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Abstract:
We construct hybrid loops that augment continuous time control systems consisting in a
continuous-time nonlinear plant in feedback with a (possibly non stabilizing) given nonlinear
dynamic continuous-time controller. In particular, the arising hybrid closed-loops are guaranteed
to follow the underlying continuous-time closed-loop dynamics when flowing and to jump in
suitable regions of the closed-loop state space to guarantee that a positive definite function V
of the closed-loop state and/or a positive definite function Vp of the plant-only state is non-
increasing along the hybrid trajectories. Sufficient conditions for the construction of these hybrid
loops are given for the nonlinear case and then specialized for the linear case with the use of
quadratic functions. The proposed approach is illustrated on a linear and a nonlinear example.

1. INTRODUCTION

Even for nonlinear control systems which follow a purely
continuous dynamics, it may be useful to consider dynamic
controllers having a mixed discrete/continuous dynamics.
This leads to the class of hybrid control laws, and the
closed-loop system turns out to be a hybrid system. Such
controllers are now instrumental in many feedback control
designs, for their capability to provide asymptotic stability
of the closed-loop system (see e.g. Hespanha and Morse
[1999], Hespanha et al. [2004]). Such state feedback laws
are also interesting for their capability to guarantee a
robustness with respect to small errors in the loop, which
cannot be obtained using classical (i.e. with a continuous
dynamics) controllers (see e.g. Prieur [2005], Goebel and
Teel [2009]).

Hybrid controllers are also instrumental to improve the
performance for nonlinear systems in presence of distur-
bances. See Prieur and Astolfi [2003] for the non-holonomic
integrator, and Sanfelice et al. [2007] for juggling systems
to focus on applications only. Even for linear systems,
in presence of disturbances, the hybrid systems point of
view can be fruitlful. See Chen et al. [2001], Beker et al.
[2004], Nesic et al. [2008], where reset controllers are used
to decrease the L2-gain between perturbations and the
output.

The aim of this paper is to design new hybrid strategies
to improve the performance of the closed-loop by guaran-
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teeing some asymptotic stability property, some decrease
of a function, etc.

More precisely, the first contribution of the paper is the
following. Given a control system and a dynamic con-
troller (the closed-loop system may be unstable), and a
Lyapunov-like function V , we compute a hybrid loop (i.e.
with a mixed discrete/continuous dynamics), such that
along the solutions of the hybrid closed-loop system, the
function V is non-increasing. Moreover the closed-loop hy-
brid system is globally asymptotically stable. Considering
again V , we may define a new function Vp which depends
on the plant state only, and we may define an other hybrid
loop such that, along the solutions of the hybrid closed-
loop system, the function Vp is non-increasing. Moreover
the state of the plant converges to zero.

The second contribution of the paper considers the case
where a function Vp of the plant state is given a priori.
With any continuous dynamics of the control state, we
define a hybrid loop so that the sufficient conditions of the
first main result hold. In other words, a hybrid stabilizer
for the nonlinear plant is built.

When particularizing this study to linear plants, this
hybrid controller can be seen as a generalization of reset
controllers. More precisely the sufficient condition applies
to the case of linear control plants, and the method can be
seen as a constructive technique to compute a hybrid loop
(with linear continuous and discrete dynamics) such that
the hybrid closed-loop system is asymptotically stable.
Even for linear systems, such nonlinear controllers may
be useful since it can give better performance than linear
controllers (see e.g., Chen et al. [2001], Nesic et al. [2008]).



The paper is organized as follows. The problems under con-
sideration in this paper and some preliminaries are given
in Section 2. The first problem (namely the computation
of a hybrid loop such that the closed-loop hybrid system
makes decrease suitable functions) is solved in Section
3. In Section 4, the second problem is solved, i.e. some
results are derived to check the sufficient condition of the
first main result from the existence of a function of the
plant state only. This approach is applied to linear control
systems in Section 5. Section 6 contains some numerical
simulations to illustrate the main results. Some concluding
remarks and open questions are given in Section 7.

Notation The Euclidian norm is denoted by | · | and the
scalar product by 〈·, ·〉. In (resp. 0n,m) denotes the identity
matrix (resp. the null matrix) in Rn×n (resp. in Rn×m).
The subscripts may be omitted when there is no ambiguity.
Moreover, for a vector x, the diagonal matrix defined by
the entries of x is noted diag(x), and for a matrix M ,
He(M) = M + M ′. For any symmetric matrix, ? stands
for a symmetric term. A function α : R≥0 → R≥0 is of
class K if it is zero at zero, continuous, positive definite,
and increasing, and is of class K∞ if it is also unbounded.

2. PROBLEM STATEMENT

Consider a nonlinear plant:

ẋp = f̄p(xp, u), y = h̄p(xp), (1)

with xp in Rnp , in feedback interconnection with a (not
necessarily stabilizing) dynamic controller:

ẋc = f̄c(xc, y), u = h̄c(xc, y), (2)

with xc in Rnc . Then defining the closed-loop func-
tions fp(xp, xc) := f̄p(xp, h̄c(xc, h̄p(xp))) and fc(xp, xc) =
f̄c(xc, h̄p(xp)), the interconnection between (1) and (2) can
be described in a compact way as:

d

dt
(xp, xc) = (fp(xp, xc), fc(xc, xp)) , (3)

where fp : Rnp×Rnc → Rnp and fc : Rnc×Rnp → Rnc . We
will assume that f̄p(·, ·), f̄c(·, ·), h̄p(·) and h̄c(·, ·) are such
that fp(·, ·) and fc(·, ·) are continuous functions satisfying
fp(0, 0) = 0 and fc(0, 0) = 0.

By exploiting the properties of Lyapunov functions, the
aim of this paper is to construct a hybrid closed-loop
system which follows the flow dynamics (3) when the state
is in a set (called the flow set) and follows a suitable
discrete dynamics when the state is in an other set (called
the jump set). These flow and jump sets, together with the
discrete dynamics, define a hybrid system and have to be
designed to guarantee the decrease of some suitable scalar
Lyapunov-like functions (more precisely positive definite
functions as considered in Problems 1nd 2 below) of the
closed-loop state x := (xp, xc) and/or of the plant state
xp.

In particular, we will address the following two problems.

Problem 1. Consider the closed-loop system (3) and a
function V : Rnp × Rnc → R≥0.

Design a hybrid system which follows the dynamics (3)
when flowing and which satisfies one or both of the follow-
ing two items:

1. V is non-increasing along the solutions and the origin
is globally asymptotically stable;

2. a suitable positive definite function Vp : Rnp → R≥0
of the plant state is non-increasing along solutions
and the plant state xp converges to zero.

Problem 2. Consider the closed-loop system (3) and a
function Vp : Rnp → R≥0.

Design a hybrid system which follows the dynamics (3)
when flowing and which satisfies one or both of the follow-
ing two items:

1. Vp is non-increasing along solutions and the plant
state xp converges to zero;

2. a suitable positive definite function V : Rnp × Rnc →
R≥0 of the closed-loop state is non-increasing along
the solutions and the origin is globally asymptotically
stable.

It will be shown next that Problems 1 and 2 correspond to
two faces of the same three constructions satisfying item 1,
item 2 or both items of each problem. These constructions
hinge upon a function φ : Rnp → Rnc such that for all
(xp, xc) in Rnp × Rnc

V (xp, φ(xp)) ≤ V (xp, xc) , (4)

and establishe the following relation between V and Vp:

Vp(xp) = V (xp, φ(xp)),∀xp ∈ Rnp . (5)

In particular, when solving Problem 1 we will require
some conditions on the function V (see Assumption 1 in
Section 3) that guarantees the existence 3 of φ. Instead,
when solving Problem 2 we will start from an asymptotic
controllability assumption for the plant, corresponding
to the existence of a static state feedback stabilizer as
specified in Assumption 2 of Section 4. That assumption
will give us the necessary functions Vp and φ from which
it is possible to construct the function V .

The interest in computing the hybrid controller solving the
two problems above is that they introduce more degrees of
freedom (through the additional dynamics) and may allow
better performance than the underlying dynamics (3).
Consider e.g. the use of reset controllers for controllable
linear systems which yields lower L2-gain than classical
linear and static controller (see Chen et al. [2001], Nesic
et al. [2008]). Moreover, there might be cases where it
is desirable to impose some flow condition of the closed-
loop via a dynamic controller, disregarding the asympotic
stability property, and then enforcing stability by way of
the hybrid loops.

Problems 1 and 2 will be also addressed in the particular
case where system (3) is linear. In this special case, it will
be shown that Assumption 1 (respectively Assumption 2)
reduces to reasonably weak properties required for the
closed-loop dynamics and for the functions V (respectively
Vp) in Problem 1 (respectively Problem 2).

Let us make precise the framework of hybrid systems that
is considered in this paper. For an introduction, see e.g. the
recent survey Goebel et al. [2009]. Such a system combines
a continuous dynamics in a set F (called flow set) and

3 Here, to keep the discussion simple, it is assumed that V is contin-
uously differentiable and that there exists φ(xp) = argmin

xc∈Rnc

V (xp, xc),

which implies (4).



discrete dynamics in a set J (called jump set), and it is
formally written as

ẋ = f(x) if x ∈ F ,
x+ = g(x) if x ∈ J ,

(6)

where x = (xp, xc) ∈ Rn, n = np + nc, f(x) =
(fp(x), fc(x)) for each x ∈ Rn, and g : Rn → Rn is
a given function. We recall some basic ingredients on
hybrid system theory, and solutions of (6). Due to mixed
discrete/continuous dynamics, a solution of (6) will be
defined on a mixed discrete/continuous time domain. More
precisely, a set E is a hybrid time domain if for all (T, J) ∈
E, E ∩ ([0, T ]× {0, 1, . . . J}) is a compact hybrid time
domain, i.e. it can be written as

J−1⋃
j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ .
A solution x to (6) consists of a hybrid time domain
domx and a function x : domx → Rn such that x(t, j) is
absolutely continuous in t for a fixed j and (t, j) ∈ domx
satisfying

(S1) for all j ∈ N and almost all t such that (t, j) ∈
domx,

x(t, j) ∈ F, ẋ(t, j) = f(x(t, j)) ;

(S2) For all (t, j) ∈ domx such that (t, j+1) ∈ domx,

x(t, j) ∈ J, x(t, j + 1) = g(x(t, j)) .

Then, the state solution x is parameterized by (t, j) where
t is the ordinary time and j is an independent variable
that corresponds to the number of jumps of the solution.
When the state x(t, j) belongs to the intersection of the
flow set and of the jump set, then the solution can either
flow or jump. This parameterization may be omitted when
there is no ambiguity.

A solution x to (6) is said to be complete if domx is
unbounded, Zeno if it is complete but the projection of
domx onto R≥0 is bounded, and maximal if there does
not exist an other solution x̃ of (6) such that x is a
truncation of x̃ to some proper subset of dom x̃. Hereafter,
only maximal solutions will be considered. For more details
about this hybrid systems framework, we refer the reader
to Goebel et al. [2009], Prieur et al. [2007].

Definition 1. The hybrid system (6) is said to be

• stable: if for each ε > 0 there exists δ > 0 such
that each solution x to (6) with |x(0, 0)| ≤ δ satisfies
|x(t, j)| ≤ ε for all (t, j) ∈ domx;

• attractive: if every solution x to (6) is complete and
satisfies limt+j→∞ |x(t, j)| = 0;

• globally asymptotically stable: if is both stable and
attractive.

3. SOLUTION TO PROBLEM 1

In this section we consider the closed-loop nonlinear sys-
tem (3) and a function V of the closed-loop state and give
a construction to solve Problem 1. To this aim, we make
the following assumption on the function V .

Assumption 1. The function V : Rn → R≥0 is such
that there exists a continuous differentiable 4 function φ :
Rnp → Rnc such that

φ(xp) = argminxc∈Rnc V (xp, xc) . (7)

Moreover, there exists a class K function α such that, for
all xp in Rnp

〈∇pV (xp, φ(xp)), f(xp, φ(xp))〉 < −α(V (xp, φ(xp)), (8)

where ∇pV denotes the gradient of V with respect to its
first argument.

Note that in Assumption 1 we do not insist that (3) is
globally asymptotically stable, because (8) only requires
the function V to be decreasing only on the subset of the
state space defined by (xp, xc) = (xp, φ(xp)). Nevertheless,
if system (3) is globally asymptotically stable, then there
exist a function V : Rn → R≥0 and a class K function α
such that

〈∇V (x), f(x)〉 < −α(V (x)), ∀x 6= 0 (9)

which implies (8).

A natural way to stabilize the closed-loop system (3) is
to flow when one (or both) of the functions V and Vp
is strictly decreasing and to reset the xc-component of
the state to the value φ(xp) (where strict decrease is
guaranteed by (8)) when the function (or either of the
two) is not decreasing. This leads to the following hybrid
system

ẋ = f(x) if x ∈ F̂ ,

(x+p , x
+
c ) = (xp, φ(xp)) if x ∈ Ĵ ,

(10)

where F̂ ⊂ Rn and Ĵ ⊂ Rn are suitable closed subsets of
the whole state space such that F̂

⋃
Ĵ = Rn. In particular,

F̂ and Ĵ are defined by suitably combining the following
two pairs of sets:

F = {x ∈ Rn, 〈∇V (x), f(x)〉 ≤ −ᾱ(V (x))}
J = {x ∈ Rn, 〈∇V (x), f(x)〉 ≥ −ᾱ(V (x))} (11)

F̄ = {x ∈ Rn, 〈∇Vp(xp), fp(xp, xc)〉 ≤ −ᾱ(Vp(xp))}
J̄ = {x ∈ Rn, 〈∇Vp(xp), fp(xp, xc)〉 ≥ −ᾱ(Vp(xp))},

(12)
where Vp is defined in (5) and where ᾱ is any class K
function such that ᾱ(s) ≤ α(s) for all s ≥ 0 (this will be
denoted next by the shortcut notation ᾱ ≤ α).

We are now in position to solve Problem 1 as stated in the
first main result.

Theorem 1. Consider the closed-loop system (3) and a
function V (·). Assume that there exist functions φ and α
satisfying Assumption 1. Then for any ᾱ ≤ α the following
holds.

1. If V is positive definite and radially unbounded, then
the hybrid system (10), (11) with F̂ = F and Ĵ = J
is globally asymptotically stable and V is non-increasing
along solutions.

2. If Vp is positive definite and radially unbounded, then

the hybrid system (10), (12) with F̂ = F̄ and Ĵ = J̄ is
such that the plant state xp converges to zero, and Vp is
non-increasing along solutions.

4 In this paper it is only needed that φ is locally Hölder continuous
of order strictly larger than 1

2
, but to ease the presentation, it is

assumed more regularity on φ in Assumption 1.



3 If V is positive definite and radially unbounded, then
the hybrid system (10), (11), (12) with F̂ = F

⋂
F̄ and

Ĵ = J
⋃
J̄ is globally asymptotically stable and both V and

Vp are non-increasing along solutions.

4. SOLUTION TO PROBLEM 2

In this section we consider the closed-loop nonlinear sys-
tem (3), a function Vp of the plant state and give a
construction to solve Problem 2. To this aim, we make
the following assumption on the function Vp.

Assumption 2. The function Vp : Rnp → R≥0 is con-
tinuously differentiable and radially unbounded and there
exist a continuously differentiable function φ : Rnp → Rnc ,
and a class K function α such that, for all xp in Rnp ,
xp 6= 0,

〈∇Vp(xp), fp(xp, φ(xp))〉 < −α(Vp(xp)) . (13)

Note that, when the top equation of the closed-loop system
(3) is affine with respect to xc, this condition is related
to the asymptotic controllability to the origin Artstein
[1983]. In this case, a control law φ can be computed from
a Control Lyapunov Function Vp and from the so-called
universal formulas (see Freeman and Kokotović [1996], Lin
and Sontag [1991]).

Assumption 2 is sufficient to construct a function V
satisfying Assumption 1 so that the design strategy of the
previous section can be employed. In particular, let M be
any positive semidefinite matrix 5 in Rnc ×Rnc and define
V : Rnp × Rnc → R≥0 for all (xp, xc) in Rnp × Rnc ,

V (x) = Vp(xp) + (xc − φ(xp))′M(xc − φ(xp)) . (14)

Note that V is continuously differentiable, and radially
unbounded. Moreover, if φ(0) = 0 and M > 0, then it is
a positive definite function because, for each xp, it is the
sum of two positive definite terms, the first one strictly
positive when xp 6= 0 and the second one strictly positive
when xp = 0. The following theorem is a straightforward
application of Theorem 1 in light of the Vp and φ given in
Assumption 2 and of the V in (14).

Theorem 2. Consider the closed-loop system (3) and a
function Vp. Assume that there exist functions φ and α
satisfying Assumption 2. Given any positive semidefinite
matrix M ∈ Rnc × Rnc and the corresponding function V
in (14), then for any ᾱ ≤ α the three items of Theorem 1
hold.

5. APPLICATION TO THE LINEAR CASE

When focusing on linear dynamics, the problem statement
in Section 2 can be carried out as follows. Here we illustrate
the fact that the strict properness assumption on the plant
(1) can be removed as long as a well posedness condition
holds for the closed-loop. Consider the following linear
plant:

ẋp = Āpxp + B̄pu, y = C̄pxp + D̄pu, (15)

with xp ∈ Rnp , in feedback interconnection with a (not
necessarily stabilizing) linear dynamic controller:

ẋc = Ācxc + B̄cy, u = C̄cxc + D̄cy, (16)

5 Note that the matrix M may be a function of x. This extra degree
of freedom could be used to perform convenient selections of V .

with xc ∈ Rnc . Assuming that I − D̄pD̄c is nonsingular,
the closed-loop is well posed and described by the following
linear system

ẋ = Ax :=

[
Ap Bp

Bc Ac

]
x , (17)

where x = (xp, xc) and Ap, Bp, Ac, and Bc are matrices
of appropriate dimensions uniquely defined based on the
matrices in (15) and (16).

In the linear case, it is reasonable to restrict V and Vp to
the class of quadratic functions, φ to the class of linear
stabilizers and α and ᾱ to the class of linear gains. Based
on this, the closed-loop function V can be selected as

V (x) = x′Px where P =

[
Pp Ppc

? Pc

]
is a symmetric posi-

tive definite matrix. Then, since ∇cV (xp, xc) = 2(P ′pcxp +
Pcxc), from the positive definiteness of P , the function
φ : Rnp → Rnc satisfying (4) is given by

φ(xp) = −P−1c P ′pcxp =: Kpxp .

Moreover, the function Vp : Rnp → R≥0 defined by (5)
becomes, for all xp ∈ Rnp ,

Vp(xp) =

[
xp

−P−1c P ′pcxp

]′ [
Pp Ppc

? Pc

] [
xp

−P−1c P ′pcxp

]
= x′p(Pp − PpcP

−1
c P ′pc)xp =: x′pP̄pxp .

Let us now focus on Problem 1 and specialize it to the
linear case. Based on the above identities, after some
calculations, it follows that Assumption 1 is guaranteed
if given V , there exists α̃ > 0 such that

He(P̄p(Ap +BpKp)) < −α̃P̄p, (18)

which, by the definition of P̄p above, establishes an inter-
esting nonlinear constraint on the function V .

Consider now the sets in (11) and (12). Given any 0 < ¯̃α ≤
α̃ and with the definitions above, after some calculations
they become

F = {x ∈ Rn, x′Nx ≤ − ¯̃αx′Px} ,
J = {x ∈ Rn, x′Nx ≥ − ¯̃αx′Px} , (19a)

F̄ = {x ∈ Rn, x′Npx ≤ − ¯̃αx′pP̄pxp} ,
J̄ = {x ∈ Rn, x′Npx ≥ − ¯̃αx′pP̄pxp} ,

(19b)

where

N := He

([
PpAp + PpcBc PpcAc + PpBp

P ′pcAp + PcBc PcAc + P ′pcBp

])
(19c)

Np := He

([
P̄pAp P̄pBp

0 0

])
. (19d)

With the above definitions, the following proposition par-
ticularizes the results of Theorem 1 to the linear case.

Proposition 1. Consider the closed-loop system (17) and

a function V (x) = x′Px = x′
[
Pp Ppc

? Pc

]
x such that

P̄p := Pp − PpcP
−1
c P ′pc satisfies (18) for some α̃ > 0 and

for Kp = −P−1c P ′pc. Then the hybrid system

ẋ = Ax if x ∈ F̂ ,

(xp, xc)
+ = (xp,Kpxp) if x ∈ Ĵ ,

(20)

satisfies all the items of Theorem 1 with Vp(xp) = x′pP̄pxp
and using the sets in (19) with any ¯̃α ≤ α̃.



Let us focus now on Problem 2 for the linear case. With
(17), Assumption 2 is satisfied whenever the pair (Ap, Bp)
is stabilizable and Vp(xp) = x′pP̄pxp, with P̄p > 0, is a
control Lyapunov function for (Ap, Bp). As a matter of
fact in that case there exist a static state feedback matrix
Kp and a constant α̃ > 0 such that equation (18) holds,
and then equation (13) will hold with φ(xp) = Kpxp. In
particular, given P̄p, Kp and α̃ can be computed using
a Linear Matrix Inequality (LMI) solver. Alternatively,
under a stabilizability assumption, one can always solve a
generalized eigenvalue problem (gevp) and find an optimal
pair (P̄p,Kp) maximizing α̃.

Based on Vp and Kp, consider any symmetric positive
definite matrix Pc in Rnc×nc . The function V : Rnp ×
Rnc → R≥0 in (14) is defined, for all (xp, xc) in Rnp×Rnc ,
as

V (x) = Vp(xp) + (xc −Kpxp)′Pc(xc −Kpxp)

= x′
[
P̄p +K ′pPcKp −K ′pPc

? Pc

]
x =: x′Px.

(21)

Since Pc > 0, this function is continuously differentiable,
radially unbounded and positive definite.

We are then in the position to state the following propo-
sition which particularizes the results of Theorem 2 to the
linear case.

Proposition 2. Assume that the pair (Ap, Bp) is stabi-
lizable and that Vp(x) = x′pP̄pxp is a control Lyapunov
function for this pair. Then there exist α̃ > 0 and Kp

satisfying (18). Moreover, given any symmetric positive
definite matrix Pc in Rnc×nc and the corresponding func-
tion V defined in (21), for any selection of 0 < ¯̃α ≤ α̃,
the reset system (20) with the sets in (19) satisfies all the
items of Theorem 1.

6. ILLUSTRATION ON NUMERICAL SIMULATIONS

In this section some numerical simulations are performed
to illustrate the main results, first on nonlinear and then
on linear systems. To simulate the hybrid systems we use
the simulator presented in [Goebel et al., 2009, pages 78-
81] 6 .

6.1 Nonlinear example

Let us illustrate the second item of Theorem 2 by perform-
ing some numerical simulations on the following system in
R2 {

ẋ1 = x2 + x21
ẋ2 = u+ x21

(22)

where (x1, x2) is the plant state and u stands for the
control variable in R. By using a backstepping method
(see e.g. ?), the following controller φ : R2 → R defined
by, for all (x1, x2) in R2,

φ(x1, x2) = −2x1 − 2x2 − 3x21 − 2x1(x2 + x21) (23)

and the positive definite function Vp : R2 → R≥0 defined
by, for all (x1, x2) in R2,

Vp(x1, x2) =
1

2
x21 +

1

2
(x2 + x1 + x21)2

6 The simulation code can be downloaded from
homepages.laas.fr/cprieur/Papers/nolcos2010.zip

may be computed. Assumption 2 holds with α(s) = s
2 ,

for all s ≥ 0. To check the attractivity property, let us
consider the initial condition (x1(0, 0), x2(0, 0)) = (10, 10)
and let us numerically compute the solution of system (22)
in closed-loop with the controller (23). The time evolution
of the x1 and x2 variables, and of the controller φ are
depicted on Figure 1, in solid line.
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Fig. 1. Time evolution of x1 (top), of x2 (middle) for

system (22) with the control values u (down). The
control values are given by the controller (23) (in solid
line), or by the third component of system (10), (12)

with F̂ = F̄ and Ĵ = J̄ (in dashed line)

Now let us consider the system (22) in closed-loop
with the controller ẋ3 = x3 − x31. This nonlinear
closed-loop system is unstable (the initial condition
(x1(0, 0), x2(0, 0), x3(0, 0)) = (10, 10, 10) gives a diverging
solution). Let us apply Theorem 2 with ᾱ = 10−3α.

Consider the hybrid system (10), (12) with F̂ = F̄ and

Ĵ = J̄ .

Let us numerically compute the solution starting from the
initial condition (x1(0, 0), x2(0, 0), x3(0, 0)) = (10, 10, 10).
We check on Figure 1 (see the dashed line) that the
plant state xp variable is globally asymptotically stable.
Moreover we note that the x3-variable converges also to
0 and has some jumps (when it is reset to the value of
the controller (23)). The number of jumps depends on the
size of J and thus on the choice of the function ᾱ. By
comparing the solid and the dashed lines on Figure 1, we
note that the speed of convergence is improved using the
hybrid controller (10).

6.2 Linear example

In this section, we apply Proposition 2 to a linear control-
lable system and we illustrate the convergence of system
(20), (19a) with F̂ = F and Ĵ = J .

To do that, let us consider the system (15) with Āp =[
0 0
1 −0.2

]
, B̄p =

[
1
1

]
, C̄p = I2, D̄p = 0 (see ??). For

the linear dynamic controller (16), we select any matrices
such that (17) is unstable. In this example we fix Āc = 1,
B̄c = [0 1], C̄c = 1, and D̄c = [0 0]. Recalling the notations
in (17), it reads Ap = Āp and Bp = B̄p, and thus the
pair (Ap, Bp) is stabilizable. For the matrix Kp, let us



choose a pole placement controller Kp = [−1 −0.9 ], and

let P̄p =

[
0.6 −0.2
? 0.5

]
, and α̃ = 1, so that condition (18)

holds. The symmetric positive definite matrix Pc and the
positive value ¯̃α ≤ α̃ can be also arbitrarily chosen. Here
we let Pc = 1, and ¯̃α = 1

2 α̃.

To illustrate the global asymptotic stability of the system
(20), (19a) with F̂ = F and Ĵ = J , let us consider the
initial condition x(0, 0) = (10, 10, 10)′. Figure 2 depicts
the time evolution of the projection of the solution x onto
the flow time axis t. The jumps of the last component x3
may be observed.
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5
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Fig. 2. Time evolution of x1 (top), of x2 (middle) and of
x3 for flow time between 0 and 2.5 of the system (20),

(19a) with F̂ = F and Ĵ = J

7. CONCLUSION

The design problem of a stabilizing hybrid loop is consid-
ered. This class of system mixes discrete and continuous
dynamics depending on the value of a nonlinear function.
This allows to guarantee the stability and/or a decreasing
property of some positive definite function.

This work lets many questions open. In particular the
optimization problem and the best choice of the continuous
dynamics for the controller state (and of the flow and jump
sets) are under actual investigation. The performance of
the closed-loop system in terms of the speed of conver-
gence, or of the rejection of perturbation may be also
considered. It could also be interesting to consider ap-
plications on physical systems such as the non-holonomic
integrator, or the juggling systems and to compare with
existing hybrid strategies (see Prieur and Astolfi [2003]
and Sanfelice et al. [2007] respectively).
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