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Dragan Nešić, Andrew R. Teel and Luca Zaccarian

Abstract— In this paper we provide necessary and sufficient
conditions for exponential stability and L2 stability of planar
reset systems, i.e., systems involving a First Order Reset
Element (FORE) and a linear plant having dimension one. The
proof relies on Lyapunov tools developed in a recent novel
representation of a class of reset systems incorporating this
special planar case. Explicit Lyapunov functions are given to
show both exponential and L2 stability. Based on this Lyapunov
function, an explicit estimate of the L2 gain, depending on
the system’s parameters, is provided. Moreover, via the same
tools, it is shown that the gain estimates go to zero as certain
parameters (in particular, the FORE pole) become arbitrarily
large, thus allowing to establish a small gain result showing
stability of certain higher order SISO linear plants under the
action of a FORE.

I. INTRODUCTION

Reset controllers were proposed for the first time by Clegg
in 1958 with the aim of providing more flexibility in linear
controller designs and potentially removing fundamental
performance limitations of linear controllers (see, e.g., [1]
for one such example). Subsequently, a new reset device
called the first order reset element (FORE) was introduced
in [6] and a controller design procedure based on FOREs
was proposed. The design procedure was based on linear
frequency domain techniques for robust stabilization. These
early results on reset control systems are summarized in a
recent paper [3].

There has been a renewed interest in this class of systems
in the late 1990’s. First attempts to rigorously analyze
stability of reset systems with Clegg integrators can be found
in [7], [5]. In particular, an integral quadratic constraint
was proposed in [5] to analyze stability of a class of reset
systems. However, the proposed condition was conservative
as it was independent of reset times. Stability analysis of
reset systems consisting of a second order plant and a
FORE was conducted in [4]. The proofs are based on an
explicit characterization of reset times which are proved to be
equidistant under mild conditions. Using this fact, the authors
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prove asymptotic and BIBO stability of the reset system
via the discrete-time model of the system that describes the
system at reset times only. However, the same approach could
not be used to analyze higher order reset systems. Stability
analysis of general reset systems can be found in [2] where
Lyapunov based conditions for asymptotic stability of general
reset systems were presented. Moreover, the authors pro-
posed computable conditions for quadratic stability based on
linear matrix inequalities (LMIs). Bounded-input bounded-
state stability of general reset systems was obtained as a
consequence of quadratic stability. Finally, an internal model
principle was proved for reference tracking and disturbance
rejection.

Recently, in [10], [11] we have presented Lyapunov like
conditions for L2 stability and exponential stability of gen-
eral reset systems. Our results apply to a more general class
of models than those considered in the literature (see [2]);
in particular, we allow resets to occur on more complicated
sets than those considered in [2]. In this paper, we continue
the investigation of exponential stability and L2 stability
properties of reset systems.

Our first main result presents necessary and sufficient
conditions under which planar reset systems are exponen-
tially or L2 stable. The result provides an explicit algebraic
condition on the parameters in the model that guarantee
exponential or L2 stability. Moreover, we provide an explicit
estimate of the L2 gain of the system. We note that this
gain estimate is conservative when compared to some other
estimates obtained for smaller classes of planar reset systems
given in [13] and especially so when compared to numerical
estimates provided in [12]. Our second main result shows
that the L2 gain can be arbitrarily reduced when the pole of
the FORE and/or the loop gain are increased to infinity. Note
that increasing the pole of the FORE to infinity means that
the linear system without resets is more and more unstable.
While this result may be counterintuitive, our analysis shows
that it holds and we comment on the underlying intuition.
Finally, based on this result on the L2 gain trend, we establish
sufficient stability results for higher dimensional SISO reset
systems based on a small gain reasoning. Note that, as
compared to the high gain result in [12], this result is more
powerful because it doesn’t require the loop gain to be
sufficiently large.

The paper is organized as follows: in Section II we prove
new Lyapunov tools that apply to general reset systems
under strengthened conditions on the jump and flow set. In
Section III we concentrate on planar FORE control loops
and state our main results, while in Section IV we illustrate



how these results can be used to establish sufficient stability
conditions for higher dimensional systems with FOREs.

Notation: (x, y) := [xT yT ]T . Given a state variable x of
a system with jumps, we denote its derivative with respect
to time (which is defined almost everywhere) by ẋ while at
jump times, we denote the value of the state after the jump
by x+ and the value of the state before the jump simply by
x.

II. LYAPUNOV APPROACHES FOR THE ANALYSIS OF
RESET SYSTEMS

Consider the following general model for a linear reset
system {

ẋ = Ax+Bdd, if x ∈ F ,
x+ = Arx, if x ∈ J , (1)

where A denotes the flow matrix, Ar denotes the reset
matrix, d is an external disturbance and the jump and flow
sets J and F are closed set performing a partition of the
overall state space.

When augmenting the system with temporal regulariza-
tion (see [12], [11], [10] for details), the overall dynamics
becomes

τ̇ = 1,
ẋ = Ax+Bdd

}
if x ∈ F or τ ≤ ρ,

τ+ = 0,
x+ = Arx

}
if x ∈ J and τ ≥ ρ,

(2)

which for any (arbitrarily small) selection of ρ > 0, rules
out the possibility of Zeno solutions.

In the remainder of this section, we will comment upon
two types of techniques that might be used to establish
useful properties of system (2) based on Lyapunov functions
satisfying suitable properties for the dynamics in (1).

A. Inflating the flow set or imposing strict decrease at jumps

The model (2) has been first introduced in [11], [10] and
Lyapunov conditions have been given in those papers for
establishing exponential stability and L2 stability from a
disturbance input to a suitable output. Along the same line,
in [12] and [13], numerical and analytic constructions of
Lyapunov functions satisfying these conditions were given.

When using the model (1) and its extended version
with temporal regularization (2), what makes the Lyapunov
construction in the above referenced papers hard is that
temporal regularization may cause the system’s state to
slightly overflow into the jump set J before the reset occurs.
Therefore, all the Lyapunov-based results reported in [11],
[10], [12], [13] require the following items to hold for a
suitable Lyapunov function V (·) (see [11], [10] for more
formal statements):

1) it satisfies some regularity conditions (e.g., quadratic
upper and lower bounds) everywhere;

2) it satisfies a suitable growth condition when the state
flows in the jump set J ;

3) it is a disturbance attenuation Lyapunov function in a
slightly inflated version Fε of the flow set F ;

4) it does not increase when jumping from the jump set
J .

While items 1 and 2 are not surprising because they simply
establish suitable regularity conditions for V (·), what is
typically hard to obtain is that the Lyapunov function satisfies
together items 3 and 4. This is because one would typically
want to patch two functions leading to a Lipschitz selection
of V (·), where a first function is tailored to satisfy the jump
condition in the jump set, while a second function is tailored
to satisfy the flow condition in the flow set. However, this
approach doesn’t directly apply to the results of [11], [10],
[12], [13] because of item 3 above, which requires the flow
condition to hold on a slightly inflated version of the flow set.
This requirement establishes a disturbing coupling between
items 3 and 4 above because there is a small region where
both the jump and the flow condition should hold. The reason
why this fact is necessary is that when analyzing the system’s
trajectory in light of temporal regularization, it is necessary
to guarantee that whenever the state overflows in the jump
set before the next jump is allowed (namely until τ ≤ ρ),
a nice bound on the trajectory still holds. This good bound
comes from the bound at item 3 which is guaranteed to hold
not only within the flow set but also in a slight portion of
the jump set adjacent to the flow set boundary.

Motivated by the difficulty arising in the Lyapunov analy-
sis and Lyapunov construction characterizing the techniques
relying on items 1–4 above, we propose here a different
model which appears to be a valuable alternative at least in
some relevant cases. This model is based on relaxing the flow
condition at item 3 and only requiring that it holds within
the flow set (with no inflation) at the price of strengthening
the jump condition at item 4 in requiring a strict decrease at
jumps, namely items 3 and 4 above are replaced by

3a. V (·) is a disturbance attenuation Lyapunov function in
the flow set F ;

4a. V (·) strictly decreases when jumping from the jump
set J .

From an intuitive viewpoint, having a strict decrease at
jumps allows to compensate for a possible growth of V (x(t))
that might have happened while x(t) was overflowing in the
jump set (for τ ≤ ρ), thus making it possible to require a
less stringent flow condition and to only rely on the regularity
assumption of item 2.

The advantage of this new technique is that the proof of
the main results of [11], [10] becomes extremely simpler
(it is given in Theorem 1 in the next section) and in some
cases the Lyapunov construction might be simpler. Moreover,
for situations where strict decrease at jumps is a natural
condition to impose, the new Lyapunov tools of Theorem 1
might be more effective at exploiting the underlying system
features to effectively design Lyapunov functions that estab-
lish exponential and L2 stability of the system with temporal
regularization.

B. Lyapunov conditions with strict decrease at jumps

The qualitative requirements introduced at items 1, 2, 3a
and 4a in the previous section can be formalized in the



following assumption.
Assumption 1: Given system (1) and a suitable output y

satisfying |y|2 ≤ λy|x|2, the Lyapunov function V (·) : Rn →
R≥0 is such that there exist positive real numbers λi, i =
1, . . . , 7 and η ∈ (0, 1) such that for all d:

λ1|x|2 ≤ V (x) ≤ λ2|x|2 (3a)
< ∇V (x), Ax+Bdd >≤ λ3V (x) + λ4|x||d|, ∀x, (3b)
< ∇V (x), Ax+Bdd > ≤ −λ5V (x)− λ6|y|2

+λ7|d|2, ∀x ∈ F , (3c)

V (Arx) ≤ ηV (x), ∀x ∈ J . (3d)
The following theorem establishes the sufficiency of the

new Lyapunov conditions of Assumption 1 to establish the
exponential and L2 stability properties of the reset system
with temporal regularization (2). This theorem should be
though of as a valuable alternative to the approaches in [11],
[10], [12], [13].

Theorem 1: Consider the reset system (1) without tem-
poral regularization and assume that there exists a function
V (·) satisfying Assumption 1. Then the reset system with
temporal regularization (2) satisfies

1) the origin of the x dynamics is exponentially stable,
namely there exist positive numbers c, λ such that for
all x(0), |x(t)| ≤ c|x(0)| exp(−λt), ∀t ≥ 0;

2) the system is finite gain L2 stable from d to y and for
any ε > 0, there exists ρ∗ such that for all ρ ≤ ρ∗ the

L2 gain from d to y is upper bounded by
√
λ7
λ6

+ ε.

Proof: Consider equation (3b) and complete squares to
get

< ∇V (x), Ax+Bdd >≤ λ8V (x) + λ7|d|2, ∀x, (4)

where λ8 = λ3 +
λ2
4

4λ7
.

Define now the function W (·, ·) : Rn × R≥0 → R≥0 as
follows:

W (x, τ) := exp(−Lmin {τ, ρ})V (x) (5)

where L > 0 is to be determined. If τ ∈ [0, ρ] then from
(4) and adding the term exp(−Lτ)

(
−λ6|y|2 +

λ6λy

λ1
V (x)

)
which is positive by (3a),

∂W

∂τ
+
∂W

∂x
(Ax+Bd) ≤ −L exp(−Lτ)V (x)

+ exp(−Lτ)
(
λ8V (x) + λ7|d|2

)
≤W (τ, x)

(
−L+ λ8 +

λ6λy

λ1

)
− λ6 exp(−Lτ)|y|2 + λ7|d|2

If τ /∈ [0, ρ] but x ∈ F then using (3c) we get

∂W

∂τ
+
∂W

∂x
(Ax+Bd) ≤

≤ exp(−Lρ)(−λ5V (x)− λ6|y|2 + λ7|d|2)
≤ −λ5W (τ, x)− λ6 exp(−Lρ)|y|2 + λ7|d|2 .

(6)

In general, selecting L ≥ λ5 + +λ8 +
λ6λy

λ1
we have

∂W

∂τ
+
∂W

∂x
(Ax+ d) ≤ −λ5W (τ, x)−

− exp(−Lρ)λ6|y|2 + λ7|d|2, ∀x ∈ F and τ ≤ ρ,
(7)

which corresponds to the flow set condition in (2).

Consider the change in W due to jumps. We have

W (0, Arx) = V (Arx)
≤ ηV (x)
= η exp(Lρ)W (τ, x) .

(8)

Therefore, selecting ρ ≤ ρ∗ =
exp(1/η)

L
, we have

W (0, Arx) ≤W (τ, x), ∀x ∈ J or τ ≥ ρ, (9)

which corresponds to the jump set condition in (2).
The proof is completed integrating equations (7) and (9)

along the trajectories of the system to derive an exponential
bound on |x| and the L2 bound from ‖d‖2 to ‖y‖2.

III. PLANAR FORE CONTROL LOOPS

In this section, we discuss how the general models (1),
(2) specialize to the case of scalar reset control systems
involving a first order reset element (FORE). In particular,
as compared to the parallel studies carried out in [12], [13],
we will slightly modify here the reset rule of the FORE so
that the strict decrease condition at jumps required to apply
Theorem 1 will be satisfied. The simple idea adopted here
is to slightly enlarge the flow set and shrink the jump set
by tilting one of the two boundaries of the corresponding
sector. Then any state in the jump set will be mapped into
the interior of the flow set (except for the origin) and it will
be possible to construct Lyapunov functions guaranteeing the
strict decrease condition (3d) for some η < 1.

y

d

u PFORE

r

Fig. 1. A linear first-order plant controlled by a FORE.

In the most elementary setting, the closed-loop is a planar
system where the plant is scalar and is not subject to resets.
The underlying dynamics can be represented as

ẋp = apxp + bpu+ d,
y = xp

(10)

where u is the control input, d is a disturbance input and xp
is the plant state. For the plant (10), assume that a control
system is designed, according to Figure 1, where the FORE
element is described by the following dynamics:

FORE

{
ẋr = acxr + bce, if εe2 + 2exr ≥ 0
x+r = 0, if εe2 + 2exr ≤ 0,

(11)

Interc.

{
u = xr,
e = −y (12)

where ac ∈ R denotes the time constant of the FORE.
Note that ac can be any number (including positive ones).
For example, choosing bc = 1 and ac = 0 corresponds to
implementing in the FORE the Clegg integrator.



The overall closed-loop system before temporal regular-
ization can then be described by the dynamic equations in
(1), where, based on the values in (10), (11) and (12),

[
A Bd
Ar Mε

]
=


ap bp 1
−bc ac 0

1 0 −ε 1
0 0 1 0

 . (13)

and where the flow and jump sets are defined as follows
based on the matrix Mε:

F := Cε := {x : xTMεx ≤ 0}
J := Dε := {x : xTMεx ≥ 0} (14)

In particular, as commented above, the upper left term in Mε

corresponding to −ε for some small constant ε > 0, allows
to ensure that the whenever the state jumps from the jump
set, it will be mapped in the interior of the flow set so that
a strict Lyapunov function decrease will be achievable.

The next theorem establishes necessary and sufficient
conditions for the exponential stability and finite L2 gain
(from d to x) of the planar FORE control system (1), (13).
The proof relies on the degrees of freedom available from
the novel model introduced in Section II and is based on the
Lyapunov results of Theorem 1. It is omitted due to space
constraints.

Theorem 2: Consider the planar FORE control system
(2), (13) (i.e., the closed-loop system (10), (11), (12) with
temporal regularization) and suppose that the loop gain bpbc
is positive. Then the following statements are equivalent.

1) There exists ε∗ > 0 such that for any fixed ε ∈ (0, ε∗]
there exists ρ∗ > 0 such that for any ρ ∈ (0, ρ∗],

a) there exists a locally Lipschitz Lyapunov function
V (·) : Rn → R≥0 satisfying conditions (3) for
suitable values of λi, i = 1, . . . , 7;

b) the system is exponentially stable when d(t) ≡ 0;
c) the system is finite gain L2 stable from d to

(xp, xr).
2) At least one of the following two conditions holds:

a) the matrix A in (13) is Hurwitz;
b) the following condition is satisfied:

2
√
bpbc + ac − ap > 0. (15)

While Theorem 2 establishes useful necessary and suf-
ficient conditions for exponential stability and L2 stability
of planar FORE systems, another interesting aspect to study
is to understand how the L2 gain compares to the L2 gain
of the closed-loop without resets (whenever it exists) and
also the trend of the gain as certain parameters get large.
In particular, it is commonly acknowledged by practical
experience that introducing resets improves the performance
of a linear planar control system, even though a formal proof
of this fact wasn’t available. Such a proof is given next.
Moreover, it has been already noticed by studying certain
gain estimates in [12] that the L2 gain seems to become
smaller and smaller as the loop gain and/or the pole of the
FORE (namely ac) becomes larger and larger. This intuition
arises from the fact that the step responses generated by the

closed loop look increasingly aggressive, by corresponding
to the patching of an exponentially diverging branch (having
larger and larger growth rate) followed by a flat-top at the
desired steady state (see also the simulations in [11, Figure
3]). However, a formal proof of these L2 gain trends has
not been established yet. It is now given in the following
Theorem 3, whose proof is omitted due to space constraints.
For the correct statement of the theorem we need to clarify
a suitable concept of gain estimate and of gain convergence,
clarified in the next definition.

Definition 1: Consider the FORE control system with
temporal regularization (2), (13). Assume that γ is an in-
put/output gain. Then we say that γ̄ is an asymptotic estimate
of the gain γ conditionally to hierarchically small (ε, ρ) or
alternatively, that

γ
ε,ρ

≤ γ̄,

if for each ∆γ > 0 there exists ε∗ such that for each ε ∈
(0, ε∗] there exists ρ∗ such that for all ρ ∈ (0, ρ∗], γ ≤
γ̄ + ∆γ .

Assume that p is a suitable parameter of the closed-loop
system and that γ(p) is an input/output gain depending on
p. Then we say that γ(p) converges to zero conditionally to
hierarchically small (ε, ρ) as p tends to +∞, or alternatively,
that

p→∞ ⇒ γ(p)
ε,ρ−→ 0,

if for each ∆γ > 0 there exists1 p∗ > 0 such that for each
p ≥ p∗ there exists ε∗ such that for each ε ∈ (0, ε∗] there
exists ρ∗ such that for all ρ ∈ (0, ρ∗], γ(p) ≤ ∆γ . ◦

Remark 1: The goal of Definition 1 is to clarify what we
mean by gain estimate and convergence to a value in terms
of the small parameters of the system. In particular, the gain
estimates and trends established in the next theorem require
that first the parameter ε modifying the FORE resetting rule
is sufficiently small and then that the temporal regularization
constant ρ is once again sufficiently small. With reference to
the second part of Definition 1, we note that in Theorem 3
we consider various situations when p = ac or p = k := bcbp
or p = (ac, k). In a design context, one should first fix
the desired gain ∆γ , then choose p sufficiently large and
then impose first ε sufficiently small and subsequently ρ
sufficiently small. ◦

Theorem 3: Consider the planar FORE control system (2),
(13) (i.e., (10), (11), (12) with temporal regularization) where
the loop gain k := bpbc is positive.

1) (L2 gain estimates) Whenever the closed-loop is ex-
ponentially, stable (so that, by Theorem 2 at least one
of the two conditions at item 2 of Theorem 2 holds),
the following asymptotic estimates conditionally to
hierarchically small (ε, ρ) (in the sense of Definition 1)
hold for the L2 gain γ of the closed-loop from d to y:

a) if item 2a holds, then

γ
ε,ρ

≤ γL,

1The parameter p is allowed to be a vector and in this case p > 0 means
that each entry of p is strictly larger than zero.



where γL is the (finite, because A is Hurwitz)
gain from d to y of the linear closed-loop without
resets.

b) if item 2b holds, then

γ
ε,ρ

≤
2(2 + κ) exp

(
κ
π

2

)
κ(2
√
bcbp −max{ap − ac, 0})− 4 max{|ac|, |ap|}

,

(16)
where κ is any constant satisfying κ > κ :=

4max{|ac|,|ap|}
2
√
bcbp−max{ap−ac,0}

.

2) (L2 gain trends) Let ap be fixed. Denote by γ(ac, k)
the L2 gain of the closed-loop from d to y as a function
of the FORE pole ac and of the loop gain k := bpbc.
Then the following trends hierarchically conditioned
by (ε, ρ) in the sense of Definition 1 hold for the
closed-loop system:

a) k → +∞ ⇒ γ(ac, k)
ε,ρ−→ 0,

b) ac → +∞ ⇒ γ(ac, k)
ε,ρ−→ 0,

c) k → +∞ and ac → +∞ ⇒ γ(ac, k)
ε,ρ−→ 0,

namely, the L2 gain of the closed-loop decreases to
zero (conditionally to hierarchical selections of (ε, ρ))
as the loop gain and/or the FORE pole are increased.

Remark 2: It is of interest to wonder whether for fixed
values of the parameters there’s an optimal selection of κ
within (16) which gives the tightest estimate for the L2

gain. Indeed, by deriving equation (16) with respect to κ and
imposing that the derivative is zero, one gets two solutions
(of a second order equation), one of them always being
smaller than κ (thus not being usable) and one of them
always being larger than κ. In particular, the optimal κ is
determined as

κ∗ :=
κ

2
− 1 +

√(
κ

2
+ 1

)(
κ

2
+ 1 +

4

π

)
,

and, when substituted into the gain bound equation (16) it
gives the following bound, which only depends on the system
parameters:

γ∗ =
1 + κ0 +

√
κ0(κ0 + 2) exp

(
κ1 +

√
κ0(κ0 + 2)

)
2
√
bcbp −max{ap − ac, 0}

(17)

where κ0 = π
4 (κ+ 2) and κ1 = π

4 (κ− 2).
An example of the gain curve given by the function (17) is

shown in Figure 2, when selecting ap = 0 and bpbc = 1 and
having ac take values in [−0.5, 0.5]. This curve is compared
to the gain estimates obtained when using the numerical and
analytic tools given in [12] and [13], respectively. The latter
estimates turn out to be tighter for this special case, but the
advantage of this construction is that it provides an estimate
of the gain for a larger class of systems (the constructions in
[12] and [13] are limited to the case ap = 0 and bpbc = 1).

◦

IV. SISO RESET SYSTEMS WITH FORES

In this section we derive a result on higher dimensional
control systems involving FOREs. In particular, we use the
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Fig. 2. Comparison of the gain estimates obtained by using equation (17)
from Theorem 3 (bold), using the analytic tools from [13] (dashed) and the
numerical tools from [12] (dash-dotted).

results derived in Section III to conclude stability of the
closed-loop consisting of SISO linear plants of arbitrary
dimension interconnected to FOREs in terms of sufficient
conditions that establish exponential stability of a FORE
interconnected to a minimum phase plant.

A. Models for FORE control loops

Consider a strictly proper SISO linear plant whose dynam-
ics is described by

P
{
ẋp = Apxp +Bpuu+Bpdd,
y = Cpxp,

(18)

where u is the control input, d is a disturbance input and y is
the measured plant output (Ap, Bpu, Bpd and Cp are matrices
of appropriate dimensions). The plant (18) is connected
with a FORE described by (11) and the interconnection is
described by (12). The overall closed-loop system that is
augmented with the temporal regularization can be described
by equations (2) where, different from the planar case, now
the matrices in (2) correspond to the following selections:

A =

[
Ap Bpu
−bcCp ac

]
, Bd =

[
Bpd
0

]
,

Ar =

[
I 0
0 0

]
, M =

[
−ε CTp
Cp 0

]
.

(19)

B. Stability results on minimum phase SISO plants with
FORE

In this section we use results of Theorems 2 and 3 to
establish sufficient conditions for stability of a class of reset
systems described by (2), (19). In other words, the closed
loop consists of a SISO linear plant and a FORE. Moreover,
we assume in this section that the SISO plant is minimum
phase and relative degree one. The underlying idea in the L2

stability proof is to use a small gain theorem. Then using the
results in [9], we show that we have exponential stability in
the absence of disturbances.

To suitably represent the plant under consideration, first
note that since the plant is minimum phase and relative



degree one, there exists a nonsingular change of coordinates
so that we can write its dynamics as follows [8, Remark
4.3.1]:

ż = Azz +Bzyy +Bzdd (20a)
ẏ = apy + bpu+ Czz + Edd︸ ︷︷ ︸

d̃

, (20b)

where y ∈ R, z ∈ Rn−1 and u ∈ R are respectively the
plant output, part of state corresponding to zero dynamics
and input, Az is Hurwitz (since the plant is minimum phase)
and we assume without loss of generality that bp > 0.

To state the next result we introduce the following defini-
tion:

Definition 2: Consider the FORE control system with
temporal regularization (2), (13). Assume that p is a suitable
parameter of the closed-loop system. Then we say that the
system is exponentially stable (or finite gain L2 stable)
conditionally to large p and hierarchically small (ε, ρ) if
there exists p∗ > 0 such that for each p ≥ p∗ there exists ε∗

such that for each ε ∈ (0, ε∗] there exists ρ∗ such that for all
ρ ∈ (0, ρ∗] we have that the system (2), (13) is exponentially
stable (finite gain L2 stable). ◦
It is understood in the above definition that the only parame-
ters that we can change are p, ε, ρ, whereas all other constants
in the model are fixed. Then we can state the following result:

Theorem 4: Consider the closed loop system consisting
of the plant (20) and the FORE (11), (12), where r ≡ 0.
Let Az be Hurwitz and bp > 0 in (20). Then, the following
statements are true:

1) The system is finite gain L2 stable from d to xp
conditionally to large ac and hierarchically small (ε, ρ).
Moreover, when d(t) ≡ 0 the system is also exponen-
tially stable conditionally to large ac and hierarchically
small (ε, ρ);

2) The system is finite gain L2 stable from d to xp
conditionally to large bc and hierarchically small (ε, ρ).
Moreover, when d(t) ≡ 0 the system is also exponen-
tially stable conditionally to large bc and hierarchically
small (ε, ρ);

3) The system is finite gain L2 stable from d to xp
conditionally to large (ac, bc) and hierarchically small
(ε, ρ). Moreover, when d(t) ≡ 0 the system is also
exponentially stable conditionally to large (ac, bc) and
hierarchically small (ε, ρ).

Proof: We only prove the first case and the proof
of other two cases follow almost identical steps by using
conditions of Theorem 3. We consider the overall system as
a feedback interconnection of the linear system (20a) that
has inputs (y, d) and the output z and the second order reset
system consisting of (20b), (11), (12) that has inputs (z, d)
and the output y. From the item 1 of Theorem 3 we have
that the gain of the reset system from d̃ := Czz +Edd to y
can be reduced arbitrarily by adjusting ac, ε and ρ, that is:

ac → +∞ ⇒ γ(ac)
ε,ρ−→ 0

Hence, the gain from (z, d) to y can be reduced arbitrarily for
the reset system. Then, since Az in the linear system (20a) is

Hurwitz, then the system is finite gain L2 stable from (d, y)
to z with some gain γz . Hence, there exist sufficiently large
ac and sufficiently small ε and ρ such that the small gain
condition

γ(ac) · γz < 1

holds, which implies that the closed loop system (20a), (20b),
(11), (12) is finite gain L2 stable from d to (z, y), which
completes the proof of L2 stability.

To prove exponential stability note first from the item 2
of Theorem 2 we have that we can adjust ac, ε, ρ so that
we also have a finite gain for the reset system from d̃ to
(y, xc) from which we can conclude L2 stability from d to
(z, y, xc) for the closed loop system. Now we can use2 [9,
Theorem 3] to conclude exponential stability when d(t) ≡ 0.
Indeed, we have that all conditions of [9, Proposition 1] hold
in our case and, hence, the closed loop system is uniformly
globally fixed time interval stable (UGFTIS) with linear gain
(see [9, Definition 6]). This implies that all conditions of [9,
Theorem 3] hold and, hence, we can conclude that the system
is UGES.
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