to x with gain γp,∞ > 0 if there exists a
scalar, β ≥ 1 such that any solution to (5) satisfies

‖x‖∞ ≤ β|x(0, 0)|+ γp,∞‖d‖p. (7)

for all (t, j) ∈ dom(x) and all d ∈ Lp.

Remark 3. Notice that, because of the comments in Re-
mark 1, the Lp (ℓp) stability definitions of (Khalil, 2002,
Chapter 5) and (Vidyasagar, 2002, Section 6.7) respec-
tively for continuous and discrete-time systems correspond
to particular cases of inequality (6). y

Definition 4. The origin of (5) with d = 0 is (locally)
asymptotically stable (LAS) if there exists a ball B ⊂ R

n,
centered at the origin and a class KLL function β such
that for any initial condition x(0, 0) = x0 ∈ B, all solutions
satisfy:

|x(t, j)| ≤ β(|x0|, t, j) ∀x(t, j) ∈ dom(x).

Definition 5. (Exponential ISS). System (5) is exponen-
tially finite gain input-to-state stable from d if there exist
positive scalars m, ℓ and γ∞ such that for any initial
conditions x(0, 0) and any d ∈ L∞, all solutions to (5)
satisfy

|x(t, j)| ≤ max
{

me−ℓ(t+j)|x(0, 0)|, γ∞‖d‖∞
}

, (8)

for all (t, j) ∈ dom(x). Moreover the origin of (5) is globally
exponentially stable (GES) if (8) holds with d = 0.

3. STORAGE FUNCTIONS FOR LP GAIN
COMPUTATION

In this section we establish Lp stability of system (5) by
using storage functions.



Definition 6. (Lp storage function). Given p ∈ [1,∞), a
positive semidefinite continuously differentiable function
V (·) : Rn → R≥0 is a finite gain Lp storage function for
system (5) if there exist positive constants c2, kxf and kxg
and non-negative constants kdg, kdf such that

0 ≤ V (x) ≤ c2|x|p ∀(x, d) ∈ C ∪ D (9)

〈∇V (x), f(x, d)〉 ≤ −kxf |x|p + kdf |d|p ∀(x, d) ∈ C (10)

V (g(x, d))− V (x) ≤ −kxg|x|p + kdg|d|p ∀(x, d) ∈ D (11)

Proposition 1. Consider system (5) and assume that there
exists a function V (·) : R

n → R≥0 satisfying (9)-(11).
Then the system is finite-gain Lp stable with gain upper-

bounded by γp = p

√

kd

kx
where kd = max {kdf , kdg}, kx =

min {kxf , kxg}. Moreover, if ∃ c1 > 0 such that

c1|x|p ≤ V (x), ∀(x, d) ∈ C ∪ D, (12)

then the system is Lp,∞ stable with gain γp,∞ ≤ p

√

kd

c1
.

Remark 4. Notice that, since V (x) is a positive-semidefinite
function, finite gain Lp stability does not imply asymptotic
stability of the origin. y

Remark 5. In Teel (2010), the concept of “mixed dissi-
pativity” was introduced to assess the stability of inter-
connected hybrid system. The dissipativity concepts were
illustrated by considering quadratic supply rates. Here,
the “mixed dissipativity” is obtained with supply rate
functions of degree p and can be established by Lp storage
functions V (x) satisfying inequalities (10) and (11). y

Proof of Proposition 1. Consider the function U(t, j) =
V (x(t, j)) with x(t, j) being a solution to system (5) having
domain dom(x). From inequalities (10) and (11) we get
that if [tk, tk+1]× {k} ⊂ dom(x), then

U̇(t, k) ≤ −kxf |x(t, k)|p + kdf |d(t, k)|p
for almost all t ∈ [tk, tk+1] , (13)

and

U(tk, k)− U(tk, k − 1)

≤ −kxg|x(tk, k − 1)|p + kdg|d(tk, k − 1)|p if k ≥ 1. (14)

Consider now any T ∈ R≥0 and define j(T ) := max k such
that (t, k) ∈ dom(x), t + k ≤ T and ∀i ∈ {0, . . . , j(T )},
σi := min(ti+1, T − i) and, for simplicity, denote σj(T ) = t.
Then integrate (13) on each interval [tk, σk], k ≤ j(T ), to
obtain

0 ≤ −U(tk+1, k) + U(tk, k)− kxf

∫ σk

tk

|x(s, j)|pds

+ kdf

∫ σk

tk

|d(s, j)|pds ∀k ∈ {0, . . . , j(T )} (15)

and rearrange the terms in (14) to get

0 ≤ −U(tk, k) + U(tk, k − 1)− kxg|x(tk, k − 1)|p
+ kdg|d(tk, k − 1)|p, ∀k ∈ {1, . . . , j(T )} . (16)

Summing up the j(T )+1 terms in (15) and the j(T ) terms
in (16), we obtain

0 ≤ U(0, 0)− U(σj(T ), j(T ))

− kxg

j(T )
∑

k=1

|x(tk, k − 1)|p − kxf

j(T )
∑

k=0

∫ σk

tk

|x(s, k)|pds

+ kdg

j(T )
∑

k=1

|d(tk, k − 1)|p + kdf

j(T )
∑

k=0

∫ σk

tk

|d(s, k)|pds.

Defining kd = max {kdf , kdg} and kx = min {kxf , kxg}, we
have

kx‖x[T ]‖pp ≤ −U(σj(T ), j(T )) + U(0, 0) + kd‖d[T ]‖pp
≤ U(0, 0) + kd‖d‖pp

(17)
where ‖x[T ]‖ is the T -truncated Lp norm accordingly
to Definition 1, and we used the fact that U(t, j) ≥
0, ∀(t, j) ∈ dom(x).

Lp gain: Using (17) and the upper bound for U(t, j) from
(9), we obtain

‖x[T ]‖pp ≤ 1

kx
c2|x(0, 0)|p +

kd

kx
‖d‖pp

‖x[T ]‖p ≤ p

√

1

kx
c2|x(0, 0)|+ p

√

kd

kx
‖d‖p

which holds for any T > 0, hence, taking the limit as

T → ∞ the bound for the finite-gain Lp is given by p

√

kd

kx
.

Lp,∞ gain: Consider the first inequality in (17). Since
‖x[T ]‖pp ≥ 0, we have U(σj(T ), j(T )) ≤ U(0, 0) + kd‖d‖pp.
Using the lower bound in (12) and the upper bound in (9),
we obtain for all (σj(T ), j) ∈ dom(x)

|x(σj(T ), j)|p ≤ c−1
1 U(0, 0) + c−1

1 kd‖d‖pp
≤ c−1

1 c2|x(0, 0)|p + c−1
1 kd‖d‖pp

which implies,

|x(σj(T ), j)| ≤ p

√

c2

c1
|x(0, 0)|+ p

√

kd

c1
‖d‖p,

∀(σj(T ), j) ∈ dom(x)

therefore according to Definition 2, we have

‖x‖∞ ≤ p

√

c2

c1
|x(0, 0)|+ p

√

kd

c1
‖d‖p,

namely the finite Lp,∞ gain of system (5) is upper-bounded

by p

√

kd

c1
. �

4. HOMOGENEOUS SYSTEMS

In this section, using the results of Section (3), we establish
finite gain Lp stability properties of (5) under a homogene-
ity assumption for the system without disturbances given
by

{

ẋ = f(x, 0),
x+ = g(x, 0),

x ∈ C0
x ∈ D0

(18)

where C0 and D0 are suitable projected versions of the
sets C and D on the direction of the state x, satisfying the
following assumption.

Assumption 2. (Flow and jump sets). The sets C0 and D0

are closed and there exist scalars LC and LD such that for
all (x, d) ∈ R

n+m

(x, d) ∈ C ⇒ x ∈ C0 + LCB(|d|) (19a)

(x, d) ∈ D ⇒ x ∈ D0 + LDB(|d|) (19b)
where C0 ⊂ R

n and D0 ⊂ R
n are closed sets satisfying

C0×{0} ⊃ (Rn×{0})∩C and D0×{0} ⊃ (Rn×{0})∩D.

An homogeneous system is defined as follows:



Definition 7. System (18) is homogeneous of degree zero
if given any scalar λ > 0, we have

f(λx, 0) = λf(x, 0) ∀x ∈ C0
g(λx, 0) = λg(x, 0) ∀x ∈ D0

(20)

x ∈ C0 ⇒ λx ∈ C0
x ∈ D0 ⇒ λx ∈ D0

(21)

Remark 6. From (19a) and (19b) we have that C0 and D0

must respectively contain the flow and jump sets projected
on the space of x, that is, the set of x such that (x, 0) ∈ C
and x such that (x, 0) ∈ D. Conic flow sets and jump sets
in the form

{

(x, d) :
[

x′ d′
]

M

[

x
d

]

≥ 0

}

(22)

are homogeneous of degree zero but, in general, (19) do not
hold for these sets. The reason why is that the quadratic
dependence on d in (22) can, in some cases, prevent
the existence of a linear bound as in (19). For example,
consider the case M = diag (Mx,−I) and note that the
condition in inequality (22) becomes x′Mxx ≥ |d|2 for
which (19) can not possibly hold.

Despite the above limitation, if the conic flow and jump
sets are defined as

C = {(x, d) : (x+ SCd)
′MC(x+ SCd) ≥ 0} (23a)

D = {(x, d) : (x+ SDd)′MD(x+ SDd) ≥ 0} (23b)

with MC , MD ∈ R
n×n, SC , SD ∈ R

n×m, then (19) holds
with LC = |SC | and LD = |SD|. y

The following assumption states some properties for the
jump and flow maps in (5).

Assumption 3. (Flow and jump maps). Consider systems
(5) and (18) satisfying Assumption 2. There exist two
positive constants Ldf and Ldg such that for all d ∈ R

m,

|f(z+v, d)−f(z, 0)| ≤ Ldf |d|, ∀z ∈ C0, |v| ≤ LC |d| (24a)

|g(z+v, d)−g(z, 0)| ≤ Ldg|d|, ∀z ∈ D0, |v| ≤ LD|d| (24b)

Remark 7. If f(·, ·) and g(·, ·) are globally Lipschitz in
both arguments, then (24) hold. However (24) correspond
to weaker assumptions as they are required to hold only
in some particular subsets of the state space and with |v|
upper-bounded by some function of |d|. y

The following theorem states equivalent properties for ho-
mogeneous systems which satisfy the above assumptions.
Its proof is omitted due to space constraints.

Theorem 1. If Assumptions 1, 2 and 3 hold, and system
(5) is homogeneous of degree zero in the sense of Definition
7, then the following statements are equivalent:

(1) The origin of (5) with d = 0, (namely (18)) is (locally)
asymptotically stable;

(2) The origin of (5) with d = 0, (namely (18)) is globally
exponentially stable;

(3) System (5) satisfies the following
(a) for each p ∈ [1,+∞), ∃V (·) satisfying (9)-(12)

and system (5) is finite gain Lp stable and finite
gain Lp,∞ stable from d to x;

(b) it is finite gain exponentially ISS from d to x;
(4) for each p ∈ [1,+∞), there exists a function V : Rn →

R≥0 that is smooth in R
n \{0} and positive constants

c1, c2, L1, L2, µ and ν ∈ [0, 1) such that

c1|x|p ≤ V (x) ≤ c2|x|p, ∀x ∈ R
n (25a)

〈∇V (x), f(x, 0)〉 ≤ −µV (x), ∀x ∈ C0 \ {0} , (25b)

V (g(x, 0)) ≤ νV (x), ∀x ∈ D0, (25c)

|∇V (x)| ≤ L1|x|p−1, ∀x ∈ R
n \ {0}, (25d)

|V (x+ v)− V (x)| ≤ 2L1

(

|x|p−1|v|+ |v|p
)

, (25e)

|∇V (x+ v)−∇V (x)| ≤ L2

(

|x|p−2|v|+ |v|p−1
)

(25f)

∀x, v such that x 6= 0 and x+ v 6= 0.

GES

LAS ∃V ⇒ Lp and Lp,∞

ISS

⇒ ⇒

⇒ ⇒

Fig. 1. The structure of the proof of Theorem 1.

Remark 8. The proof of Theorem 1 is carried out by
showing (1) ⇒ (2) ⇒ (4) ⇒ (3b) ⇒ (1), and that
(4) ⇒ (3a). Its structure is also graphically shown in
Figure 1 which shows that we rely on ISS to establish
the equivalence among item (3) and the remaining items.
Conversely, the Lp stability property of item (3a) does not
necessarily imply LAS, as already observed in Remark 4.

y

5. STORAGE FUNCTIONS FOR INPUT-OUTPUT LP

GAIN ESTIMATION

In this section we consider system (5) with output y =
h(x, d) and establish input-output Lp stability by using
storage functions. In particular, the following definition
and proposition generalize Definition 6 and Proposition 1
to the input-output case. The proof of the proposition
is the same as that of Proposition 1, replacing x by y,
wherever relevant.

Definition 8. (Lp storage function). Given p ∈ [1,∞), a
positive semidefinite continuously differentiable function
V (·) : Rn → R≥0 is a finite gain input-output Lp storage
function for system (5) with output y = h(x, d) if there
exist positive constants c2, kyf and kyg and non-negative
constants kdg, kdf such that

0 ≤ V (x) ≤ c2|x|p ∀(x, d) ∈ C ∪ D (26)

〈∇V (x), f(x, d)〉 ≤ −kyf |y|p + kdf |d|p ∀(x, d) ∈ C (27)

V (g(x, d))− V (x) ≤ −kyg|y|p + kdg|d|p ∀(x, d) ∈ D. (28)

Proposition 2. Consider system (5) with x(0, 0) = 0 and
assume that there exists a function V (·) : Rn → R≥0 sat-
isfying (26)-(28). Then the system is input-output finite-
gain Lp stable with input-output gain upper bounded

by γp = p

√

kd

ky
where kd = max {kdf , kdg}, ky =

min {kyf , kyg}.
Remark 9. A parallel result to the Lp,∞ statement of
Proposition 1, can also be stated here, by requiring for
some non-negative scalars cyV , cyd

|y|p ≤ cyV V (x) + cyd|d|p, ∀(x, d) ∈ C ∪ D, (29)

which generalizes (12) to the output case. Then the
proof of finite gain Lp,∞ stability from d to y with gain



p
√

cyV kd + cyd follows the same steps as the proof of
Proposition 1. y

Consider the linear hybrid system
{

ẋ = Afx+Bfdd, (x, d) ∈ C
x+ = Agx+Bgdd, (x, d) ∈ D
y = Hx+ Ld

(30a)

C =

{

(x, d) :

[

x
d

]′

MC

[

x
d

]

≥ 0

}

D =

{

(x, d) :

[

x
d

]′

MD

[

x
d

]

≥ 0

} (30b)

with Af , Ag,MC ,MD ∈ R
n×n, Bfd, Bgd,∈ R

n×m, H ∈
R

p×n and L ∈ R
p×m, MC = M ′

C and MD = M ′
D.

The following corollary of Proposition (2) allows us to
compute an upper-bound of the L2 gain of system (30)
using a quadratic storage function V (·).
Corollary 5.1. If there exist a positive-definite symmetric
matrix P ∈ R

n×n, non-negative scalars γ, τC and τD
satisfying the next linear matrix inequalities





A′
fP + PAf PBfd H ′

B′
fdP −γI L′

H L −γI



+

[

τCMC 0
0 0

]

≤ 0, (31a)





A′
gPAg − P A′

gPBgd H ′

B′
gdPAg −γI +B′

gdPBgd L′

H L −γI



+

[

τDMD 0
0 0

]

≤ 0 .

(31b)
then (26)-(28) are satisfied with p = 2 and the finite input-
output L2 gain of (30) is bounded by γ. Moreover, if the
inequalities in (31) are strict, then (30) is GES.

Proof. Applying a Schur complement to (31a) we arrive
at
[

A′
fP + PAf PBfd

B′
fdP −γI

]

− 1

γ

[

H ′

L′

]

[H L ] + τCMC ≤ 0,

(32)

recalling that y = [H L ]

[

x
d

]

, and from the S-procedure,
we obtain the following quadratic inequality, which is
implied by (32)

〈2Px,Afx+Bfdd〉+
1

γ
|y|2 − γ|d|2 ≤ 0 ∀(x, d) ∈ C,

where C is given in (30b). The above inequality is equiva-
lent to (27) with the choices p = 2, V (x) = x′Px, kyf = 1

γ
,

kdf = γ. Similarly, we have that (31b) implies (28) with
kyg = 1

γ
, kdg = γ. Since we have a quadratic V (·), then

(26) holds and, by Proposition 2, the finite input-output
gain is upper bounded by γ.

The proof of GES, when inequalities (31) hold strictly,
arises from the fact that considering d = 0 one gets from
the upper left blocks of (31) that the function V (x) = x′Px
is a strict Lyapunov function for the hybrid system. �

Remark 10. The above result combines the bounded real
lemma for continuous- and for discrete-time systems to
obtain a bound to the L2 gain for hybrid systems when
using hybrid norms. In (Zaccarian et al., 2011, Theorem
2) and (Beker et al., 2004, Theorem 13), similar results
were stated for the special case of systems with dwell time
(which ensures unbounded hybrid domains in the ordinary

time direction). In that case, since only continuous-time
norms are used, it is necessary that d do not affect the
jump and flow sets and the jump map, and (31b) reduces
to A′

gPAg − P ≤ 0. y

Remark 11. Corollary 5.1 corresponds to the selection of
a quadratic V (·), kyf = kyg = γ−1, and kdf = kdg = γ
in (27)-(28), and noticing the convexity of the arising
conditions. It is emphasized that the selection above for
the scalars is not conservative for the gain estimation, due
to the following.

• Assume that (27)-(28) are satisfied by different values
of kdf and kdg or kyf and kyg providing the gain

estimate γp = p

√

kd

ky
with kd = max{kdf , kdg} and

ky = min{kyf , kyg}. Then, (27)-(28) are clearly also
satisfied with kd replacing both kdf and kdg and with
ky replacing both kyf and kyg. Moreover the same
gain estimate is obtained by these new inequalities.

• We showed above that it is not conservative to use kd,
ky. For the quadratic case, it is also not conservative
to have kd = 1

ky
. Indeed, assume that (31) are

satisfied with γy = 1
ky

on the (2, 2) elements of the

two leftmost matrices and with γd = kd on the (3, 3)
elements. Then the same estimate can be established
by setting kd = 1

ky
= γ =

√
γyγd on all the (2, 2)

and (3, 3) diagonal terms and selecting P ⋆ =
√

γy

γd
P ,

τ⋆C =
√

γy

γd
τC and τ⋆D =

√

γy

γd
τD, which satisfy both

inequalities.

y

Remark 12. While the reasoning of Remark 11 shows no
conservativeness in the selection of kdf = kdg = k−1

yf =

k−1
yg = γ, there is however conservativeness of the L2

gain estimate due to the fact that we restrict V (·) to
be quadratic. Indeed, unlike the linear continuous- and
discrete-time cases where the bounded real lemma is
known to give the exact gain, for the hybrid case this is
not true and nonconvex Lyapunov functions are needed
in general (Blanchini and Savorgnan (2008)), even to
assess exponential stability (see also Forni and Teel (2010)
where sum-of-squares Lyapunov functions are used with
homogeneous hybrid systems). y

Remark 13. In this section we have considered sets in the
form (30b) while in Section 4 we restricted the sets to take
the special form (23) in order to obtain the bounds (19)
(see also Remark 6). Therefore, for a system satisfying the
conditions of Corollary 5.1 to have the properties implied
by Theorem 1, the flow and jump sets must be in the form
of (23) and satisfy the strict version of inequalities (31),
so that GES holds. Notice, indeed, that according to the
implications of Figure 1, it is not sufficient to assess L2

stability to assess GES, ISS and the additional properties
whose equivalence is established in Theorem 1. y

In the example below we compute the input-output L2-
gain for a linear hybrid system of the form (30).

Example 1 This example is taken from (Prieur et al.,
2011, Example 1) where we have introduced disturbances
acting both at the input of the plant du and at the
measured output dy. Following Prieur et al. (2011), the
hybrid closed-loop of (Prieur et al., 2011, Example 1) can



be written as
{

ẋp = apxc + bp(xc + du)
ẋc = acxc − y

(x, d) ∈ C
{

x+
p = xp

x+
c = −κMy

(x, d) ∈ D
y = xp + dy

(33a)

C =

{

(x, d) :

[

y
xc

]′ [
ap + bpκM bp

bp 0

] [

y
xc

]

≥ 0

}

D = R2 \ C.
(33b)

Notice that the disturbance du affects only the flow map
while disturbance dy affects the jump map and the flow
and jump sets. Therefore the results in Zaccarian et al.
(2011) and Beker et al. (2004) can not be used to estimate
the gain from the disturbance dy to the output y. Thanks
to the structure of the flow and jump sets, which can
be written as in (23), Theorem 1 applies to this system.
System (33) can be written in the form (30) using the
following values:

Af =

[

ap bp
ac −1

]

;Ag =

[

1 0
−κM 0

]

;

Bfd =

[

bp 0
0 0

]

;Bgd =

[

0 0
0 −κM

]

;

MC =







1 0
0 1
0 0
1 0







[

ap + bpκM bp
bp 0

] [

1 0 0 1
0 1 0 0

]

;MD = −MC

In Prieur et al. (2011), it is shown that, with ac = 0,
κM = 1 and bp = 1, the system is GES for all ap ∈
(−∞, 1]. Therefore, according to Theorem 1, the system
is also finite gain L2 stable for these values. However, the
conservativeness introduced by the quadratic Lyapunov
function (see Remark 12) does not allow to compute a
quadratic estimates of the L2 gain for all the values of
ap in the GES range. Figure 2 shows the quadratic gain
estimates from du to y (red, dashed) and from dy to y
(blue solid) as a function of ap. Notice that the estimate
γdy

from dy to y is constant and the estimate γdu
from du

to y increases as ap increases, up to the value of ap = −3
which is a bound for the feasibility of (31). The shaded
area in Figure 2 corresponds to the set where the system
is not finite-gain L2 stable and the vertical dashed line
corresponds to the value of ap in one of the simulations
reported in Prieur et al. (2011).

6. CONCLUSIONS

We presented results for the characterization of finite-
gain Lp stability of hybrid systems. By deriving a mixed-
dissipativity inequality we generalized to the hybrid case
the Lp stability concepts of both continuous-time and
discrete-time systems. When focusing on homogeneous
hybrid system, under suitable regularity assumptions on
the jump and flow maps and sets, we stated the equivalence
between LAS, GES, ISS and the existence of a storage
function. Each one of these properties implies finite-gain
Lp stability of the homogeneous system.
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