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Abstract
In this paper we address and solve the problem of anti-
windup augmentation for linear systems with input and
output delay. In particular, we give a formal definition
of the anti-windup construction problem in the global,
local, robust and nominal cases. For each of these cases
we show that a specific anti-windup compensation struc-
ture (which is a generalization of the approach in [13])
is capable of solving the anti-windup problem when-
ever this is solvable. The effectiveness of the proposed
scheme is shown on a simple example taken from the lit-
erature, in which the plant is a marginally stable linear
system.

1 Introduction
The anti-windup design problem has been qualitatively
stated already from the 1950’s both in the analog and
in the digital control framework. However, the arising
solutions were at that time mainly application oriented
and not applicable to large classes of control systems. It
was only in the 1980’s that some design techniques ap-
plicable to large classes of control systems were formal-
ized, although the issue of performance characterization
and improvement was still mostly unsolved. An inter-
esting survey of these techniques can be found in [4].
Another phenomenon that is often found in conjunction
with saturation is the presence of time delays at the
input and at the output of the plant. Similar to the
saturation effect, the dead-time phenomenon becomes
crucial when the control task is aggressive enough so
that the phase roll-off may destroy the stability (and/or
performance) properties of the closed-loop system. For
these saturated and retarded systems, it is of interest
to address the corresponding generalization of the anti-
windup problem. This can be intuitively seen as follows:
assume that a predesigned controller (possibly including
internal delays) is available for the dead-time plant with-
out input saturation; then build an anti-windup com-
pensator that, when interconnected to the existing con-
trol system is capable of
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1. reproducing the responses induced by that pre-
designed controller when signals are small enough not
to activate actuator saturation;
2. recovering the stability (and, partially, the perfor-
mance) that would be otherwise lost due to the nonlin-
ear effects of saturation, for all other signals.

The solution to this anti-windup problem is appealing
because it makes it possible to implement control laws
for dead-time systems without saturation also on sat-
urated dead-time plants. Many such tools are avail-
able in the literature. See, e.g., the many generaliza-
tions of the Smith predictor structure, first proposed in
[10]. A very natural solution to the anti-windup de-
sign problem for dead-time systems can be obtained
by suitably generalizing (in a straightforward way) the
classical Internal Model Control (IMC) technique for
anti-windup [16], where the stability problem is fully
solved for the case where the open-loop plant is charac-
terized by a Hurwitz matrix. However, it is known that
IMC-based anti-windup designs may lead to poor perfor-
mance, which leaves space for significant improvement
over this straightforward construction. Despite the work
of [8] (where a solution is given only for a subclass of con-
trol systems) and the IMC extension mentioned above,
very little has been done so far on anti-windup design
for dead-time linear control systems. Nevertheless, these
ideas have been proven to be successful on several ap-
plications, including active queue management in TCP
networks [9] and other experiments discussed in [2]. Also
notable is the work in [11] where a static anti-windup
gain is included within a saturated control design task
for a dead-time plant. In [11], the anti-windup goal is
not directly addressed because the controller is not con-
sidered as a design constraint but rather as a degree of
freedom within the control system design. Nevertheless,
that underlying technique could be easily generalized for
static anti-windup design whenever the unconstrained
controller is a linear system without delays.

In this paper, we address the anti-windup design prob-
lem for dead-time control systems. The proposed solu-
tion is applicable to any linear control system, includ-
ing the case where the unconstrained controller contains
internal time-delays (such as in the case where it arises
from a Smith predictor design). Moreover, a global solu-
tion is given to the problem under the (necessary) prop-



erty that the plant state matrix has eigenvalues with non
positive real part, thus extending previous results to the
case of poles on the imaginary axis. As compared to the
solution in [8], the approach proposed here is stronger
because it holds under weaker conditions (these condi-
tions are actually shown to be necessary for the solvabil-
ity of the problem). Moreover, whenever the approach in
[8] is applicable, it can be interpreted as a special selec-
tion among a family of solutions parametrized within the
framework proposed here. As compared to the potential
static anti-windup solution residing in the approach of
[11], our result provides a general solution to the prob-
lem, whereas the results in [11] are only applicable if
certain matrix inequalities are feasible.

The paper is organized as follows. We first formalize
the anti-windup design goal (which is based on a gener-
alization of the delay-free ideas in [13]) introducing the
global, local, robust and nominal problem statements in
Section 2. Then in Section 3 we prove necessary and
sufficient conditions for the solvability of the problem
and provide a general framework for the corresponding
solution (whenever it exists). In this framework, specific
selections of a stabilizing signal are shown to solve the
different instances of the anti-windup problem. In Sec-
tion 4 we apply our design to an example where the plant
state matrix is non Hurwitz (so that previous techniques
are not applicable) and show the desirable performance
induced by the proposed anti-windup strategy.

1.1 Notation
Given a vector w ∈ Rn and a set S ⊂ Rn, the distance
of the vector w from the set S is defined as dist(w,S) :=
infs∈S |w − s|.
Given numbers a ≤ a ≤ b ≤ b and a function w : [a, b]→
Rn, the L2 norm of w(·) restricted to the interval [a, b] is

defined as ‖w[a,b]‖2 :=
√∫ b

a
|w(τ)|2dτ. If [a, b] = [0,∞),

to simplify notation we will often use ‖w‖2 in place of
‖w[0,∞)‖2. We will denote ‖w[0,∞)‖2 as the L2 norm of
w(·) and, if ‖w[0,∞)‖2 <∞, we will say that w(·) ∈ L2.

Given a constant td > 0 and a function s : [−td,∞) →
Rn, then for all t ≥ 0, the functional sd(·) is de-
fined as sd(t) := {s(τ), τ ∈ [t − td, t]}. Moreover, for
each t ≥ 0, the norm |sd(t)| is defined as |sd(t)| :=
maxτ∈[t−td,t] |s(τ)|.
Let K > 0 and γ > 0 be given. A nonlinear functional
differential equation of the form

ẋ = f(xd(t), wd(t))

y = g(xd(t), wd(t))

is finite gain L2 stable from w to y if for all functions
w(·) and initial conditions xd(0), the following bound
holds for all t ≥ 0

‖y[0,t]‖2 ≤ K|xd(0)|+ γ‖w[−td,t]‖2.

2 Problem statement
Consider a linear time-invariant plant subject to input
and output delays:

ẋ(t) = Ax(t) +Bsat(u(t− τI)) +Bed(t) + ψx(t)
y(t) = Cx(t− τO) +Dsat(u(t− τI − τO))

+Ded(t− τO) + ψy(t)
z(t) = Czx(t) +Dzsat(u(t− τI)) + ψz(t)

(1)

where τI > 0 is a uniform delay at the plant control
input u ∈ Rm, τO > 0 is a uniform delay at the plant
output measurement y ∈ Rp, z represents the perfor-
mance output (without loss of generality we can assume
that this output is not delayed) and d represents a dis-
turbance input. The three extra signals ψx, ψy, ψz can
be stacked in a single vector Ψ representing the out-
put of the following linear system (represented in the
Laplace domain)

Ψ(s) :=

 ψx(s)
ψy(s)
ψz(s)

 := ∆(s)

 x(s)
u(s)
d(s)

 (2)

which may be infinite dimensional (it may have internal
delays) and represents unmodeled dynamics and/or pa-
rameter uncertainties in the model (1). We will need the
following assumption for the perturbed plant (1), (2).

Assumption 1 The pair (Cz, A) is detectable. 1 The
system (2) is finite-gain L2 stable from (x(·), u(·), d(·))
to Ψ(·) with L2 gain equal to γ∆.

Assume that a linear controller (defined, in general,
by linear functional differential equations) has been de-
signed for the following linear dead-time system without
input saturation

ẋ(t) = Ax(t) +Bu(t− τI) +Bed(t) + ψx(t)
y(t) = Cx(t− τO) +Du(t− τI − τO)

+Ded(t− τO) + ψy(t)
z(t) = Czx(t) +Dzu(t− τI) +Ddzd(t) + ψz(t)

(3)

and that the controller equations can be written as

ẋc(t) = f(xc,d(t), uc,d(t), rd(t))
yc(t) = g(xc,d(t), uc,d(t), rd(t)),

(4)

where f(·, ·, ·) and g(·, ·, ·) are linear functionals. 2 In
particular, the controller (4) is assumed to enforce a de-
sirable closed-loop behavior on the unconstrained plant
(3) when interconnected through the following uncon-
strained interconnection equations

u(t) = yc(t), uc(t) = y(t). (5)

1This assumption is only needed to prove the necessity of the
results of Theorem 1. The sufficiency statements still hold when
(Cz , A) is not detectable.

2As defined in the notation Section 1.1, the subscripts d denote
the dependence of the functional on the past history of the signal
under consideration.



The corresponding closed-loop system (3), (4), (5) will
be referred to as the unconstrained closed-loop system
henceforth. Moreover, its response will be called uncon-
strained response. The following assumption will hold
for the unconstrained closed-loop.

Assumption 2 There exists a small enough gain γ∆ >
0 such that the unconstrained closed-loop system (3),
(2), (4), (5) is well-posed (namely, solutions exist
unique for all initial states and for all inputs) and finite-
gain L2 stable from the input Ψ = (ψx, ψy, ψz) to the
closed-loop state and output, uniformly over all selec-
tions of the system (2) satisfying Assumption 1.

We will address in this paper the anti-windup problem
arising when saturation is present at the plant input, so
that the unconstrained performance of the closed-loop
(3), (2), (4), (5) is only feasible for small enough sig-
nals. For simplicity, we will consider decentralized satu-
ration functions, although the results can be extended in
a straightforward way to the more general class of non-
linearities characterized in [13, Assumption 2]. Similar
to the approach in [13], to properly formalize the anti-
windup problem, we need to introduce a subset U of the
plant input vector space Rm, which is a strict subset of
the linear region of the saturation function, namely such
that 3

∃δ > 0, s.t. u+ δ
v

|v| ∈ {w ∈ Rm : w = sat(w)}, (6)

for all u ∈ U , v ∈ Rm. Based on this set U and following
the anti-windup approach for undelayed linear plants,
the main anti-windup goal will address the design of
an anti-windup compensator with the goal of recover-
ing as much as possible the “response without satura-
tion” (herein called unconstrained response) on the sat-
urated (and compensated) closed-loop system (this will
be called anti-windup closed-loop system henceforth). In
the following, for any selection of the external signals
r(·), d(·), given initial conditions for the plant (3) and
for the controller (4), we will denote the unconstrained
closed-loop response using overlines. Moreover, given
the same initial conditions for the saturated plant (1)
and the controller (4), we will denote the corresponding
anti-windup closed-loop response without overlines.

Definition 1 Given a plant (1) and a controller (4) sat-
isfying Assumption 2, and a set U ∈ Rm satisfying (6),
an anti-windup compensator solves the corresponding

• robust global anti-windup problem if there exists a con-
tinuous positive nondecreasing function γ : R≥0 → R≥0

and a (sufficiently small) L2 gain γ∆ for the unmodeled

3A typical example of this set is U := [um1 + δ, uM1 − δ] ×
· · · × [uMm + δ, uMm − δ], where umi, uMi, i = 1, . . . ,m denote
the saturation limits.

dynamics (2) such that for all initial conditions and all
external inputs, 4

‖z − z‖2 ≤ γ(‖sat(u)− u‖2); (7)

• nominal global anti-windup problem if the bound (7)
holds with Ψ ≡ 0 (namely, in the absence of unmodeled
dynamics);

• robust local anti-windup problem if the bound (7) holds
for small enough values of the initial conditions of the
anti-windup compensator and of ‖sat(u)− u‖2. ◦

Remark 1 Note that (7) enforces a bound on the out-
put mismatch (z − z)(·) based on the energy spent by
the (ideal) unconstrained input response outside the sat-
uration limits. This characterization is reasonable be-
cause that input energy cannot be instantly recovered
on the saturated control system, regardless of what the
anti-windup compensation is. Therefore, (7) success-
fully captures the intuitive performance recovery goals
of the anti-windup design. Note also that (7) implicitly
enforces the property that all the unconstrained trajec-
tories that never exceed the saturation limits (so that
‖sat(u) − u‖2 = 0), will be exactly reproduced by the
anti-windup closed-loop system. Indeed, in that case,
(7) implies that ‖z − z‖2 = 0, namely z(·) ≡ z(·). ◦

3 Main result
In this section we will address the anti-windup problem
of Definition 1 and give necessary and sufficient con-
ditions for its solvability, together with a constructive
solution whenever the problem is solvable. For the so-
lution of this problem, we will select the anti-windup
compensator as the following dynamical system:

ẋaw(t) = Axaw(t) +B
(

sat(u(t))− yc(t)
)

v1(t) = faw(xaw(t), sat(u(t))− yc(t))
v2(t) = Cxaw(t− τI − τO)

+D
(

sat(u(t− τI − τO))− yc(t− τI − τO)
)
,

(8)

where the selection of the function faw(·, ·) will be spec-
ified later. This filter will modify the interconnection
between the plant (1) and the controller (4) through
the following equations

u(t) = yc(t) + v1(t), uc(t) = y(t)− v2(t). (9)

The corresponding closed-loop system is represented in
Figure 1.

The effectiveness of the structure (8), (9) of the anti-
windup compensator in solving the anti-windup prob-
lem of Definition 1 is based on the fact that (at least
in the case where Ψ ≡ 0) the arising closed-loop system

4For simplicity of notation, in equation (7) and throughout the
proof of the paper, the L2 bounds are all given omitting the initial
conditions.
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Figure 1: The proposed anti-windup scheme.

can be transformed into the cascade interconnection be-
tween the functional differential equation corresponding
to the unconstrained closed-loop (3), (4), (5) and an ex-
tra subsystem consisting of the filter (8) which needs
to be stabilized by suitably designing the compensation
signal v1 in (9). This scheme arises from a generalization
of the scheme adopted in [13] for anti-windup design for
linear undelayed systems. Indeed, the same tools intro-
duced in [13] for the design of the signal v1 can be also
used in the framework (8), (9). To this aim, we report
in the following the result in [13, Lemma 1], which will
be useful next. As reported in [13], this lemma can be
proven by combining the results in [6] and [12].

Lemma 1 For the control system

ẋaw = Axaw +B (sat(v + ϕ(t))− ϕ(t)) ,

where (A,B) is stabilizable, and U satisfies (6),

1. there always exists a globally Lipschitz feedback
v = k(xaw) such that if ‖dist(ϕ,U)‖2 and |xaw(0)| are
sufficiently small, then xaw(·) ∈ L2 and the L2 gain
from dist(ϕ(·),U) to xaw(·) is finite;

2. if all the eigenvalues of A have non-positive real part,
then there exists a globally Lipschitz feedback v = k(xaw)
such that if dist(ϕ(·),U) ∈ L2, then xaw(·) ∈ L2;
moreover, if A is critically stable, i.e., if there exists
P = PT > 0 such that ATP + PA ≤ 0, then the
function k(·) can be taken to be the linear function
xaw 7→ k(xaw) := −BTPxaw. Finally, when A is Hur-
witz, the L2 gain from dist(ϕ(·),U) to xaw(·) is finite.

We are now ready to state our main result whose proof
is only sketched due to space constraints.

Theorem 1 Suppose Assumptions 1 and 2 hold for the
plant (1), (2) and for the controller (4). Then, according
to Definition 1, the following holds

1. the local robust anti-windup problem is always solv-
able;

2. the global nominal anti-windup problem is solvable if
and only if A has poles in the closed left half plane;

3. the global robust anti-windup problem is solvable if
and only if A is Hurwitz;

4. whenever any of the anti-windup problems is solvable,
the anti-windup filter (8) with the interconnection equa-
tions (9) and with the selection faw(xaw, sat(u)− yc) =

k(xaw) according to the constructive result of Lemma 1,
is well-posed and is a solution to the problem.

Proof: Necessity. The necessity in items 2 and 3 can
be shown following similar steps to [13, Theorem 1].

Sufficiency. The proof of the sufficiency is constructive
and is based on the structure (8), (9) with faw(·, ·) se-
lected as faw(xaw, sat(u) − yc) = k(xaw) according to
Lemma 1. Due to space constraints, we will only ad-
dress here the case where the unmodeled dynamics (2)
are absent (namely, Ψ ≡ 0). The proof extends to the
robust case by small gain arguments similar to those
carried out in [13].

Consider the anti-windup closed-loop (1), (4), (8),
(9), write the closed-loop dynamics in the coordinates
(e(t), xc(t), xaw(t)) = (x(t) − xaw(t − τI), xc(t), xaw(t))
as follows (here, ye(t) = y(t) − v2(t); moreover, ze and
zaw are new outputs of the closed-loop system):

ė(t) = Ae(t) +Byc(t− τI) +Bed(t)
ye(t) = Ce(t− τO) +Dyc(t− τI − τO)

+Ded(t− τO)
ze(t) = Cze(t) +Dzyc(t− τI) +Ddzd(t)
ẋc(t) = f(xc,d(t), ye,d(t), rd(t))
yc(t) = g(xc,d(t), ye,d(t), rd(t))

(10a)


ẋaw(t) = Axaw(t) +B

(
sat(u(t))− yc(t)

)
v1(t) = Kxaw(t) + L

(
sat(u(t))− yc(t)

)
zaw(t) = Czxaw(t) +Dz

(
sat(u(t))− yc(t)

)
u(t) = yc(t) + v1(t).

(10b)

It is evident that the closed-loop (10) is a cascade in-
terconnection of two subsystems, where (10a) coincides
exactly with the unconstrained closed-loop system (3),
(4), (5). Therefore, if the initial condition of (8) is
xaw,d(0) = 0, then 5

yc(t) = u(t),∀t ≥ 0. (11)

Moreover, the additional output ze of (10a) satisfies
ze(t) = z(t) for all times. Consider now the addi-
tional output zaw of the second subsystem (10b) and
notice that, since by definition e(t) = x(t)−xaw(t− τI),
then ze(t) = z(t)− zaw(t− τI) for all times. Therefore,
z(t)− z(t) = zaw(t− τI), ∀t ≥ τI , and consequently, 6

‖(z − z)‖2 = ‖zaw‖2. (12)

5In the case when xaw,d(0) 6= 0 there will be an additional
term depending on the initial condition in the L2 bound (7). To
keep the discussion simple, we are omitting the initial conditions
in the L2 bounds of this paper (the corresponding relations are a
straightforward generalization of the initial condition-free ones).

6Note that due to the presence of the input delay, since the
plant initial conditions are assumed to be the same in the uncon-
strained and in the anti-windup case, then z(t) − z(t) = 0 for all
t ∈ [0, τI).



Since u(t) = yc(t) + k(xaw(t)), by the global Lipschitz
property of the saturation function, we have for all t ≥ 0,
|sat(u(t)) − yc(t)| ≤ |k(xaw(t))| + |sat(yc(t)) − yc(t)|.
Therefore, since by Lemma 1 k(·) is globally Lipschitz,
substituting the previous bound in the third equation of
(10b), it follows that there exists γ > 0 such that for all
t ≥ 0

|sat(u(t))−yc(t)|≤γ(|xaw(t)|+|sat(yc(t))−yc(t)|). (13)

Finally, the proof is completed by applying Lemma 1
with ϕ(·) ≡ yc(·) and combining the resulting L2 bound
with equations (11), (12) and (13).

Remark 2 The selection for v1 proposed in Lemma 1
is sufficient to solve the anti-windup problems of Defi-
nition 1. However, from a performance perspective, al-
ternative selections may be more desirable because they
improve the unconstrained response recovery transient.
To this aim, a useful property arising from the struc-
ture (8), (9) is that as shown in the proof of Theorem 1,
regardless of the selection of v1, the mismatch between
the unconstrained and the actual performance response
is given by the extra output zaw in (10b). Therefore,
v1 can be selected by only focusing on the stabilization
of the (undelayed!) subsystem (10b) and on the perfor-
mance seen at this particular output zaw.

In the past years, several techniques have been proposed
in the context of the undelayed anti-windup problem to
improve the corresponding transient responses. Most
of these results correspond to linear matrix inequality
(LMI) formulations of convex optimization problems.
Fortunately, the same approaches can be applied also
to the dead-time problem addressed here because of
the cascade structure (10) induced by the filter (8).
Among these techniques, nonlinear scheduled ones were
proposed in [14] and sampled-data ones were proposed
in [1]. Moreover, in [15] the selection of the function
faw(·, ·) is optimized among the linear functions:

faw(xaw, sat(u)− yc) = Kxaw + L(sat(u)− yc), (14)

where the gains K and L arise from suitable LMIs eas-
ily solvable by convex optimization. The difference be-
tween (14) and the selection proposed in Lemma 1 (at
least for the Hurwitz case) is in the presence of the
feedthrough term L, which evidently enforces an alge-
braic loop around the saturation. It is commonly ac-
knowledged (see, e.g., [7]) that this algebraic loop may
significantly improve the transient performance of the
control system, especially in the MIMO case. Although
the LMI-based selection of K and L proposed in [15]
guarantees that the interconnection is well-posed, the
corresponding optimal solution might often lead to val-
ues of L that are very close to a non well-posed inter-
connection. In those cases it is useful to augment the

LMIs of [15] with an extra matrix inequality of the form[
2(ρ− 1)W − ρX2 − ρXT

2 ρXT
2

ρX2
η − ρ

2
W

]
> 0, (15)

where ρ ∈ (0, 1) and η > ρ. Based on the results of
[3], this bound will ensure that the explicit solution to
the implicit equation imposed by the algebraic loop in

(8) is Lipschitz of level η
√

σM (W )
σm(W ) (where σM (·), σm(·)

denote the maximum and minimum singular value of the
matrix at argument, respectively), thereby not allowing
the arising anti-windup solution to be ill-posed. ◦

Remark 3 The approach given here can be easily seen
as a generalization of the construction in [8]. This
generalization allows to remove the technical Assump-
tion (A3) in [8] (thus solving the anti-windup problem
also when this Assumption (A3) doesn’t hold), it allows
to establish GAS of the arising closed-loop whenever the
plant is non exponentially unstable and it allows, in gen-
eral, to guarantee improved performance by way of the
degrees of freedom in the selection of v1.

Indeed, by suitable loop transformations and some te-
dious calculations, it can be shown that the anti-windup
solution proposed in [8] for dead-time plants is equiva-
lent to using the filter (8) with the selection

v1(s) = −Dc(s)v2(s), (16)

where the matrix Dc(s) corresponds to the input-output
link of the unconstrained controller. In particular, in
[8, §3], the unconstrained controller is a delay-free LTI
system and Dc(s) = L is its (constant) input-output
matrix; in [8, §4], the unconstrained controller has a
specific structure with an internal time delay τ3 and
Dc(s) = L3L1(I − e−sτ3L2L1)−1 is the corresponding
term 7 related to the generalized input-output link (see
[8] for details).

This re-interpretation of the scheme of [8] actually clar-
ifies the technical Assumption (A3) therein reported,
which corresponds to requiring that the matrix S =
A − e−s(τI+τO)B(I + e−s(τI+τO)Dc(s)D)−1Dc(s)C has
stable eigenvalues. Indeed, since the unconstrained
closed-loop is stable (this is assumed in our Assump-
tion 2 and in Assumption (A2) of [8]), the stability of the
equivalent cascaded structure (10) reduces to the stabil-
ity of the second subsystem (10b). When constraining
v1 to be selected as in (16), a necessary (but not suffi-
cient because of the presence of saturation) condition for
(10b) to be stable is that the system is stable for small
signals, where the saturation is not active. The corre-
sponding equations with (16), written in the Laplace
domain, are given by

7Actually, in [8, §4], Dc(s) is defined as Lu := L3[I +
e−sτ3L1(I−e−sτ3L2L1)−1L2]L1. However, it can be shown that
this last expression coincides with the more intuitive one reported
above.



sxaw(s)− xaw(0) = Axaw(s) + e−sτIBv1(s)

v1(s)=−e−sτODc(s)Cxaw(s)− e−s(τI+τO)Dc(s)Dv1(s),

whose state matrix corresponds to the matrix S defined
above. The anti-windup solution in [8] was motivated by
the goal of minimizing the mismatch between the con-
troller states in the unconstrained and anti-windup re-
sponses. When reinterpreted within the cascaded struc-
ture (10), it becomes clear that this solution is a specific
selection among a family of solutions parametrized by
the signal v1. Indeed, as shown in the proof of the the-
orem, regardless of the selection of v1 (and by way of
the compensation signal v2), the controller states be-
have exactly as in the unconstrained response and the
above mentioned mismatch is always zero. One other
relevant selection among these corresponds to the IMC-
based anti-windup (see, e.g., [16]) which can be easily
extended to the case of dead-time linear plants and cor-
responds to selecting v1 ≡ 0. Note, however, that both
the IMC selection and the selection (16) of [8] are only
applicable when the matrix A in (1) is Hurwitz. The
approach proposed here, instead, always solves the anti-
windup problem as long as A has poles in the closed
left-hand plane.

Moreover, when A is Hurwitz, different from the selec-
tion (16), which might lead to an unstable closed-loop in
some cases, IMC-based anti-windup is always asymptot-
ically stabilizing because the dynamics in (10b) corre-
spond to the asymptotically stable plant dynamics. On
the other hand, it is well known that IMC anti-windup
solutions often lead to poor closed-loop performance,
especially when the plant contains slow modes. Such a
performance may be improved by the approach in [8],
where an extra (sometimes stabilizing) action is enforced
through the nonzero selection (16) for v1.

An advantage of our approach is that the anti-windup
problem is reduced to a stabilization problem where the
performance output zaw needs to be minimized in some
sense. 8 The arising solution, in addition to being sta-
bilizing (thus recovering the stability merits of the IMC
approach), also benefits from the degrees of freedom re-
siding in the selection of compensation signal v1. ◦

4 Simulation example
In this section we apply the proposed anti-windup tech-
nique to a simple scalar simulation example taken from
[5, Example 4]. This example is a control system where
the plant is represented by an integrator with a 5 seconds
output delay and the controller has a modified Smith
predictor structure. Notice that since the state matrix
of the plant is not Hurwitz, then the anti-windup ap-
proach of [8] cannot be applied here.

For this particular example, since the plant is an inte-
grator, then A = 0 and following the construction at

8This minimization, at least in the case when A is Hurwitz,
can be carried out as suggested in Remark 2.

item 2 of Lemma 1, v1 can be selected as v1 = −ρxaw,
where ρ is an arbitrary positive number. In particular,
the larger ρ is, the stronger the anti-windup action will
be for the recovery of the unconstrained response. In
these simulations we have chosen ρ = 10, but different
values for ρ could also be selected to suitably impose the
speed of convergence of the anti-windup response to the
unconstrained one. In [5], it is shown that in the ab-
sence of saturation (input saturation is not addressed in
[5]), the unconstrained controller induces an improved
response as compared to previous results. In particu-
lar, two simulations are reported therein, referred to the
nominal case, and to the robust case, where a 10% error
is introduced in the delay present at the plant output.
In both cases, the reference input r and the disturbance
input d are selected as follows:

r(t) =

{
0, t < 0
1, t ≥ 0,

d(t) =

{
0, t < 15

−0.1, t ≥ 15,
(17)

We consider similar reference and disturbance inputs
here and we insert a saturation with limits ±0.5 at the
plant input. The unconstrained, saturated and anti-
windup responses in the nominal case are reported in
Figure 2 using bold solid, dashed and thin solid curves,
respectively. As in [5], the parameters of the plant and
unconstrained controller for this simulation are selected
as θ = 5, θm = 5, kp = 0.1, Ti = 0.01, kf = 4.131, kd =
0.105. In Figure 2, the upper plot compares the plant
outputs in the three cases, while the lower plot repre-
sents the plant input responses.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

P
la

n
t 

o
u

tp
u

t

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

Time

P
la

n
t 

in
p

u
t

Figure 2: Nominal responses of the unconstrained closed-
loop (bold solid), the saturated closed-loop (dashed) and the
anti-windup closed-loop (thin solid) to the reference and dis-
turbance selection (17).

Note that the anti-windup action is capable of rapidly
recovering the performance lost due to input saturation.
As a matter of fact, it is seen from the lower plot of Fig-
ure 2 that the input is kept into saturation until the
output reaches the unconstrained output response (re-
call that there is a 5 seconds time shift between the



input profile and its effect on the output, due to the
output delay characterizing the plant). The saturated
response, on the other hand, exhibits undesired over-
shoots and slowly converges back to the unconstrained
response. Note that, since the disturbance does not
cause input saturation for the unconstrained trajectory,
the anti-windup response perfectly reproduces the un-
constrained response in the second part of the plot, as
formally proven in Theorem 1.
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Figure 3: Perturbed responses of the unconstrained closed-
loop (bold solid), the saturated closed-loop (dashed) and the
anti-windup closed-loop (thin solid) to reference and distur-
bance inputs three times larger than (17).

Figure 3 represents the response of the perturbed sys-
tem, as described in [5, Example 4]. To make the effect
of saturation noticeable, in this case we have enlarged
three times the reference and disturbance inputs (17)
(note that by linearity, this doesn’t change the nature
of the unconstrained response, but just affects its size).
The controller parameters are selected once again ac-
cording to [5] and correspond to θ = 5, θm = 5.5, kp =
0.1, Ti = 0.1, kf = 1.247, kd = 0.095. The anti-windup
response shows once again good unconstrained response
recovery properties, as compared to the saturated re-
sponses, thus confirming the robustness properties guar-
anteed in Theorem 1.

5 Conclusions
In this paper we have formalized the L2 anti-windup
problem for linear systems with input and output de-
lays. By suitably generalizing the approach in [13] we
have given a solution to the robust, nominal, global and
local problems whenever one of these is solvable. The
corresponding construction is based on the augmenta-
tion of the original control scheme with a dynamic fil-
ter. Connections with existing results on anti-windup
for dead-time systems have been established and the
performance of the proposed scheme has been success-
fully tested on an example taken from the literature.
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