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Abstract: For a class of square continuous time nonlinear controllers we design a
suitable resetting rule inspired by the resetting rule for Clegg integrators and First
Order Reset Elements (FORE). With this rule, we prove that the arising hybrid
system with temporal regularization is passive in the conventional continuous
time sense with a small shortage of input passivity decreasing with the temporal
regularization constant. Based on the passivity property, we then investigate the
finite gain stability of the interconnection between this passive controller and a
passive nonlinear plant.
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1. INTRODUCTION

In recent years, much attention has been given to the
analysis and design problem of control systems in the
hybrid context, namely when the closed-loop dynamics
obeys either a continuous law imposing a constraint on
the pointwise derivative of the solution when it belongs
to the so-called flow set, and/or a discrete law imposing
a constraint on the jump that the solution undertakes
when it belongs to the so-called jump set. This type
of interpretation of hybrid systems, thereby merging
classical discrete- and continuous-time concepts in a
unifying framework has been pursued in the past years
by providing a specific mathematical characterization of
the underlying mathematical theory. An extensive survey
of the corresponding results can be found in (Goebel et
al., 2009).
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A specific instance of hybrid systems corresponds to the
case analyzed here: continuous-time plants controlled by
a hybrid controller, namely a hybrid closed-loop where
the jumps only affect the controller states. Within this
class of systems a relevant example consists in the reset
control systems first introduced in (Clegg, 1958), where a
jump linear system (the “Clegg integrator”) generalizing
a linear integrator was proposed. This generalization
was then further developed in (Horowitz and Rosen-
baum, 1975) where it was extended to first order linear
filters, and therein called First Order Reset Elements
(FORE). FORE received much attention in recent years
and have been proven to overcome some intrinsic limita-
tions of linear controller (Beker et al., 2001). Moreover,
by relying on Lyapunov approaches, suitable analysis
and synthesis tools for the stability of a class of reset
systems generalizing control systems with FORE have
been proposed in (Beker et al., 2004; Nešić et al., 2008)
and references therein. Moreover, in the recent paper
(Carrasco et al., 2010) the L2 stability of reset control
systems has been addressed in the passivity context, by
showing interesting properties of the reset system under



the assumption that the continuous-time part of the reset
controller is passive before resets and that a suitable non-
increase condition is satisfied by the storage function
at jumps. In (Carrasco et al., 2010) it was also shown
by a simulation example that resets do help closed-loop
performance in passivity-based closed-loops.

In this paper we further develop the ideas of (Carrasco
et al., 2010) by using a specific temporally regularized
reset strategy for the reset controller. The reset strategy
generalizes the new interpretation of FOREs and Clegg
integrators proposed in (Zaccarian et al., 2005; Nešić et
al., 2008) and references therein. We show that, with
the proposed reset strategy, passification is possible for
any continuous-time underlying dynamics under some
sector growth assumption on the right hand side of the
continuous-time dynamics of the controller. The obtained
passivity property is characterized by an excess of output
passivity and a lack of input passivity whose size can be
made arbitrarily small by suitably adjusting the reset
rule. As an example, the proposed reset strategy allows
to establish a passivity property for any FORE, including
those characterized by an exponentially unstable pole,
while the results in (Carrasco et al., 2010) only allow
to establish passivity of FOREs with stable poles. This
increased potential of the reset rule proposed here is
illustrated on a nonlinear simulation example.

The paper is organized as follows. In Section 2 we de-
scribe the class of controllers under consideration and
the proposed reset rule, together with some notation and
preliminaries characterizing the hybrid systems frame-
work of (Goebel et al., 2009). In Section 3 we first state
our main passivity result and then establish finite L2

gain properties of interconnected systems involving the
proposed reset controller. Finally, in Section 4 we discuss
a simulation example. All the proofs are omitted due to
space constraints.

2. A CLASS OF NONLINEAR RESET
CONTROLLERS

Consider the following nonlinear controller mapping the
input v to the output u,

ẋc = f(xc) + g(xc, v)
u = h(xc),

(1)

where u ∈ Rq, v ∈ Rq, so that the controller is square and
where the following regularity assumption is satisfied by
the right hand side.

Assumption 1. The functions f(·) and h(·) are con-
tinuous and sector bounded, namely there exist two con-
stants Lf and Lh such that for all xc, |f(xc)| ≤ Lf |x|
and |h(xc)| ≤ Lh|xc|.
Moreover, g(·, ·) is continuous in both its arguments and
satisfies the following sector condition: there exists a
constant Lg such that for all xc and all v, |g(xc, v)| ≤
Lg(|xc|+ |v|).

In this paper we propose a hybrid modification of the
controller (1) aimed at making it passive from v to u,
regardless of the properties of the original dynamics
in (1). In particular, the modified controller follows
the continuous-time dynamics of (1) at times when the
input/output pair belongs to a certain subset of the
input/output space. When the input/output pair exits
that subset, the state of the controller is reset to zero,
intuitively re-initializing the controller within the set
where it is allowed to flow.

To avoid Zeno solutions, namely solutions that exhibit
infinitely many jumps in a bounded time interval, we
also embed the hybrid modification with a temporal
regularization clock, imposing that the controller cannot
be reset to zero before ρ times after the previous reset
(see also (Nešić et al., 2008; Johansson et al., 1999).
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Fig. 1. Input/output space of the controller (2) and
subsets where ψ(u, v) R 0. The grey area defines the
set where flow can always happen. The blank area
defines the set where a jump is possible, provided
that τ ≥ ρ (time regularization).

The proposed hybrid controller is given by{
ẋc = f(xc) + g(xc, v)
τ̇ = 1

if τ ≤ ρ or ψ(u, v) ≥ 0{
x+c = 0
τ+ = 0

if τ ≥ ρ and ψ(u, v) ≤ 0

u = h(xc)

(2a)

where ψ(u, v) is defined as

ψ(u, v) = (u+ ε1v)T (v − ε2u) (2b)

and ε1 and ε2 are some (typically small) non-negative
scalars. As usual in the hybrid system framework, we
call C the set {(xc, τ, v) : τ ≤ ρ or ψ(h(xc), v) ≥ 0} and
D the set {(xc, τ, v) : τ ≥ ρ and ψ(h(xc), v) ≤ 0}.
The rationale behind the reset controller (1) is illustrated
in Figure 1 where the input/output space of (2) is
represented for the case q = 1. In the figure, the shaded
region corresponds to the set ψ(u, v) ≥ 0 where the
system always flows, regardless of the value of τ . Instead,



in the remaining region, where ψ(u, v) ≤ 0, the system
will jump provided that τ ≥ ρ. Note also that when ε1 =
ε2 = 0, the shaded region reduces to the first and third
quadrant, resembling the resetting rule characterized for
the first order reset element (FORE) in (Zaccarian et
al., 2005; Nešić et al., 2008). When the reset occurs, since
h(0) = 0, the u component of the input/output pair will
jump at zero thus resulting in a vertical jump to the
horizontal axis. Moreover, ε1 and ε2 allow to have extra
degrees of freedom in the resetting rule. In particular,
the goal of ε1 is to guarantee that the reset rule maps
the new input/output pair in the interior of the shaded
set whenever v 6= 0. Instead, as it will be clear next, the
goal of ε2 is to modify the resetting rule to obtain some
strict output passivity for the reset controller (2).

Controller (2) will be dealt with in this paper following
the framework of (Goebel and Teel, 2006; Goebel et
al., 2009; Cai and Teel, 2009). In particular, by As-
sumption 1, controller (2) satisfies the hybrid basic as-
sumptions (see, e.g., (Cai and Teel, 2009)), which ensure
desirable regularity properties of the solutions, such as
existence, and robustness to arbitrarily small perturba-
tions (see (Goebel et al., 2009) for details).

As usual in the hybrid system framework, the evolution
of the state ξ = (ξx, ξτ ) either continuously flows through
C, by following the dynamics given by f(ξx)+g(ξx, v) and
1, or jumps from D to (0, 0). Such an alternation of jumps
and flow intervals can be conveniently characterized by
using a generalized notion of time, called hybrid time. By
following (Goebel and Teel, 2006), a set E ⊆ R≥0 ×N is
a hybrid time domain if it is the union of infinitely many
intervals of the form [tj , tj+1]× {j} where 0 = t0 ≤ t1 ≤
t2 ≤, . . . , or of finitely many such intervals, with the last
one possibly of the form [tj , tj+1]× {j}, [tj , tj+1)× {j},
or [tj ,∞]× {j}.
The evolution of the state ξ of the hybrid system (2),
depends on the input signal v, so that both ξ and v must
be defined on hybrid time domain. By following (Cai and
Teel, 2009), we call hybrid signal each function defined
on a hybrid time domain. A hybrid signal v : dom v → V
is a hybrid input if v(·, j) is Lebesgue measurable and
locally essentially bounded for each j. A hybrid signal
ξ : dom ξ → Rn × R≥0 is a hybrid arc if ξ(·, j) is
locally absolutely continuous, for each j. With the basic
assumptions satisfied, a hybrid arc ξ = (ξx, ξτ ) and a
hybrid input v is a solution pair (ξ, v) to the hybrid
system (2) if dom ξ = dom v, (ξ(0, 0), v(0, 0)) ∈ C ∪ D,
and
s.1 for all j ∈ N and almost all t such that (t, j) ∈ dom ξ,

(ξ(t, j), v(t, j)) ∈ C
ξ̇x(t, j) = f(ξx(t, j)) + g(ξx(t, j), v(t, j));

ξ̇τ (t, j) = 1;

(3)

s.2 for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ,

(ξ(t, j), v(t, j)) ∈ D
ξx(t, j + 1) = 0;

ξτ (t, j + 1) = 0;

(4)

We say that a set of solutions pairs (ξ, v) is uniformly
non-Zeno if there exists T ∈ R>0 and J ∈ N such
that, for any given (t, j), (t′, j′) ∈ dom ξ, if |t − t′| ≤
T then |j − j′| ≤ J , that is, in any time period of
length T , no more than J jumps can occur. Note that
multiple instantaneous jumps are still possible, (Goebel
and Teel, 2006).

Note that any continuous-time signal v : R≥0 → Rq
can be rewritten as hybrid signal with domain E, for
any given hybrid domain E. In fact, suppose that E =⋃

[tj , tj+1]×{j} is an hybrid time domain. Then, we can
define a hybrid signal v lifted from v on E as follows:
v(t, j) = v(t) for each (t, j) ∈ E. Conversely, suppose
that (ξ, v) is a solution pair to the hybrid system (2).
Then, the output signal u = h(ξx) is a hybrid signal and
domu = dom ξ. From u we can construct an continuous-
time signal u : R≥0 → Rq projected from u on R≥0 as
follows: u(t) = u(t, j) for each (t, j) ∈ domu such that
(t, j + 1) /∈ domu, and u(t) = u(t, j + 1) otherwise.

We denote by ‖v‖p the Lp gain of a continuous-time
signal v. The Lp gain of a hybrid signal v, related to
the continuous part of its domain, will be denoted by

‖v‖c,p =
(∑J

j=0

∫ tj+1

tj
|v(t, j)|pdt

)1/p
. Note that for any

continuous-time signal v projected from a hybrid signal v
on R≥0, we have that ‖v‖q = ‖v‖c,p. Conversely, for any
hybrid signal v lifted from a continuous-time signal v on a
given hybrid time domain E, we have that ‖v‖c,p = ‖v‖p.
Finally, the following lemma characterizes regularity of
the solutions to (2).

Lemma 1. Under Assumption 1, all the solutions to (2)
are uniformly non-Zeno. Moreover, for each Lp inte-
grable input signal v, a solution pair (ξ, v) where v is the
hybrid input signal lifted from v on dom ξ, is a complete
solution pair.

Proof. For a solution pair (ξ, v), define tj = min{t | (t, j)∈
dom ξ}. By the definition of C and D given after (2),
given any solution pair (ξ, v) = ((ξx, ξτ ), v) of (2), tj −
tj−1 ≥ ρ for all (t, j) ∈ dom(x), j ≥ 2. This implies
that the uniformly non-Zeno definition in (Goebel and
Teel, 2006) (see also (Collins, 2004)) is satisfied with
T = ρ and J = 2.

By C ∪ D = Rn × R≥0 × V, dom ξ is bounded only if
ξ blows up in finite time. Looking at the dynamics of
the system in (2a), by Assumption 1, |ẋc| ≤ |f(xc) +
g(xc, v)| ≤ Lf |xc|+Lg|v| and |τ̇ | = 1. Therefore, if |v| is
Lp integrable, |ξ| is bounded in any given compact subset
of R≥0 × N. �



3. MAIN RESULTS

3.1 Passivity of the reset controller

The following theorem shows that the hybrid controller
(2) is almost passive with a shortage of input passivity
proportional to the temporal regularization constant ρ
plus ε1. Moreover, the slight modification of the function
ψ(·, ·) enforced by ε2 induces some excess of output
passivity.

Theorem 1. Consider the hybrid controller (2) satisfy-
ing Assumption 1. Define

ε1 :=
ε1

1− ε1ε2
, ε2 :=

ε2
1− ε1ε2

k(ρ) = ρLhLg max{1, ρe(Lf+Lg)ρ}

k(ρ) = k(ρ)(1 + ε2k(ρ))

(5)

Given a L2 integrable input signal v ∈ R≥0 → V and a
solution pair (ξ, v) to (2), with v lifted from v on dom ξ,
then∫ ∞

0

u(t)T v(t) ≥ −
(
ε1 + k(ρ)

)
‖v(·)‖22 + ε2‖u(·)‖22 (6)

where the output signal u ∈ R≥0 → Rq is projected from
the hybrid output signal u : domu → Rq corresponding
to the solution pair (ξ, v),

Remark 1. Note that Theorem 1 establishes the pas-
sivity of (2) based on the norm ‖ · ‖c,2, namely only
taking into account the continuous-time nature of the
hybrid solutions. This type of passivity concept is rele-
vant because of Lemma 1 and, moreover, allows to rely
on standard passivity results (van der Schaft, 1999) to
conclude properties of the closed loop between (2) and a
plant, as detailed in Section 3.2.

Remark 2. The passivity of the controller (1) induced
by the reset policy in (2) is robust to small variations of
the dynamics of the controller (1). This is based on the
fact that the passivity result in Theorem 1 is inferred
from the Lf , Lg and Lh bounds on the functions f ,
g and h of the controller dynamics (1) (specified in
Assumption 1). Thus, small variations of the dynamics
of the controller (1) can be taken into account by an
appropriate selection of those bounds.

Remark 3. We emphasize the generality of the con-
troller dynamics in (1). Despite this generality, the hybrid
controller (2) is passive. Intuitively, such a generality
in the controller dynamics is related to the fact that
passivity is obtained primarily via a suitable selection
of the jump and flow sets D and C, which ensure that
the controller state only flows in regions where a passive
behavior occurs. Roughly speaking, the passive behavior
of the controller can be considered as an effect of the
definition of ψ(u, v), that forces a particular shape of
the sets C and D. Following this intuition, while ψ(u, v)

constrains C and D to induce passivity, time regulariza-
tion adds some extra constraint on C and D possibly
destroying part of this passivity property. This results in
a shortage of passivity parameterized with ρ.

3.2 Application to feedback systems

In this section we use the passivity theorem (van der
Schaft, 1999) to establish useful stability properties of
the reset controller (2) interconnected to any passive
nonlinear plant: 3

ẋp = fp(xp, u+ d)
y = hp(x, u+ d),

(7)

via the negative feedback interconnection v = w − y,
where w is an external signal. In (7), d is an additive
disturbance acting at the plant input. The following
statement directly follows from the properties of (2)
established in Theorem 1.

Proposition 1. Consider the hybrid controller (2) sat-
isfying Assumption 1 in feedback interconnection v = w−
y with the plant (7).

For any ε1 ≥ 0, ε2 > 0 and ρ > 0, given ε1 and k(ρ) as
in (6), if the plant is output strictly passive with excess
of output passivity δP > ε1 + k(ρ), then the closed-loop
system (2), (7) with v = w − y is finite-gain L2 stable
from (w, d) to (u, v).

In Proposition 1 we require a specific excess of output
passivity from the plant because we assume that the con-
troller requires implementation with certain prescribed
selections of ε1 and ρ. In the case where it is possible to
reduce arbitrarily these two parameters, it is possible to
relax the requirements of Proposition 1 as follows:

Proposition 2. Consider the hybrid controller (2) sat-
isfying Assumption 1 in feedback interconnection v = −y
with the plant (7).

If the plant (7) is output strictly passive, then for any
ε2 > 0, there exist small enough positive numbers ε∗1 and
ρ∗ such that for all ε1 ≤ ε∗1 and all ρ ≤ ρ∗, the closed-loop
system (2), (7) with v = w − y is finite-gain L2 stable
from (w, d) to (u, v).

Proof. The proposition is a straightforward consequence
of Proposition 1 noting that for a fixed ε2, the lack
of output passivity established in Theorem 1 decreases
monotonically to zero as ε1 and ρ go to zero. Then it is
always possible to reduce the two parameters to match
the passivity condition in (van der Schaft, 1999). �

Both Propositions 1 and 2 either require an explicit
bound on the excess of output passivity of the plant or

3 See also (Carrasco et al., 2010) for a similar application of the

passivity theorem to reset controllers.
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Fig. 2. The very strictly passive version (8) of the reset
controller (CH corresponds to (2)).

constrain the controller parameters ε1 and ρ to be small
enough. An alternative solution to this is to add an extra
feedforward loop to the reset controller (2), following the
derivations in (Khalil, 2002, page 233), to guarantee that
the arising reset system is very strictly passive, namely it
is both input strictly passive and output strictly passive.
To this aim, we modify the output equation of (2)
by adding the feedforward term ε3v, as represented in
Figure 2. The corresponding reset controller can then be
written as:{

ẋc = f(xc) + g(xc, v)
τ̇ = 1

if τ ≤ ρ or ψ̂(û, v) ≥ 0{
x+c = 0
τ+ = 0

if τ ≥ ρ and ψ̂(û, v) ≤ 0

û = h(xc) + ε3v

(8a)

where ψ̂(·, ·) is defined as

ψ̂(û, v) = ((û+ (ε1 − ε3)v)T ((1 + ε2ε3)v − ε2û) (8b)

and ε3 > 0 is suitably selected as specified below. When
using the modified reset controller (8), the following
result holds.

Proposition 3. Consider the hybrid controller (8) sat-
isfying Assumption 1 in feedback interconnection v = w−
y with a passive plant (7).

For any ε1 ≥ 0, ε2 > 0 and ρ > 0, given ε1 and k(ρ) as
in (6), if ε3 > ε1 + k(ρ), then the closed-loop system (8),
(7) with v = w− y is finite-gain L2 stable from (w, d) to
(u, v).

Proof. Define a new output û = u+ ε3v and denote by û
the output signal projected from û on R≥0. Then, from
(6), we have that∫ ∞

0

û(t)T v(t) ≥ ε2
∫ ∞
0

uTu+
(
ε3−ε1−k(ρ)

)∫ ∞
0

vT v

≥ 1

1+2ε2ε3

(
ε2

∫ ∞
0

û
T
û+

(
ε3−ε1−k(ρ)

)∫ ∞
0

vT v

)
.

It follows that∫ ∞
0

û(t)T v(t) ≥ η1‖û‖22 + η2‖v‖22 (9)

with η1 = ε2
1+2ε2ε3

> 0 and η2 = ε3−ε1−k(ρ)
1+2ε2ε3

> 0.

Replace now the output u of the controller (2) with

û = u + ε3v = h(xc) + ε3v. Then, ψ̂(û, v) is obtained
by substituting u = û − ε3v in the expression of ψ(u, v)

of Equation (2b). By the passivity theorem in (van der
Schaft, 1999), Proposition 3 follows. �

Remark 4. The results in this section can be seen as a
generalization of the results on full reset compensators
in (Carrasco et al., 2010), where passivity techniques are
used to establish finite gain L2 stability of the closed-loop
between passive nonlinear plants and reset controllers.
When focusing on linear reset controllers such as Clegg
integrators (Clegg, 1958) and First Order Reset Ele-
ments (FORE) (Horowitz and Rosenbaum, 1975; Beker
et al., 2004), the novelty of Theorem 1 as compared
to the results in (Carrasco et al., 2010) is that those
results establish passivity of FORE whose underlying
linear dynamics is already passive (namely FORE with
stable poles). Conversely, our results of Theorem 1 ap-
ply regardless of what the underlying dynamics of the
controller is. Therefore, for example, any FORE with ar-
bitrarily large unstable poles would still become passive
using the flow and jump sets characterized in (2). Note
however that, as compared to the approach in (Carrasco
et al., 2010), we are using a different selection of the flow
and jump sets. In the example section we illustrate the
use of unstable FOREs within (2).

4. SIMULATION EXAMPLE

We consider a planar two-link rigid robot manipulator as
modeled and with the parameters selection in (Morabito
et al., 2004). Denoting by q ∈ R2 the two joint positions
and by q̇ ∈ R2 the corresponding velocities, the manipu-
lator is modeled as

D(q)q̈ + C(q, q̇)q̇ + h(q) = up (10)

where D(q) is the inertia matrix, C(q, q̇)q̇ comprises the
centrifugal and Coriolis terms, h(q) is the gravitational
vector, and up represents the external torques applied to
the two rotational joints of the robot.

Given a reference signal r ∈ R2 representing the desired
joint position, following a standard passivity based ap-
proach, it is possible to close a first control loop around
the robot (10) to induce the equilibrium point (q, q̇) =
(r, 0) while guaranteeing passivity from a suitable input
u to the joint velocity output q̇. In particular, define
V (q, r) =

kp
2 (q − r)T (q − r), where the scalar kp > 0

is a weight parameter on the position error, and choose

up = −∂V (q, r)

∂q
+ h(q) + u. (11)

Then, the interconnection (10), (11) corresponds to

D(q)q̈ + C(q, q̇)q̇ +
∂V (q, r)

∂q
= u (12)

and, following similar steps to those in (Fantoni et
al., 2000), it can be shown to be passive from u to q̇.

For the outer loop, we rely on the very strictly passive
controller (8) where the dynamics in (8a) is selected



as a pair of decentralized First Order Reset Elements,
namely denoting xc = [xc1 xc2]T , we select f(xc) =
[λ1xc1 λ2xc2]T and g(xc, q̇) = q̇. Moreover, we choose
u = kHû, where kH is a positive constant.
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Fig. 3. Simulations results. Stable FORE and no resets
(dash-dotted), stable FORE with resets (dashed)
and unstable FORE with resets (solid).

By Proposition 3, the closed loop system (10), (11),
(8a) with u = kHû is finite-gain L2 stable. Figure 3
compares several simulation results for this closed-loop
using the constant reference signal r = [10 6]T and the
following values of the parameters: kp = 100, kH =
100 and ρ = 0.1. First, we select stable FORE poles
(λ1, λ2) = (−2,−1) so that the closed-loop stability
can be concluded also using the results in (Carrasco
et al., 2010). For this case, when no resets occur, the
position output (namely q) and plant input (namely
u) responses correspond to the dash-dotted curves in
Figure 3. That response is converging because the system
without resets is passive due to the stability of the FORE
poles. When introducing resets, the response becomes the
dashed curves in the figure, where it can be appreciated
that a single reset occurring around t = 0.8 s significantly
improves the closed-loop response. A last simulation
is carried out by selecting an unstable FORE with
(λ1, λ2) = (2, 1). In this case the speed of convergence
of the second joint is faster at the price of a reduction of
the speed of convergence of the first joint. Note also that

the dwell time imposed by the temporal regularization
is never active for this specific simulation, as each jump
occurs after more than ρ = 0.1 seconds from the previous
jump. We don’t include a simulation with the unstable
FORE without resets because this leads to diverging
trajectories. Figure 4 compares several simulation results
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Fig. 4. Simulations results with noise on measured out-
put. Stable FORE and no resets (dash-dotted), sta-
ble FORE with resets (dashed) and unstable FORE
with resets (solid).

for the closed-loop when a disturbance signal is added
to the measured value of q̇. The simulations are based
on reference signal and parameters of the nominal case.
Note that q1 and q2 trajectories of the stable and unstable
FOREs with resets overlap.
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