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Abstract— We consider the problem of routing on a network the
measurement samples coming from a linear plant stabilizer by a
preassigned linear controller. Under the assumption that the linear
closed-loop before the network insertion is exponentially stable, we
break the communication channel between the sensors and the control
law and propose a family of “lazy sensors” whose goal is to transmit
the measured plant output information as little as possible while
guaranteeing the closed-loop stability. We propose three transmission
policies and provide conditions on the transmission parameters that
guarantee global asympotic stability if the plant state is available and
global practical stability if the plant state is not available. Simulation
results confirm the effectiveness of the prooposed strategies.

I. INTRODUCTION

In recent years, much attention has been devoted to the study
of networked control systems. The interest in this class of control
systems is motivated by the increased computational capability
required by control and estimation algorithms in addition to the
presence of emerging control applications wherein the systems to
be controlled are spread over a wide territory or are technologically
built in such a way that several subcomponents of the control system
communicate over a shared and low capacity network (see, e.g., the
recent surveys [17], [8] and references therein). While networked
control systems denote many different situations where a network is
in some sense involved in the transmission of the control signals, a
case of interest is that when the network is used as a communication
channel between the plant with its sensing/actuating devices and
the device hosting the control algorithm. This specific context is
studied, e.g., in [3], [4], [9], [10], [13], [15], [16], [18].

A typical way to represent and suitably write the dynamics of
systems acting on networks is to use the hybrid systems notation,
namely a state-space description wherein the state flows according
to some continuous-time rules and, at some specific times, called
jump times, it jumps following some discrete-time jump rule. A
framework for the representation of hybrid systems that has been
recently proposed in [7], [5] allows for a quite natural description of
these phenomena with useful Lyapunov like results that have been
proven to apply to large classes of systems described using this
framework (see, e.g., [1], [2] and the survey [6]). This framework
was used in connection with networked control systems in [3],
[10], where Lyapunov-like tools are used to model ISS properties
of network control systems and the MATI - maximum allowable
transfer interval, to preserve asymptotic stability.

In this paper we consider a linear control system that consists
of a controller that uses the output of a given plant and produces
a suitable input to asymptotically stabilize the whole closed-loop
system. Usually, the measured output y of the plant is connected
to the input of the controller u, so that the signal y is continuously
transmitted to the controller. Here we break this continuity by
considering a not necessarily periodic sample and hold approach.
In particular, we suppose that the wire from the measured output
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y to the controller input u is replaced by a network, that is, each
measurement is sampled and routed to the controller input. Then, we
define an updating policy for sending such measurements samples,
based on the current state of the system and on the error between
the value of the output y and the value of the samples sent to
the controller. The devices performing this scheduling policy are
called “lazy sensors” to resemble the fact that their goal is to
avoid transmitting too often, so to keep low the network load. The
structure of the considered system is represented in Figure 1.

C P
P

u y

N

Extra
information

ξ Lazy
sensors

Fig. 1. A closed-loop SN over a network using lazy sensors.

Each lazy sensor is able to perform some computation on
the measured plant output and, possibly, on extra input signals.
Then, each sensor decides whether or not to send a sampled
measurement to the input of the controller. The contribution of this
paper consists in casting the above problem using the framework
in [6] and proposing a number of measurement transmission (or
update) policies which depend on the state of the plant and on
the measurement error through a suitable Lyapunov-like function.
Then, using the hybrid system tools and the framework in [6], the
proposed transmission policies are shown to preserve closed-loop
stability. In particular, we propose the following three solutions,
suitable for different practical contexts:
• a synchronous updating policy where each sensor is aware of

the conditions of the other sensors so that the samples update is
a global decision. Specifically, the sensors send a new sample
all together when some suitable condition occur;

• an asynchronous updating policy where each sensor knows its
own measurement error and the state of the plant. Then, it
decides autonomously whether or not to send a new sample to
the controller;

• a synchronous updating policy based on the measurement
errors and the output signal of the plant, by using an observer
to reconstruct the state, assuming that it is not available for
measurement.

Since the ultimate goal of the above policies is to use the network
as little as possible, we call lazy these intelligent sensors, to
resemble the fact that they are reluctant to transmit and that they
do so only when it is strictly necessary, w.r.t. the satisfaction of a
suitable Lyapunov-like condition, to preserve closed-loop stability.
A possible implementation context could be that of a CAN network
where the shared information is broadcast on the network by the
controller node, which has highest priority over the other nodes.
Then, the other nodes could correspond to the lazy sensors, each
of them equipped with an onboard intelligence deciding whether or
not to transmit over the network.



Within the existing literature, the results in this paper can be seen
as a specific application of the hybrid framework [6] to a peculiar
control problem with a specific network structure. In this sense, our
paper can be seen as a constructive solution along the general lines
of [3], [10], where Lyapunov tools and the hybrid framework of [6]
are used as well to address networked control systems. Our work
can also be associated with the many interesting results in [4], [9],
[13], [15] and references therein. Here, differently from [13], [15],
we only take into account linear systems by proposing updating
rules that do not necessarily force each sample to be updated to the
current measure of the output. Moreover, asynchronous updating
policies and output based updating policies studied here are not
taken into account in [13], [15].

The paper is structured as follows. In Section II we introduce
the notation and give some preliminaries on hybrid systems. In
Section III we introduce the problem data and in the following
Sections IV, V, VI we discuss the three approaches outlined above.
In Section VII we give a simulation example and proofs are given
in the appendix.

II. NOTATION AND PRELIMINARIES

Given a vector v, vT denotes the transpose vector of v. Given
a set {a1, . . . , an} where ai ∈ R for each i = 1 . . . , n, diag(v)
denotes a diagonal matrix having the entries of v on the main di-
agonal. Both the Euclidean norm of a vector and the corresponding
induced matrix norm are denoted by | · |. For a vector v ∈ Rp and
a set A ⊂ Rn |v|A := infy∈A |y − x|. α : R≥0 → R≥0 is said to
belong to class K if it is strictly increasing and α(0) = 0; it is said
to belong to class K∞ if a = +∞ and limr→+∞ α(r) = +∞.
β : R≥0×R≥0 → R≥0 is said to belong to class KL if (i) for each
t≥0, β(·, t) is non decreasing and limt→0 β(s, t) = 0, and (ii) for
each s ≥ 0, β(s, ·) is nonincreasing and limt→∞ β(s, t) = 0. A
function is γ : R≥0×R≥0×R≥0 → R≥0 is said to belong to class
KLL if for each r ≥ 0, γ(·, ·, r) and γ(·, r, ·) are KL functions.

We summarize next the essential notation associated with the
hybrid systems framework, outlined in [5], for which several
structural results have been developed in [7], [11], [12] and partially
summarized in [6]. A hybrid system H is a tuple (C,D, F,G),
where C ⊆ Rn and D ⊆ Rn are, respectively, the flow set and
the jump set, while F : C ⇒ Rn and G : D ⇒ Rn are set-valued
mappings, called the flow map and the jump map, respectively. F
and G characterize the continuous and the discrete evolution of the
system, that is, the motion of the state, while C and D characterize
subsets of Rn where such evolution may occur. A hybrid system is
usually represented as follows

H =

{
ẋ ∈ F (x) x ∈ C
x+∈ G(x) x ∈ D (1)

Intuitively, the evolution of the state either continuously flows
through C, by following the dynamic given by F , or it jumps from
D, according to G.

As for classical dynamical systems, the evolution of the state of
a hybrid system is a parameterized function of time. In particular
a solution to the hybrid system equations is parameterized with
respect to a generalized notion of time, denoted hybrid time, defined
as follows.

Definition 1: A set E ⊆ R≥0 × N is a hybrid time domain if it
is the union of infinitely many intervals of the form [tj , tj+1]×{j}
where 0 = t0 ≤ t1 ≤ t2 ≤, . . . , or of finitely many such intervals,
with the last one possibly of the form [tj , tj+1]×{j}, [tj , tj+1)×
{j}, or [tj ,∞]× {j}.
Then, a solution to a hybrid system (1) can be defined as follows.

Definition 2: A hybrid arc x is a map x : domx → Rn such
that (i) domx is a hybrid time domain, and (ii) for each j, the
function t 7→ x(t, j) is a locally absolutely continuous function on
the interval Ij = {t : (t, j) ∈ domx}.

A hybrid arc x : domx → Rn is a solution to the hybrid system
H if x(0, 0) ∈ C ∪D and
(i) for each j ∈ N such that Ij has a nonempty interior,

ẋ(t, j) ∈ F (x(t, j)) for almost all t ∈ Ij
x(t, j) ∈ C for all t ∈ [min Ij , sup Ij)

(2)

(ii) for each (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j + 1) ∈ G(x(t, j))
x(t, j) ∈ D (3)

Note that solutions to hybrid systems may exist for a finite time,
due to the constraints on the state motion enforced by the C and D
sets. We say that a solution x is maximal if there does not exists x′

such that x is a truncation of x′ to some proper subset of domx′.
We say that a solution x is complete if domx is unbounded.

Finally, we can define on hybrid systems usual stability proper-
ties. By following [6], for a hybrid system H, the set A is (i) stable
if for each ε > 0 there exists δ > 0 such that any solution x to H
with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all (t, j) ∈ domx;
(ii) pre-attractive if there exists δ > 0 such that any solution x to H
with |x(0, 0)|A ≤ δ is bounded and |x(t, j)|A → 0 as t+ j →∞,
whenever x is complete; (iii) pre-asymptotically stable if it is both
stable and pre-attractive; (iv) globally pre-asymptotically stable if it
is stable and from each initial condition x0 ∈ Rn complete solutions
converge to A, that is, |x(t, j)|A → 0 as t+ j →∞.

III. PROBLEM STATEMENT

Consider a nominal closed-loop system, S, composed by a linear
controller C, with input uc and output yc, and by a linear plant P ,
with input up and output yp. The controller drives the plant by the
connection up = yc and the output of the plant, yp, is connected
to the input uc of the controller (feedback signal). In what follows
we denote with P the cascade of the the controller C and of the
plant P , through the connection up = yc. P can be represented as
follows {

ẋ = Ax+Bu
y = Hx

(4)

where we assume u = uc and y = yp. Thus, the nominal closed
loop system S is constructed by connecting (4) through

u = y. (5)

Then, the closed-loop system S of Equations (4),(5) can be char-
acterized as follows.{

ẋ = (A+BH)x
y = Hx

(6)

and we consider the following standing assumption
Assumption 1: The nominal closed-loop system S is exponen-

tially stable.
Consider now to replace the direct feedback interconnection (5)

with a non-continuous communication policy u = N (y) between
the output y and the input u. N can be considered a sample and
hold network of digital sensor devices, that brings each sensor
measurement of y to the input u of the controller. The networked
closed-loop system SN , namely the closed-loop system of (4)
through the interconnection u = N (y), combines together the
continuous dynamics of the plant-controller cascade P and the
discrete behavior of the network of digital sensor devices N . Thus,
it can be conveniently characterized within the hybrid systems
framework.

In particular, we can write a hybrid model for the networked
closed-loop system SN . It is characterized by three main compo-
nents: (i) the continuous dynamics of the cascade P of controllers
and plant; (ii) the dynamics of the sample-and-hold device, namely
the mechanism that holds a sensors sample until a new one occur;
(iii) the updating policy, that decides when a new sample of the



measured output y must be submitted to the controllers. Then, a
possible model for SN is{

ẋ = Ax+Bξ

ξ̇ = 0
(x, ξ) ∈ C (7a){

x+ = x
ξ+ = g(x, ξ)

(x, ξ) ∈ D (7b)

y = Hx (7c)

Consider the continuous dynamics in (7a): x takes into account
the dynamics of the plant-controller cascade, while ξ is the value
that is currently enforced at the input of the controller. The
dynamics of ξ takes into account the sample-and-hold behavior of
the network, whose derivative must be zero (it “holds”). Moreover,
the dynamics of P is now driven by ξ, replacing the connection
u = y with u = N (y), that is, with u = ξ. The set C in which the
system may flow is a design parameter, that is, it will be used to
define the updating policy of the measurement samples. Consider
the discrete dynamics in (7b): We model the updating mechanism of
a measurement sample to the controller input as a jump. Therefore,
during a jump, the state x of P is not modified, while the state ξ
of the network is modified in accordance with a suitable updating
policy, whose behavior depends on the function g and on sets C
and D. Intuitively, a measurement is updated to a new value given
by g when some suitable condition on x and ξ is satisfied, that is,
when (x, ξ) ∈ D. For now, we do not make any assumption on g.
The structure of g, as well as its values, depend on the particular
feedback that we consider and will be defined in the next sections.

Remark 1: In this work, we consider a very simple model for the
network N . In fact, we consider N as a general discrete process
that routes each sensor measurement to an output point. Usually,
this operation introduces time-delays and quantizations of signals.
Moreover, the amount of data routed by the network is limited
by the physical data-rate bounds of the network. In our model we
do not take into account time-delays and quantization problems,
assuming that each measurement is instantaneously routed to the
controller. Instead, we consider an updating policy that guarantees
a low data-rate on the network. y

IV. STATE FEEDBACK: SYNCHRONOUS APPROACH

Consider the networked closed-loop system SN in Equation (7)
and the coordinate transformation e = ξ − y, related to the error
between the measured output and its samples, induced by the
sample and hold mechanism of the network. The system can be
written as follows.{

ẋ = A11x+A12e
ė = A21x+A22e

(x, e) ∈ C (8a){
x+ = x
e+ = g(x, e)

(x, e) ∈ D (8b)

y = Hx (8c)

where A11 = (A + BH), A12 = B, A21 = −H(A + BH) and
A22 = −HB. g(x, e), C and D characterize the updating policy
and their definition is the goal of this work. They will be defined
by the design method proposed below. In general, g is a function
in Rn × Rq → Rq satisfying g(0, 0) = 0.

Remark 2: Suppose that g(x, e), C and D have been constructed
by a suitable design method. Then, g(x, ξ), C and D of (7) can be
defined from g(x, e), C and D as follows.
• Suppose C = {(x, e) | r(x, e)} where r is a given relation

on x and e. Then, C = {(x, ξ) | r(x, ξ − Hx)}, which is
equivalent to defining a set C parameterized by the current
output y, namely {(x, ξ) | r(x, ξ − y)}. Analogously for D.

• g(x, ξ) = Hx+ g(x, ξ−Hx). An equivalent characterization
for g, based on the current output y, is y + g(x, ξ − y).

The first transformation is straightforward. To see the second one,
note that e+ = ξ+ − y+ = g(x, e + y) − y+ = g(x, e + y) −
Hx+ = −Hx + g(x, e + y). Then, the result follows by solving
g(x, ξ −Hx) = −Hx+ g(x, ξ). y

Remark 3: It is worth to mention that (8a) and (8c) can now be
compared to the dynamics of (6), by adding the effect of the error
e = ξ−y to the right-hand side of (6). Moreover, from Assumption
1, there exists a symmetric and positive definite matrix P11 such that
the function V11(x) =

1
2
xTP11x decreases along the trajectories of

(6), that is 〈∇V11(x), A11x〉 ≤ −xTQx, for any given symmetric
and positive definite matrix Q. y

In what follows we work with the model (8), and we define a
possible updating policy for the lazy sensors that decides when
the measurements samples must be routed to the controller input,
so that the stability of the networked closed -loop systems is
preserved. Indeed, we propose a Lyapunov-like characterization of
the updating policy, that is, we find a policy whose routing events
are defined with respect to a suitable Lyapunov function, so that
the point (x, e) = (0, 0) is asymptotically stable. Consider the
following Lyapunov-function candidate

V (x, e) =
1

2

[
x
e

]T [
P11 P12

PT12 P22

] [
x
e

]
(9)

where P =

[
P11 P12

PT12 P22

]
is symmetric and positive definite.

Then, by denoting by F (x, e) the right-hand side of (8a), the
directional derivative 〈∇V (x,e), F (x,e)〉 of V is less than or equal
to

− xTQx+ xTR11x+ xTR12e+ eTR22e (10)

where Q is a symmetric and positive definite matrix, still to be
selected, and

R11 = P12A21

R12 = P11A12 + P12A22 +A
T
11P12 +A

T
21P22

R22=P
T
12A12 + P22A22

(11)

Note that the existence of Q is guaranteed by Assumption 1 (See
Remark 3). By denoting by G(x, e) the right-hand side of (8b), the
increment V (G(x, e))− V (x, e) of V is

xP12(g(x, e)− e) +
1

2
g(x, e)TP22g(x, e)−

1

2
eTP22e. (12)

Define now

C =
{
(x, e) |〈∇V (x,e), F (x,e)〉 ≤ −ε|x|2

}
(13a)

D =
{
(x, e) |〈∇V (x,e), F (x,e)〉 ≥ −ε|x|2

}
(13b)

where ε and Q are chosen so that

Q−R11 − εI > 0. (14)

Then, the following theorems hold (the proofs are in Appendix A).
Theorem 1: Let C and D be defined as in (13). Under Assump-

tion 1, for each continuous function g such that
(1) V (G(x, e))− V (x, e) ≤ 0 for all (x, e) ∈ D,
(2) (x, g(x, e)) /∈ D \ {(0, 0)} for all (x, e) ∈ D,

the origin of the system SN of equations (8) is globally pre-
asymptotically stable (GpAS).

Theorem 2: Let C and D be defined as in (13) and α be a class
K function. Under Assumption 1, for each continuous function g
such that
(1) V (G(x, e))− V (x, e) ≤ −α(|e|) for all (x, e) ∈ D,

the origin of the system SN of equations (8) is globally pre-
asymptotically stable.

Remark 4: Note that the existence of an updating policy for the
lazy sensors is guaranteed by Assumption 1. In fact, the closed-loop



system (4), (5) is exponentially stable, therefore it is robust with
respect to small error signals e that vanish with x. Consider now
(8). The dynamics of e is linear, therefore there exists a sufficiently
small τ such that an updating policy that routes a new measurement
sample (e = 0) with an intersample time not greater than τ would
preserve the stability of the closed-loop system. y

Remark 5: Note that the asymptotic stabilization of the point
(x, e) = (0, 0) can be relaxed to the asymptotic stabilization of the
set A = {(x, e) |x = 0,−c ≤ |e|∞ ≤ c}, for some given c, c ∈
R≥0. In fact, if A is globally pre-asymptotically stable, then the
state of P is driven to zero as in (6). In such a case, we are relaxing
the stabilization problem by requiring only a bounded error (e.g. a
periodic non zero error). Note that stabilizing A instead of 0 would
not affect the output of the system. y

A. A possible construction for C and D
By using the exponential stability property of the nominal closed-

loop system, a solution to the stabilization problem of the networked
closed-loop system can be constructed as follows. A candidate
Lyapunov function V can be defined as

V =
1

2

[
x
e

]T [
P11 0
0 P22

] [
x
e

]
(15)

where P11 and P22 are positive definite matrices and P11 satisfies

A
T
11P11 + P11A11 ≤ −Q (16)

with Q symmetric positive definite matrix. Therefore, C and D can
be defined as in equations (13), with R11 = 0, R12 = P11A12 +

A
T
21P22 and R22 = P22A22.
By resetting the error to zero whenever a jump occurs, that is, by

defining g(x, e) = 0 for all x and all e, we fullfill the requirements
of both Theorems 1 and 2. Indeed,

V (G(x, e))− V (x, e) = −1

2
eTP22e (17)

which satisfies condition (1) of both Theorem 1 and of Theorem 2.
Moreover, by resetting the error to zero we have that

−xTQx+ xTR11x+ xTR12e+ eTR22e = xT(R11−Q)x

< −εxTx,
(18)

which, by (14), brings the state to the interior of C, fullfilling
condition (2) of Theorem 1.

It is important to note that this possible construction can be an
effective model of the updating policy only if the state of the plant
P is known. In fact, a data is updated only if the state of the plant
P and the error e = ξ − y characterize a configuration that do not
belongs to C. From a constructive point of view, we need sensors
that evaluate the inequality in (13) and, based on such an evaluation,
decide whether or not to update the data. Such a configuration is
illustrated in Figure 2. Note that resetting e to zero is equivalent to
reseting ξ to y.

P̂

N Policy

y

x

ξ

Fig. 2. A possible configuration of the networked closed loop system SN .

Remark 6: The data-rate in the network is related to the defini-
tion of C and D. In fact, longer flow intervals for SN guarantee
lower data-rate on the network. For example, by choosing P22 so

that σ(P22) is small, we are giving less consideration to the error e.
This naive selection of P22 increases the length of the flow interval,
therefore the jump rate decreases. y

V. STATE FEEDBACK, ASYNCHRONOUS APPROACH

The characterization of C, D and g(x, e) of the previous section
is based on the knowledge of the full state vector of the plant P
and of the complete error e = ξ − y. Such architecture needs that
the sensors take into account the state x and the error e and decide
whether or not to update the whole vector of (measured) output to
the input vector of P .

In this section we propose an asynchronous updating policy in
which each sensor decides autonomously its own update time. For
instance, the knowledge of each sensor is limited to the state x of
P and to its own error, say ei, given by ei = ξi − yi, where ξi
and yi are the ith components of ξ and y, respectively. Each sensor
i decides to update ξi by taking into account the state vector x
and the error ei only. No shared knowledge of the state of others
sensors, say j 6= i, is allowed.

Consider the hybrid system SN in (8). The asynchronous behav-
ior of each sensor and the effect of such a behavior on the dynamics
of the whole system can be modeled by the following definition of
C, D and g(x, e):
• C and D as the intersection and union of sets Ci and Di.

For any given i ∈ {1, . . . , q}, Ci or Di are subsets of Rn ×
R whose elements are the pairs (x, ei), where ei is the ith
component of e;

• define g ∈ Rn × Rq → Rq as the vector
[ g1(x, e1), . . . , gq(x, eq) ]

T where each gi, i ∈ {1, . . . , q}, is
a function in Rn × R→ R.

Let us consider a candidate Lyapunov function V as in (9).
Equations (10) and (12) characterize the directional derivative and
the increment of V . For each i ∈ {1, . . . , q}, define now

Ci = {(x, ei) | − αixTQx+ αix
TR11x

+K1|x||ei|+K2e
2
i ≤ −αiε|x|2 }

Di = {(x, ei) | − αixTQx+ αix
TR11x

+K1|x||ei|+K2e
2
i ≥ −αiε|x|2 }

(19)

where
• for each i ∈ {1, . . . , q}, αi ∈ R>0 and

∑q
i=1 αi = 1,

• K1 = max|x|=1,|e|=1 |xTR12e|,
• K2 = max|e|=1 |eTR22e|,
• Q and ε satisfy (14).

Then, we can define C and D as follows.

C = {(x, e) | for each 1 ≤ i ≤ q, (x, ei) ∈ Ci} (20a)

D = {(x, e) | there exists 1 ≤ i ≤ q, (x, ei) ∈ Di} (20b)

Remark 7: Note that D in (20b) is the closed complement of C
in (20a). This fact and the definition of D imply that a jump occurs
when at least one combination of ei and x, i ∈ {1, . . . , q}, satisfies
the condition in Di. y
The asynchronous behavior of the sensors is then guaranteed by
assuming that each function gi, i ∈ {1, . . . , q}, coincides with the
identity function that maps ei to ei, for (x, ei) /∈ Di. In fact,
suppose that a jump is enabled by the ith sensor only, that is,
(x, ei) ∈ Di. Then the ith sensor sends a new sample based on
the value given by gi(x, ei), while the behavior of all the other
sensors, say j 6= i, is given by gj(x, ej) = ej , that is, their value
is not modified.

To state the main result of this section, in Theorem 3, we need
the following technical definition.

Definition 3: For each i ∈ {1, . . . , q}, gi ∈ Rn × Rq → Rq is
a function such that



• gi(x, ei) = ei if (x, ei) /∈ Di;
• the restriction of gi on Di is a continuous function.

Then, we say that g ∈ Rn × Rq → Rq defined by g(x, e) =
[ g1(x, e1), . . . , gq(x, eq) ]

T is asynchronous.
Theorem 3: Let C and D be defined as in (20) and α a K

function. Under Assumption 1, for each asynchronous function g,
if for each (x, e) ∈ D
(1) V (G(x, e))− V (x, e) < 0 if e 6= 0,

then the origin of system SN (8) is globally pre-asymptotically
stable.

Proof: See Appendix B.

A. A possible construction for C and D
A solution to the stabilization problem of the networked closed

loop system can be constructed as follows. Consider a candidate
Lyapunov function V defined as

V =
1

2

[
x
e

]T [
P11 0
0 P22

] [
x
e

]
(21)

where P11 and P22 are positive definite matrices, P11 satisfies

A
T
11P11 + P11A11 ≤ −xTQx (22)

for some given positive definite and symmetric Q, and

P22 = diag{P (1)
22 , . . . , P

(q)
22 }. (23)

The sets C and D can be defined as in equation (20) with

Ci =
{
(x, ei) | −αixTQx+K1|x||ei|+K2e

2
i ≤−αiε|x|2

}
Di =

{
(x, ei) | −αixTQx+K1|x||ei|+K2e

2
i ≥−αiε|x|2

}
(24)

where K1 and K2 satisfy

K1 = max
|x|=1,|e|=1

|xT (P11A12 +A
T
21P22)e|

K2 = max
|e|=1

|eTP22A22e|
(25)

By defining g(x, e) as follows

g(x, e) =


v1
v2
...
vq

 where
{
vi = 0 if (x, ei) ∈ Di

vi = ei otherwise
(26)

we fullfill the requirements of Theorem 3. Indeed, g has an
asynchronous structure because the reset of vi to zero depends on
x and ei only, for each i = 1, . . . , q. Moreover,

V (G(x, e))− V (x, e) =
1

2
(g(x, e)TP22g(x, e)− eTP22e)

=
1

2

q∑
i=1

P
(i)
22 (v2i − e2i ).

(27)

Since g is applied only if the state (x, e) is in D, it follows that
there exists at least one j ∈ {1 . . . , q} such that vj = 0. Therefore,

V (G(x, e))− V (x, e) ≤ −1

2
P

(j)
22 e

2
j (28)

for some j ∈ {1, . . . , q}. This satisfies condition (1) of Theorem 3.
From a constructive point of view we need q sensors. Each

sensor, say i, evaluates the inequality in (19), that depends only
on the measured output yi and on the state x. Based on such an
evaluation, the sensor decides whether or not to update the sample
ξi, namely whether or not to transmit its measurement. Such a
configuration is illustrated in Figure 3. Note that resetting ei to
zero is equivalent to reset ξi to yi.

P̂

N

x

ξ1

ξq

yq

y1

Policy

Policy

yi

Fig. 3. A possible asynchronous configuration of the networked closed
loop system SN

Remark 8: Note that αi can be used to increase the update-rate
of a sensor with respect to the others. Indeed, a greater αi allows for
a larger error bound, therefore the update-rate decreases. Note also
that each αi can be modified at runtime. As long as

∑q
i=0 αi = 1,

the stability is preserved. y
Remark 9: In general, if g(x, e) does not depend on the state,

that is, its definition does not use x to define the value of g(x, e),
then we can reduce the quantity of information sent to the sensors.
In fact, for each i ∈ {1, . . . , q}, both Ci and Di can be redefined by
using only ei (i.e. ξi) and the following two signals s1 = xT (−Q+
R11)x and s2 = |x|. y

VI. OUTPUT FEEDBACK APPROACH

Consider the nominal closed-loop system of equations (4) and (5)
and assume now that the state of controller x of the C and of the
plant P can only be reconstructed from the output measurements.
Despite the lack of information on the state, the approach of Section
IV can still be used by considering a suitable estimate of the state.
We need the following assumption.

Assumption 2: The pair (A,H) in (4) is detectable.
The introduction of a classical continuous-time observer of the

state in the networked closed-loop system SN leads to the following
model

ẋ=Ax+Bξ

ξ̇=0
˙̂x=Ax̂+Bξ + L(y −Hx̂)

(x̂, ξ) ∈ C or∣∣∣∣[ x̂
ξ−Hx̂

]∣∣∣∣ ≤ ρ (29a)

 x+ = x
ξ+ = g(x̂, ξ)
x̂+ = x̂

(x̂, ξ) ∈ D and∣∣∣∣[ x̂
ξ−Hx̂

]∣∣∣∣ ≥ ρ (29b)

y = Hx (29c)

where L is the observer matrix in Rn×q and g is a function in
Rq × Rn × Rq → Rq with q dimension of the output y of P . C
and D are subsets of Rn and ρ ∈ R≥0. Note that the flow and
jump sets of (29) can be considered as the combination of the flow

and jump sets of (7) with a new condition
∣∣∣∣[ x̂
ξ−Hx̂

]∣∣∣∣ ≥ ρ. This

condition guarantees that if the estimate x̂ and the sampling error
ξ − Hx̂ are small enough (than ρ), then the system continues to
flow without updating the value of the samples.

We can use the coordinate transformation x̂, e = ξ − Hx̂ and
η = x− x̂ to rewrite (29) as follows:

˙̂x = A11x̂+A12e+ LHη
ė = A21x̂+A22e−HLHη
η̇ = (A− LH)η

(x̂, e) ∈ C or∣∣∣∣[x̂e
]∣∣∣∣ ≤ ρ

(30a) x̂+ = x̂
e+ = g(x̂, e)
η+ = η

(x̂, e) ∈ D and∣∣∣∣[x̂e
]∣∣∣∣ ≥ ρ

(30b)
y = Hx̂+Hη (30c)



where A11, A12, A21, A22 are defined as in Section IV. To extend
the results of Section IV, C and D are defined as in (13), and
g(x̂, e) = M [ x̂T eT ]T , where M is a matrix of dimensions q ×
(n+ q). Then, the following theorem holds.

Theorem 4 (Global practical asymptotic stability): Suppose
that the conditions of Theorem 1 or of Theorem 2 are
satisfied with the state x replaced by the estimation x̂ and
with g(x̂, e) = M [ x̂T eT ]T , where M is a matrix of dimension
q × (n + q). Suppose that the gain-matrix L of the observer
guarantees that eig(A− LH) is hurwitz.

Then, there exists a γ ∈ R>0 such that for any given ρ in (30),
there exists a set A ⊆ γρB ⊂ Rn+q , such that A×{0} ⊂ Rn+q×
Rn is globally pre-asymptotically stable.

Proof: See Appendix C.
Corollary 1: If the conditions of Theorem 4 are satisfied, then

each solution (x, ξ, x̂) to (29) is such that x̂ converges to x and
(x, ξ − y) converges to a ball of radius γρB.

Proof: Note that the union of the flow set and of the jump
set of (30) coincides with the whole state-space Rn × Rq × Rn.
Thus, from any given initial condition, each maximal solution is
a complete solution. The coordinate transformation (x, ξ, x̂) →
(x̂, e, η) is invertible, therefore the convergence of η of (30) to
0 implies that x̂ converges to x. Thus, the convergence of (x̂, e) to
γρB implies (x, ξ −Hx) converges to γρB.

Remark 10: g, C and D of (29) can be constructed from g, C
and D as follows.
• Suppose C = {(x̂, e) | r(x̂, e)} where r is a given relation on
x̂ and e. Then, C = {(x̂, ξ) | r(x̂, ξ − Hx̂)}. For D is the
same.

• g(x̂, ξ) = Hx̂ + g(x̂, ξ −Hx̂). In fact, e+ = ξ+ −Hx̂+ =
g(x̂, ξ)−Hx̂ = g(x̂, ξ−Hx̂), where the last equality follows
from (30b). y

Remark 11: The result of Theorem 4 extends to the asyn-
chronous case in Section V but it requires that the output x̂
of the observer is shared among the sensors, thus breaking the
decentralized structure of that approach. y

VII. SIMULATION EXAMPLE

We consider the following exponentially unstable linear plant P
defined as follows

P =


ẋp =

[
1 1
0 1

]
xp +

[
1 0
0 1

]
up

yp =

[
1 0
0 1

]
xp.

(31)

The nominal closed-loop system is constructed by connecting the
plant P to the following LQR static controller C.

yc =

[
−2.1961 −0.7545
−0.7545 −2.7146

]
uc. (32)

through the interconnection up = yc and uc = yp. With this
controller the nominal closed-loop system is exponentially stable.

In the networked closed-loop system, the interconnection uc =
yp is replaced by uc = ξ where ξ is the vector of samples of the
measured output that the controller is currently using. The vector
of samples ξ is updated by following the policy defined in section
IV-A. Four simulations tests with different values of the parameters
are reported in Figure 4.

Consider now the closed-loop system given by equation (31) and
(32). In this example we use the asynchronous policy of section
V-A, The results are illustrated in Figure 5, where six diferent
parameters values are used. Note that each sensor i updates the
measured output sample ξi without any kind of synchronization
with the other sensors. Moreover, by choosing different α1 and α2,
we force one sensor to allow for a larger error bound on ei = ξi−yi
before forcing an update. Therefore, one sensor will reset its state
ξi more frequently than the other.
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Fig. 4. Input and output of SN in the synchronous case, for different
choices of P22. The thin line in each figure is the output of the nominal
closed loop.
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Fig. 5. Input and output of SN in the asynchronous case, for different
choices of P22. The thin line in each figure is the output of the nominal
closed-loop system. Extra paramters common to all cases are parameters
are Q = 10I and ε = 0.01.



APPENDIX

A. Proofs of Theorems 1 and 2.

System of equations (8), with C and D defined as in Section
IV or in Section V, and the function g continuous or asynchronous
(Definition 3) satisfies the basic assumptions of [6]. Therefore, the
following result from [6] can be used to prove Theorems 1, 2 and
3.

We denote with F (x, e) the right-hand side of (8a) and we denote
with G(x, e) the right-hand side of (8b).

Proposition 1: [6, Theorem 23]
For a system of equations (8), with C and D closed sets and g
continuous or asynchronous (Definition 3), if

〈∇V (x, e), F (x, e)〉 ≤ 0 for all x ∈ C \ {(0, 0)}
V (G(x, e))− V (x, e) ≤ 0 for all x ∈ D \ {(0, 0)}

(33)

then (x, e) = (0, 0) is stable. Moreover, if there exists a compact
neighborhood K of (x, e) = (0, 0) such that, for each µ > 0, no
complete solutions to SN remain in the set {(x, e) |V (x, e) = µ}∩
K, then (x, e) = (0, 0) is pre-asymptotically stable. Finally,
(x, e) = (0, 0) is globally pre-asymptotically stable if K can be
arbitrarily large and the set {(x, e) |V (x, e) ≤ µ} is compact.

Proof: Theorem 1.
From the definition of C in (13a) and by condition (1) of the
theorem,

〈∇V (x, e), F (x, e)〉 ≤ 0 for all (x, e) ∈ C
V (G(x, e))− V (x, e) ≤ 0 for all (x, e) ∈ D.

(34)

Moreover, (13) and condition (2) of the theorem guarantee that
for each (x, e) ∈ D, (x, g(x, e)) belongs to the interior of C or
(x, g(x, e)) = (0, 0). For the first case, it follows that there exists
a compact interval, say [0, t], with t ∈ R>0, in which the system
can only flow.

Consider now a state (x, e) in C and such that V (x, e) = µ,
for some µ ∈ R>0. By (13a), x 6= 0, then 〈∇V (x, e), F (x, e)〉 ≤
−ε|x|2. It follows that no complete solutions to SN , from x 6= 0
remains in the set {(x, e) |V (x, e) = µ}, for any given µ > 0.

Suppose now (x, e) belongs to C but x = 0 and e 6= 0. By (8a),
the continuous dynamics of x is driven by ẋ = A12e. It follows
that x(t) = 0 cannot be a solution to SN in the interval t ∈ [0, t].
Therefore,
• if (x, e) is an interior point of C then there exist a

time t ∈ [0, t] such that x(t) 6= 0, from which
〈∇V (x(t), e(t)), F (x(t), e(t))〉 ≤ −ε|x(t)|2,

• if (x, e) is on the border of C two cases are possible: a jump
occurs, that forces the state of the system in the interior of C,
or there exists a compact interval [0, t] in which the system
can flow. In such case, there exist a time t ∈ [0, t] such that
〈∇V (x(t), e(t)), F (x(t), e(t))〉 ≤ −ε|x(t)|2.

It follows that, no complete solutions to SN , from x = 0 and e 6= 0
remains in the set {(x, e) |V (x, e) = µ}, for any given µ > 0.

By Proposition 1, (x, e) = (0, 0) is global pre-asymptotically
stable

Proof: Theorem 2.
From (13a) and (1) of the theorem, (34) hold also for Theorem 2.

Suppose that (x, e) belongs to D and V (x, e) = µ, for some
given µ > 0. By (i), if e 6= 0 then V (G(x, e))− V (x, e) ≤
−α(|e|) therefore no complete solutions to SN , from e 6= 0
remains in the set {(x, e) |V (x, e) = µ}. Moreover, inequality (14)
guarantees that if x 6= 0 and e = 0 then (x, e) cannot belong to
D. For instance, let x 6= 0 and e = 0 then

−xTQx+ xTR11x+ xTR12e+ eTR22e =

= −xTQx+ xTR11x < −ε|x|2
(35)

therefore (x, e) belongs to the interior of C and the system flows
only.

The analysis of the continuous dynamics of SN follows the line
of the proof of Theorem 1. It follows that no complete solutions to
SN from (x, e) ∈ C remains in the set {(x, e) |V (x, e) = µ}, for
any given µ > 0. By Proposition 1, it follows that (x, e) = (0, 0)
is global pre-asymptotically stable.

B. Proof of Theorem 3.
By (1) of Theorem 3, for all (x, e) ∈ D

V (G(x, e))− V (x, e) < 0 if e 6= 0. (36)

From the definitions of Ci and C in (19) and (20a), we have that
〈∇V (x, e), F (x, e)〉 is equal to

= −xTQx+ xTR11x+ xTR12e+ eTR22e (37a)

≤ −xTQx+ xTR11x+K1|x||e|+K2e
Te (37b)

≤ −xTQx+ xTR11x+K1|x|
q∑
i=1

|ei|+K2

q∑
i=1

e2i (37c)

≤
q∑
i=1

(
−αixTQx+αixTR11x+K1|x||ei|+K2e

2
i

)
(37d)

≤
q∑
i=1

−αiε|x|2 ≤ −ε|x|2 for all (x, e) ∈ C. (37e)

The inequality between (37a) and (37b) follows from the definition
of K1 and K2. The inequality between (37b) and (37c) follows from
the fact that |e| ≤

∑q
i=1 |ei|, where ei is the ith component of e,

for each i ∈ {1, . . . , q}. (37d) follows from (37c) by
∑q
i=1 αi = 1.

Finally, from Ci and C, the argument of the sum in (37d) can be
written as (37e). It follows that (33) holds.

Suppose now (x, e) belongs to D and V (x, e) = µ, for some
given µ > 0. If e 6= 0 then (36) holds and no complete solutions to
SN from e 6= 0 remains in the set {(x, e) |V (x, e) = µ}. If x 6= 0
and e = 0 then for each i ∈ {1, . . . , q}

−αixTQx+αixTR11x+K1|x||ei|+K2e
2
i =

= −αixTQx+ αix
TR11x < −αiε|x|2

(38)

where the last inequality follows from (14). It follows that (x, e)
cannot belong to D, it belongs to the interior of C and the system
flows only.

The analysis of the continuous dynamics of SN follows the line
of the proof of Theorem 1. It follows that no complete solutions to
SN from (x, e) ∈ C remains in the set {(x, e) |V (x, e) = µ}, for
any given µ > 0. By Proposition 1, it follows that (x, e) = (0, 0)
is global pre-asymptotically stable. �

C. Proof of Theorem 4.
We need the following definition.
Definition 4: For each p ∈ N, a function σ : Rp → R is said to

be homogeneous with degree δ ∈ R if, for all z ∈ Rp and λ > 0,
σ(λz) = λδσ(z).

From Theorem 1, 2 or 3 we know that{
˙̂x = A11x̂+A12e
ė = A21x̂+A22e

(x̂, e) ∈ C (39a){
x̂+ = x̂
e+ = g(x̂, e)

(x̂, e) ∈ D (39b)

y = Hx̂ (39c)

is GpAS. Then, define z =

[
x̂
e

]
, A =

[
A11 A12

A21 A22

]
and G(z) =[

x̂
g(x̂, e)

]
. From the homogeneity of (39) (e.g. [14], continuous and



discrete dynamics are defined by linear vector field and C and D are
cones) and from [2, Theorem 7.9] and [14, Theorem 2], there exists
a function V : Rn×Rq → R≥0 that is smooth on Rn×Rq \ {0}
and homogeneous with degree δ ∈ R such that,

α1(|z|) ≤ V (z) ≤ α2(|z|) ∀z ∈ Rn × Rp (40a)

〈∇V (z), Az〉 ≤ −µV (z) ∀z ∈ C (40b)

V (G(z)) ≤ νV (z) ∀z ∈ D (40c)

where µ > 0, ν ∈ (0, 1) and α1, α2 ∈ K∞.
Consider δ = 2, then for each z, w ∈ Rn × Rp,

〈∇V (z), w〉 = lim
h→0

V (z + hw)− V (z)

h

= lim
h→0

V (|z| z|z| + |z|
h
|z|w)− V (|z| z|z| )
|z| h|z|

= lim
h→0

|z|2

|z|
V ( z|z| +

h
|z|w)− V ( z|z| )

h
|z|

(41)

where the last equality is the result of the homogeneity of V . Since
w is arbitrary, for any z 6= 0, ∇V (z) = |z|∇V ( z|z| ). Since V is
smooth, |∇V (z)| ≤ λ|z|, where λ = max|z|=1 V (z). Note that
α1(1)|z|2≤|z|2V ( z|z|)≤α2(1)|z|2.

With these tools we can now prove the global practical asymp-
totic stability of (30). Consider γ ∈ R>0, γ � 1 and take
` = α2(ρ + γρ), that implies, {z | |z| ≤ ρ} ⊆ {z |V (z) < `}
and consider the compact set A = {z |V (z) ≤ `}×{0}. We prove
that A is globally pre-asymptotically stable for (30). Define the
candidate Lypunov function V (z, η) as follows.

V (z, η) =

{
V (z)− `+ 1

2
ηTPη V (z) ≥ `

1
2
ηTPη otherwise

(42)

where P is a positive definite symmetric matrix of dimension n×n.
Note that V is continuous in Rn × Rq × Rn, 0 in A and smooth
for points (z, η) ∈ Rn+q × Rn such that V (z) 6= `. It is locally
Lipschitz for points (z, η) ∈ Rn+q × Rn such that V (z) = `.
For such points, say (z, η), we consider the generalized gradient
(in the sense of Clarke) of V , that coincides with the convex hull
of all limits of sequences ∇V (zi, ηi) where (zi, ηi), i ∈ N, is
any sequence converging to (z, η) while avoiding an arbitrary set
of measurement zero containing all the points at which V is not
differentiable [11].

Define B =

[
LH
−HLH

]
and consider (30a). The directional

derivative of V is less then or equal to v1 = 〈∇V (z), Az +Bη〉+ ηTP (A− LH)η V (z) > `
v2 = ηTP (A− LH)η V (z) < `
v3 ∈ co{v1, v2} otherwise

By Assumption 2, ηTP (A−LH)η ≤ ηTQη, where Q is a negative
definite symmetric matrix of dimension n × n. Q will be defined
below to guarantee negativity of the derivative of V . (i) Consider
the case z ∈ C.

v1 ≤ −µV (z) + λ|B||z||η| − ηTQη

≤
(
−µα1(1) + ε2

)
|z|2 +

(
λ|B|
ε2
− λmin(Q)

)
|η|2

v2 ≤ −ηTQη

Therefore v1 is strictly negative in {(z, η) | z ∈ C or |z| ≤ ρ} \ A
for ε2 < µα1 and λmin(Q) > λ|B|

ε2
. v2 is strictly negative in

{(z, η) | z ∈ C or |z| ≤ ρ} \ A by the fact that, when η = 0,
z ∈ C and V (z) ≤ ` imply z ∈ A. (ii) Consider the case z /∈ C.
Thus, |z| ≤ ρ. In this case, V (z) < ` therefore the directional

derivative of V is less then or equal to v2, that is, it is negative in
{(z, η) | z ∈ C or |z| ≤ ρ} \ A.

Consider now (30b). Then,

V (z+, η+)− V (z, η) ≤ (ν − 1)V (z) ≤ −(1− ν)α1(1)|z|2

that is negative in {(z, η) | z ∈ D and |z| ≥ ρ}\A by the fact that
|z| ≥ ρ. Then, by [11, Theorem 7.6] and [11, Corollary 7.7] the
set A× {0} is globally pre-asymptotically stable.

Note that A × {0} ⊆ α−1
1 (α2(ρ + γρ))B × {0}. By the fact

that αi(s) = |s|2αi(1), for i ∈ {1, 2}, it folllows that α−1
1 (s) =(

s
α1(1)

) 1
2 . Then, α−1

1 (α2(ρ+ γρ)) =
(
α2(1)
α1(1)

) 1
2
(ρ+ γρ), that is,

γ = (1 + γ)
(
α2(1)
α1(1)

) 1
2 . �
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