Machine Vision and Applications manuscript No.
(will be inserted by the editor)

Hyper-parameter optimization tools comparison for Multiple Object

Tracking applications

Francisco Madrigal - Camille Maurice -

Received: date / Accepted: date

Abstract Commonly, an algorithm needs a certain number
of variables that control its behavior. The optimal values re-
sult in a better performance that could generate profits for
companies, make the algorithm stands out from similar ap-
plications or improve its ranking in algorithm competitions.
However, finding this values is not straightforward because
manual tuning could be a stressful and difficult task even
for expert users. This paper presents, evaluates and com-
pares 4 tools in the literature for hyper-parameter optimiza-
tion, selected due to their number of citations, code avail-
ability and impact on literature: MCMC, SMAC, TPE and
Spearmint. We evaluate these tools using the publicly avail-
able source code provided by the authors in a computer vi-
sion application: Multiple Object Tracking (MOT), which
is a challenging topic and the strategies rely on a set of
tunable parameters. This analysis considers the impact of
hyper-parameter optimization tools in terms of stability, per-
formance, usability, among others. The evaluations are car-
ried out using public benchmarks such as PETS09 and ETH
and the results show how these tools change the performance
of a MOT framework and how this would affect the results
of real ranked competitions. Our goal is (1) to encourage the
reader to use these tools and (2) to provide a some guidelines
that helps anyone when tuning his/her methods.

Keywords Stochastic optimization - Parameter tuning -
Visual tracking

This work was carried at LAAS-CNRS and supported by the DGA-
RAPID project SERVAT: Suivi Et Reconnaissance Visuels, Adaptatif,
Temps-réel.

F. Madrigal, C. Maurice, F. Lerasle
LAAS-CNRS

7 av. du Colonel Roche

31400 Toulouse France

E-mail: pacomd @laas.fr

Frederic Lerasle

1 Introduction

Multiple Object Tracking (MOT) has several applications
such as surveillance, human-machine interaction, among oth-
ers. It is a hot topic for research because there are still many
challenges to be solved, such as occlusion, identity changes
or lack of precision [51,33]. In the last decades, MOT com-
munity has addressed some of the aforementioned issues
with different strategies [11]. Some approaches follow a
tracking-by-detection scheme [10,43], others compute the
trajectories with the use of graphs [1,42].

Regardless of the strategy used, one thing in common
is that most of them require adjusting a set of parameters
that control the method behavior. Commonly this tuning is
done manually or, sometimes, the parameters are set based
on heuristics or assumptions. Hand tuning is feasible when
the number of parameters is small. Otherwise, this could be
difficult due to time consumption and requirement of expert
skills. In either case, it is possible that the configuration has
a bias due to the user. Therefore, it is difficult to know if
low performance depends on the proposal itself or on the
inadequate selection of parameters. This tuning problem is
considered in some methods that include techniques that al-
low to set their parameters on-line [18,57]. In some cases,
a furtive search can be made in the (discretized) space of
the parameters, but this requires a high computational cost.
An efficient way to find optimal values automatically is to
use more sophisticated algorithms such as numeric methods
[37,2] or machine learning [18], but which technique to use
depends on the type of application.

If we classify the proposals in two groups deterministic
or stochastic [14], we can observe that the former is eas-
ier to estimate than the latter because it provides always the
same results with the same parameters. Stochastic based ap-
proaches are more difficult to tune because they produce a
different result in each execution even with the same param-

Francisco Madrigal et al.

eters [25]. An example is the particle filter-based methods
that give a different result in each evaluation. Therefore, they
require evaluating several times the same parameters only to
decide if those are good enough.

In the literature there are methods that can find the best

parameters in an efficient way. Hyper Parameter Tuning (HPT)

could be seen as an optimization process, where the goal is
to find the set of parameters that maximize (or minimize)
a cost function. The optimization schemes [41,7,38] can
be roughly classified as local and global optimization [37].
The latter focuses on finding the minimum (or maximum)
over the whole parameter space instead of only in the lo-
cal space. Global optimization [23] can be divided again
into three subgroups: Deterministic, Stochastic and Meta-
heuristic. The first requires the derivate of the cost function
[24] meanwhile the third group is built up based on heuris-
tics [50,7]. Although, for stochastic tracking methods, it is
impossible to infer any information of the cost function and
it then must be treated as a black box. Therefore, the use of
deterministic optimization methods is not suitable and the
selection of a heuristic-based optimization could not work
for all the cases.

In order to use the HPT methods, we need to transform
the MOT approach into a cost function, which can be done
using an evaluation metric. MOT community has created
a set metrics called CLEAR-MOT [5] that allow the eval-
uation and comparison of the different proposals in a fair
and quantitative manner. Furthermore, MOTChallenge [30]
community has coded those metrics in a public evaluation
toolkit. Also, they provide a framework that includes a col-
lection of datasets, several challenges and a ranking of algo-
rithms, all of those aimed to address MOT challenge. There
the state-of-the-art methods are ranked with respect to their
performance. In general, the results are so close that even
a small improvement of 2 percent can lead to win or lose
10 positions in the ranking. However, the precision of the
results may depend on the selection of the meta-parameters
in the proposals [34]. Therefore, the ranking could change
with a more optimal tuning of the parameters.

From all of these, the problems that make tuning a dif-
ficult task, even with optimization, are: (1) performance im-
pact, (2) computational time cost, (3) performance stability,
(4) handling of external tools and (5) robustness of those
tools. There are multiple studies on the influence of the (on-
line/ offline) free parameters [4,9,47] (HPT tools) that can
handle the above problems. However, it is not always clear
which one to use.

The objective of this work is to provide the reader with
an analysis, as detailed as possible, of several hyper param-
eter tuning tools. Highlighting their strong features, weak
points and other aspects of interest that can guide the reader
to select the most pertinent tool for their tracker implementa-
tion and beyond. Among all of them, we select the most rel-

evant optimization methods, in terms of number of citations
and code availability, and we evaluate them in the computer
vision context of multi-person tracking.

Our analysis is aimed at classic tracking using the Par-
ticle Filter (PF) that commonly involve several parameters
[1]. This study shows the existence of correlation between
the parameters and how this affects the search of the opti-
mal parameters. We evaluate the performance and provide
a statistical analysis of each tool in terms of performance
(CLEAR-MOT), stability, robustness and convergence speed
among others. Even if this work is aimed to tracking appli-
cations, more precisely in multiple pedestrian tracking, the
results can be applied to another vision-based modality. To
the best of our knowledge, no similar studies have been pro-
posed in the visual tracking community even though opti-
mization tools are essential for fine-tuning [40].

This paper provides a substantial improvement to a pre-
viously published conference paper [35]. Here, we evaluate
a monocular MOT framework more generic than the multi-
camera scheme of [35]. The analysis is broader, with more
tools, considering more aspect than the original such as:

Tool computational time,

Results repeatability,

Approach convergence,

Size of training set,

Sensitivity to the initial point,

Evaluation using a combination of metrics and
— Comparison with state of the art.

Therefore, the analysis focuses on 8 important points
that make the tools efficient and practical to use: (1) Conver-
gence speed, (2) Stability, (3) Accuracy, (4) Computational
time, (5) Robustness of starting point, (6) training size and
(7) number of particles, and (8) Documentation.

The paper is organized as follows: Section 2 gives the
details of the selected optimization methods and the descrip-
tion of the corresponding tools. The details of our MOT sys-
tem and the set of parameters to be optimized are described
in section 3. The discussion of the results is presented in
section 4. Finally, section 5 describes the conclusion of our
analysis.

2 Hyper-optimization methods

At first the use of an optimization algorithm for tuning pa-
rameters could be seen as unnecessary, difficult to under-
stand or incorporate to one’s application. However, several
proposals [53,52] have shown how parameters with differ-
ent values change the results of the same method. Our work
focuses on analyzing various tools and showing how we can
adapt them into the MOT context.
There are several strategies for hyper-parameter optimiza-

tion in the literature [4,9,28]. Classic hyper-parameter opti-

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 3

mization methods use brute force methods such as random
search or grid search. Some proposals model the problem
as a differentiable function that can be optimized using the
gradient information [24]. New proposals such as [18] main-
tain a continuous update of the parameters using reinforce-
ment learning (Q-learning). Methods based on Bayesian op-
timization have been explored for a long time and have a
good adaptability and efficiency.

Bayesian optimization methodology estimates the global
maximum (or minimum) of noisy black-box functions and
be used in various areas such as machine learning [32,45],
robotics [31, 12], deep learning [17], combinatorial optimiza-
tion [48,27], among others. It collects information from the
observation and builds a model as close as possible to the un-
known function [40]. Most of the methods begin with a gen-
eral model of the function, given a priori, which is then up-
dated according to the observations obtained from the eval-
uation of the hyper parameters. This process is iterative and
the method carefully chooses the next parameters to evalu-
ate. An intelligent algorithm should have a good trade-off
between the exploration of the hyper-parameter space and
exploitation of the cost function, i.e. high values when eval-
uating the cost function. If this is the case, the algorithm
will converge faster, requiring fewer function evaluations
and therefore less computational time.

In the literature, there exists several proposals with this
goal but only a few provide open source code. We privilege
those approaches with available code. Nevertheless, in the
literature there are methods, easy to implement, that could
help to find the optimal parameters. To know if a classical
method is enough to find reliable parameters, we start our
study with a brute force methodology, i.e. grid search, and
simple stochastic optimization algorithm as a baseline.

2.1 Exhaustive grid search

Grid search optimization exhaustively evaluate candidates
from a grid of parameter values. The grid is built by divid-
ing the n parameters b times and thus the search space has
b™ configuration. It is a simple method that does not require
additional knowledge and that can be applied immediately
to any algorithm. However it suffers from the curse of di-
mensionality, if either both number is large then the con-
figuration space can explode making difficult to optimize
in realistic time, but it is easily parallelizable because the
hyper-parameter are independent of each other.

2.2 Bayesian optimization
It may seem that using a sophisticated optimization algo-

rithm is unnecessary, difficult to understand or to use in a
particular method. Perhaps a basic method is sufficient to

find reliable parameters. To know if this is the case, we be-
gin our study by analyzing a classical stochastic optimiza-
tion algorithm as a baseline.

2.2.1 Markov Chain Monte Carlo optimization

Generally, classical methods are model-free, with a large
theoretical background [36]. Those are relatively simple and
easy to implement. Since we consider our function as a black
box, we need a strategy that does not rely neither on the
gradient nor heuristics. Thus, we employ stochastic opti-
mization based on Markov Chain Monte Carlo as a baseline
to compare (in terms of performance and easiness of use)
against more robust techniques. The Markov Chain Monte
Carlo MCMC) is a set of stochastic methods based on a
sampling procedure. It is widely used in the literature, most
commonly to determine numerical approximations, which,
in our case, is the optimal value of the loss function. They
do not require prior information of the function, i.e. gradient.
We can find several MCMC proposals in the literature but
we focus on the Metropolis-Hastings (MH) algorithm [8].
MH approximates a distribution from which direct sampling
is difficult or impossible (i.e. the loss function) by draw-
ing samples from a prior known probabilistic distribution.
Also, MH does not suffer from the curse of dimensional-
ity that allows estimating high dimensionality distributions
efficiently.

To define it mathematically, let f(\) be the function that
evaluates the hyper parameters \. Initially, we choose an
arbitrary initial set Ay and a probability density g(-) from
which we can easily draw new samples given the previ-
ous estimation. In our case, we define g(\;) as a Gaussian
distribution centered at the previous \; with a fixed vari-
ance. In each iteration, we draw a candidate sample * ~
g(A¢) which is used to calculate the acceptance ratio o =
F(A*)/f(A\). We accept the new candidate A\;11 = A* if it
improves the function value (i.e. o > 1). If not, we accept it
with certain probability given by uniform distribution. The
details of the algorithm are available in [8].

2.2.2 Spearmint

The previous section describes how MCMC approximates
the distribution of the cost functions using sequential sam-
ples. Moreover, if we have enough samples we can assume,
following the central limit theorem, that those induce a mul-
tivariate Gaussian distribution. This assumption about the
distribution of the function is known as the Gaussian pro-
cess [40]. Some optimization proposals are based on this
idea and one in particular is the work of Snoek et al. [45]
called Spearmint, which analyzes practical considerations to
improve this Bayesian optimization algorithm. Spearmint is

Francisco Madrigal et al.

well known in the community, having over 1000 citations
and dedicated websites to explain it'2.

The objective of Spearmint [45] is to capture the depen-
dence between the hyper parameters A and the cost function
f. This is achieved with the use of a probability distribution
p(f|\), modeled by a Gaussian process. However, instead of
finding the maximum likelihood, the proposal marginalizes
the model using slice sampling. Each slide is independent
from the others, therefore they can be evaluated in parallel,
each one with a different marginal. This capability of paral-
lelization makes possible to reduce the computational time
of some expensive methods such as Deep Learning [46,54].
Several approaches based on a Gaussian process exploit this
mechanism of parallelization [26]. Parallelization is a very
important point, multiple applications, that although a bit
out of our tuning context, have shown the benefits of paral-
lelism in contexts such as video coding [55,56], allowing to
process more information in a fraction of time.

Snoek proposes others practical considerations such as
the use of a Matérn 5/2 kernel instead of squared exponen-
tial kernel. The latter is typically used on Gaussian process
regressions but this is unrealistically smooth for several op-
timization problems. Also, the approach introduces the Ex-
pected Improvement (EI) per cost acquisition function that
samples not only good parameters but also parameters fast
to evaluate.

2.3 Structure-based Bayesian optimization methods

Other methods try to describe the manifold of the hyper-
parameter space through the use of models, generally fol-
lowing an iterative optimization strategy. In each iteration
the methods evaluate a hypothesis of the parameters and up-
date the model. After a given number of iterations, they pro-
pose a final candidate according to their own methodology,
which provides the best performance. This group of methods
is called Sequential Model-Based Optimization (SMBO) [27]
and is recurrently used when the black box cost function is
computationally expensive. We evaluate two state-of-the-art
methods, selected based on their popularity (high number of
citations), availability of source code and their good perfor-
mance.

2.3.1 Sequential Model-based Algorithm Configuration

One instantiation of SMBO is the Sequential Model-based
Algorithm Configuration [27] (SMAC), which is an opti-
mization method based on machine learning and has over

! http://fastml.com/tuning-hyperparams-automatically-with-
spearmint/

2 http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-
learning/hyperparameter-o/spearmint-bayesian/

600 citations. This tool is under support including the new
version 3, which is still in development. This iterative ap-
proach considers all the collected information when propos-
ing a new candidate, leading to better parameter estimations.
Here, SMAC models the posteriori p(f | A) as a Gaussian
distribution using random forests (RF) and it estimates an
empirical mean and variance for each tree. This RF-based
model improves the performance in discrete optimization,
adapts easily to the data and can handle noisy functions with
parameters of high dimensionality. SMAC works in the fol-
lowing way: First, the set of proposal parameters are sam-
pled from a uniform distribution in a given finite range. Sec-
ond, the samples are divided according to one randomly
selected parameter of A\, which later are used to build the
regression trees. This division process is repeated until it
reaches a minimum number of samples per branch. The con-
figurations are evaluated using an “expected improvement
(ED)” criterion and the most promising are selected. Finally,
the best configuration, the one with the highest EI score, is
compared against the previous one. The new proposal is ac-
cepted if it improves the cost function value. If that is the
case, the corresponding tree is used in the next iteration.

2.3.2 Tree-structured Parzen Estimator

The Tree-structured Parzen Estimator [3] (TPE) is a well-
known model-based method and has over 500 citations. While
SMAC and Spearmint model p(f | A) explicitly, i.e. the es-
timation of the cost function value given the parameters,
TPE factors it. Thus, it models the probability of the pa-
rameters given that they improve (p(A | f > f*)) or worsen
(p(A] f < f*)) the evaluation of the loss function according
to a fixed quantile of the losses observed so far. These two
probabilities are modeled with tree-structured Parzen esti-
mators.

In practice, TPE draws, in each iteration, new samples
of the parameters and selects the set to test during the next
iteration. TPE draws samples of A\ uniformly in the config-
uration space, therefore it does not require initial guesses
or training sets. Then, the samples are evaluated according
to cost function f. The approach splits the samples in two
groups based on their score. The first group has all sam-
ples that improve the current score estimation f* meanwhile
the second contains the remaining. Then, both groups are
used to model the likelihood probability: a model g(\) =
p(A| f > f*) for the first group with greater values and
I(A) =p(A| f < f*) for the second group with lower val-
ues. The models use a 1-D Parzen estimator to measure the
density of the groups through a hierarchical structure. The
goal is to create new candidates that are most likely to be
in the first group. Thus, new samples of g(\) are drawn at
each iteration and the one with the highest improvement is

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 5

then used in the next iteration. TPE defines the Expected

Improvement as the ratio between models, EI(z) = %

2.4 Associated tools

MCMC is a robust method to estimate the parameter distri-
bution and its implementation is simple and does not require
a strong background. Therefore, we create an implementa-
tion in C++ using the classic Metropolis-Hastings algorithm
[8]. It receives the same input as the tools such as the limits
of the configuration space, number of iterations, initial point
and the black box cost function. The configuration space is
fixed in the same way as the other tools, where new sam-
ples follow a Markov chain and are drawn from a Gaussian
distribution with mean in previous state and fixed variance.
Here, the number of iterations plays an important role in the
final results. A small number could lead to an underestima-
tion of the parameter distribution but a large number could
generate an over-fitting problem.

Spearmint tool [45] was created by members of the Har-
vard Intelligent Probabilistic Systems Group. The open source
code ? requires installing both Python and MongoDB [13],
being the latter is a database software that keeps the col-
lected information of Spearmint. MongoDB allows differ-
ent applications (or threads of the same application) to ac-
cess the same set of data simultaneously. This allows several
executions of the tool to communicate, making parallel op-
timization possible. Also, it can be used to track the process
from the last evaluated iteration, allowing the user to con-
tinue the optimization or to analyze the results in case there
is a problem with the evaluation of the function. Spearmint
documentation is very limited, with only a short explanation
of how to set up a simple experiment. The included exam-
ples give a better idea of the different tool parameters avail-
able. It requires defining two files: a parameter file, which
set the configuration space limits, and a Python file, which
launch the black box function. Additional parameters such
as number of iterations are passed as terminal arguments.

SMAC [27] is a publicly available tool for parameter
optimization that has been developed for several years. The
stable release SMAC v2 has been published in 2015 and v3
is in development. It is based on Java #, making it easy to
install and to run on Windows and Unix environment. The
authors provide documentation such as a quick installation
guide, an environment setup and a detailed manual describ-
ing the tool, which includes a good description of the out-
puts. The framework is easy to use, requiring the definition
of a scenario file (in Python) and a parameter file. The first
has the information to launch the black box function, the
path to the parameter file and optimization options, e.g. the

number of iterations. The parameter file describes the con-
figuration space limits, initial point and data type.

TPE [3] is an optimization tool and it forms part of the
Hyperopt library> and Optunity library 6. The latter is sup-
ported for different languages such as Python, MATLAB,
Octave, R, Julia, and Java. It is based on Python, which
should have been installed beforehand. Hyperopt implements
TPE algorithm for Python and can be used either serially or
in parallel via MongoDB. Both libraries provide a simple
documentation and small examples of their use. The con-
figuration is simpler than SMAC, limiting it to the call of
a minimization function that receives as parameters the ob-
jective function, number of iterations and the limits of the
configuration space.

3 Study case

In this paper, we evaluate the performance of different hyper-
parameter optimization tools. This analysis can be done on
any methodology that can be formulated as a cost function.
Nevertheless, the relevance of optimization is more evident
with complex methods with several parameters.

Some Multiple Object Tracking (MOT) methods fit well
in this description [29]. They are widely studied in the liter-
ature because there are several challenges in order to detect
and track pedestrians/people correctly. Those methods are
usually grouped as deterministic or stochastic [49,44]. With
the later, the optimal parameters are more challenging to find
because the same set of parameters provides different results
in each evaluation.

MOTChallenge provides the results of several tracking
methods where hundreds of those are based on tracking-
by-detection. Thus, we follow a decentralized particle fil-
ter strategy in the vein of [10]. Therefore, we implement a
tracking-by-detection framework where each target state is
estimated by a Particle Filter (PF) in image plane. We de-
fine the target state as X = {z,y, u, v} where (z,y) are the
2D image position and (u,v) are the corresponding veloc-
ity components. We use the pre-computed detections named
ACFINRIA, which are provided by MOTChallenge [30].
Thus, we always have the same detections for all the exper-
iment, limiting the variability of the algorithm to only the
tracker. The detector is not a vital part of this work because
it is not considered in the tuning process.

Each detection is associated to one tracker only if the
distance between them is smaller than a threshold dH. We
perform the association with the Hungarian algorithm [10,
39,6] and we create a new tracker for any detection that has
been not associated to an existing tracker. Fixing a value to
dH, in the image plane, is not that easy because its value

3 https://github.com/HIPS/Spearmint

3 http://hyperopt.github.io/hyperopt/

4 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/quickstart.html © http://optunity.readthedocs.io/

Francisco Madrigal et al.

depends on the image size, frame-rate and how far camera
is from the targets. Moreover, small values can omit correct
associations meanwhile high values could lead to a wrong
association. So, we have to tune dH in such a way that it
generalizes the distance for all cases.

We use color information to model the pedestrian ap-
pearance with a histogram per target. Then, each tracker
contains a reference histogram H,., which defines individ-
ual appearance, and we build a histogram for any incoming
detection H;. The observation model of the particle filter
measures both histograms using the Bhattacharyya distance.
The reference histogram is updated as the weighted sum of
both: H, = hurxH, + (1 — Hy), where 0 < hur < 1is the
histogram updating rate. If the target appearance does not
change much over the scene, i.e. constant lighting, we can
put hur close to 1 or reducing it otherwise. If the value is
too small, we risk adding spurious information in the model,
which reduce tracking performance. Finding the optimized
value is essential to obtain good results.

The motion model of our PF consists of a random walk
model, here the state is updated as follows: X; = X;_1) +
n: where n; = {n},n?,n?,n}} is an independent Gaussian
noise for each parameter (1, ~ N (0, rwn,)). The random
walk noise rwn,. allows the tracker to move at different di-
rections with different speed. However, the correct setting
depends on the behavior of pedestrians. Small values are
good to track slow pedestrians while higher values allow
fast targets to be followed. Normally, the sequences have
both cases (slow and fast pedestrians) and finding the opti-
mal noise parameters is a difficult task.

Our implementation of the particle filter follows the Se-
quential Importance Resampling scheme, applying a resam-
pling step in each iteration. The number of particles np plays
an important role. In many cases, a large number of particles
could improve the state estimation but this also increment
the computational cost. Sometimes a small number is ade-
quate for simple scenarios. Therefore, we need to find the
number of particles with the best accuracy/computational
cost ratio. Finally, this implementation of a basic tracking-
by-detection framework has 7 parameters to tune: associa-
tion distance dH, histogram updating ratio hur, four ran-
dom walk noise variables rwn, and the number of particles
np. Those components are put together in a vector:

A = {dH, hur, rwny, rwng, rwng, rwng, np}, (1

defining our parameter set used in the optimization pro-
cess. These are the parameters that a MOT system com-
monly uses but more parameters can be included (i.e. de-
tector threshold) or a different tracking methods with other
parameters.

Fig. 1: Examples of sequence S2L1 from PETS 2009
dataset [22]. View from camera 1.

Fig. 2: Examples of sequence Sunny Day from ETH [20].

4 Evaluation of the tools

Initially, we describe the data and metrics used to perform
the evaluations as well as the methodology. Finally, we present
the results and we discuss them in both quantitative and
qualitative aspects.

4.1 Dataset description

For all the evaluations of the presented tools, we use two se-
quences extracted from well-known public datasets: PETS
2009 [22] and ETH [20]. Both sets are challenging bench-
marks to evaluate the performance of any tracking frame-
work. The PETS2009 dataset has several sequences designed
for a specific goal that goes from single pedestrian tracking
to flow estimation. The density of crowdedness varies from
sparse to highly dense. We use the set S2L1 (see Fig. 1)
that consists of 8 synchronized sequences observing a com-
mon outdoor scene. Each video has 795 frames recorded
at 7 fps with a resolution of 640x480 pixels. It is a struc-
tured scene with three portions of road surrounded by grass.
The sequence has a medium density level, with 19 pedes-
trians, and is oriented to single target tracking with chal-
lenging situations, such as clutter occlusions. Among all the
sequences, we work with the view 2. We focus on this se-
quence because it has been overexploited in the literature
[19,21]. The results have almost reached the ceiling show-
ing small improvement between proposals. This work shows
how the ranking of the same tracking framework can change
with the use of optimally tuned parameters.

The ETH dataset consists of 8 sequences captured by
a stereo pair of cameras mounted to a stroller. The camera
has a resolution of 640x480 pixels with a frame-rate of 13-
14 fps. Each video shows a different place of a busy street.
These are challenging sequences because camera has a low

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 7

point of view increasing the number of occlusions. We eval-
uate the tools using the Sunny Day sequence, see Fig. 2.

Both sequences represent classic scenarios in pedestrian
tracking, the first being a static camera located at the dis-
tance with the purpose of surveillance, and the other a mo-
bile camera with the purpose of interacting with the environ-
ment.

For our framework, we use detections provided by MOTChal—"g3

lenge, which are generated by using the approach of Dol-
lar [16] named Aggregate Channel Features. This pedes-
trian detector is trained using the INRIA pedestrian training
dataset introduced in [15]. We perform the evaluation using
the kit and ground-truth both provided by MOTChallenge
[30].

4.2 Experimental setup

We analyze the performance of several parameters optimiza-
tion tools, where the loss function is a black box, as men-
tioned in section 3, that takes as input the set of parame-
ters A and returns a measure of the tracking performance.
It consists of two parts: (1) a tracking-by-detection system
in the same vein as Breitenstein approach [10] and (2) a
performance evaluation system, which is carried out using
the Multiple Object Tracking Challenge Development Kit
provided by MOTChallenge [5]. This section describes the
configurations used for each tool and the evaluation metrics
used.

4.2.1 Tool configurations

In general, tools require defining three aspects: searching
space, initial value and type of variable. This information
is stored in separate files, with a specific format and name.
Some tools as TPE and Spearmint does not require setting
an initial guess of the parameters, for SMAC and MCMC
we choose the middle point in the search space.

The searching space must be delimited according to the
parameters to evaluate. As mentioned in Eq. 1, we have A
with seven variables and from those, only the histogram-
update-ratio variable hur is well delimited because it is nor-
malized. For the rest, we can only use our experience to set
the limits. Therefore, we define a small configuration space
S fixed around from where we expect to find the optimal
configuration. In our case, S is set as follows:

S ={dH € [0.1,10], hur € [0.1, 1],

2
[0.1,3],np € [10,100]}.

rwnsg €

However, we do not know if those parameters are the
best. Then, we create a larger configuration set L as follows:

0. Convergence - SMAC

38 ‘ }
\
‘ [\ “ ‘ |

(i \ I J ‘ [
fl w\‘ \‘h \ ‘ |
347‘ ‘\ | ‘\‘ W ”\ | ,‘\H "HM “”“ I ““ H“ I \\h \] |
< H‘\“ H ‘HH u} ‘ ‘\”\‘ ‘MLH “‘ It H“\‘\ m‘ }‘ H\
‘H ‘\‘W I | “"T—m’ \““H\‘ I ‘M ‘H M\\W I ﬂ‘ ‘\‘ WW

\
I \H\ m ‘ “ \ \‘ ‘M \\ H
I ‘ I HH‘ ‘
|

% | \
“"Mw\ \‘ ‘,“\‘ “ “‘

30 -
|

28| ‘

26 I I I I)
0 50 100 150 200 250

Iteration
Small configuration space - No. Particle is fixed

Fig. 3: Evaluation of SMAC using the configuration SF. The
function evaluations, using the metric MOTA, are shown in
orange. Cumulative distribution is shown in blue.

L = {dH € [0.1,20], hur € [0.1,1],

€ [0.1,20],np € [10,100]}. ©)

TWN

Number of parameters could influence the optimization
process. Also, it could be a correlation between the number
of particles np and the rest of parameters which influences
the final results, i.e. few particles make the system faster.
A higher number could overcome the limits of the other
parameters but this represents an additional computational
cost. We analyze these aspects by creating two experiment
sets labeled as F' and N F' that fix a priori the number of par-
ticle or not, respectively. In this manner, we have a set with
6 parameters and other with 7. The fixed number of particles
is not given randomly but is selected with a prior knowledge
that this value is close to the optimum. Otherwise, the results
will have a lower performance.

4.2.2 Evaluations and comparison protocol

In the literature there exists several metrics to measure the
performance of tracking approaches. The best-known are the
CLEAR-MOT and those are implemented in the MOTChal-
lenge development kit. From all the metrics, we use the Mul-
tiple Object Tracking Accuracy (MOTA) metric as the loss
function f because it is, commonly, the key metric when
comparing several tracking methods. It compares the algo-
rithm results with respect to the ground-truth. MOTA com-
bines the information of missed detection, mismatches be-
tween detected objects, and false positives. The MOTChal-
lenge [30] ranked by default the results using this metric and
when comparing the best positions of the 2D MOT 2015

Francisco Madrigal et al.

34 Convergence

Convergence

Spearmint
30‘ —MCMC
0 50 , 200 250 O 50 100 200 250
X i Iteration L .) Iteration o X
Small configuration space - No. Particle is fixed Small configuration space - No. Particle is not fixed
(a) SF (b) SNF

35 Convergence 35 Convergence

3 30|

25 25|
< <
= =
Q20 go

15 15

= SMAC —
0 = R =g
Spearmint Spearmint
e MCMC e MICMC
5 \ | | I |
0 50 100, ration™° 200 250 54 50 foo 150 300 250
i i B icle is fi eration
Long configuration space - No. Particle is fixed Long configuration space - No. Particle is not fixed
() LF (d) LNF

Fig. 4: Convergence speed evaluation. Cumulative MOTA of SMAC [27], TPE [3], MCMC and Spearmint [45] using

PETS09-S2L1 sequence.

challenge’, we observe that the approaches achieve a simi-
lar tracking precision (MOTP) with a standard deviation of
0.9 over 100. Nevertheless, the difference lies in the accu-
racy that shows a standard deviation of 5.3. By optimizing
this metric, the ranking of the methods could change.

We compare the results of the tools against a baseline
based on grid search. Here the idea is to discretize the space
of the parameters and analyze which is the configuration that
provides the best result. For this evaluation, we use the small
configuration without fixing the number of particles (SNF).
We consider two versions: (1) a grid search by brute force,
called simply grid search, and (2) an Iterative optimization,
where the same discretized space is used but one variable
is optimized at a time. Due to the stochastic nature of the
particle filter, each configuration is evaluated 30 times and
the mean is taken as the estimated value for that configura-
tion. The space is divided into b parts for each variable A,
therefore we have b*» configurations to evaluate, where \,,
is the number of variables. We divide our space with b = 3
and)\, = 7, thus we have 2187 configurations to be eval-

7 https://motchallenge.net/results/2D_MOT_2015/

uated. It should be mentioned that this value is higher than
the number of evaluations/iterations used by the tools, e.g.
2000.

The evaluations are carried out using public datasets fol-
lowing a Non-exhaustive cross-validation validation tech-
nique. Here, videos are divided into two sets, one is a train-
ing set, which is used with the optimization tools to estimate
the optimal hyper-parameters, and the other one for test, us-
ing the optimized parameters. This division allows avoid-
ing over-fitting of the results and boosting the configurations
that generalize better.

Due to the stochastic nature of the method, i.e. track-
ing framework, we evaluate several times (10) each possible
configuration of all the tools. Thus, the results shown are the
mean of all the evaluations. This allows to evaluate the tools
in terms of stability and convergence speed. The latter is an
important factor that can favor the use of one tool or another.
We launch all the evaluations using a Dell Precision Tower
3620, with an Intel Xeon CPU v5 of 3.60GHz and 8 cores,
16 GB of RAM over a Linux system (Ubuntu 14.04).

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 9

3 Convergence

34 Convergence

—

2 Spearmint| 27| Spearmint
= MCMC =—=MCMC

&) 80 100 150 s00 280 2% 80 100 300 250

§ . lteration o X i lteration L .
Small configuration space - No. Particle is fixed Small configuration space - No. Particle is not fixed
(a) SF (b) SNF
35 Convergence 35 Convergence

19 Spearmint
Spearmint
— MCMC —y A
5 50 , 200 280 °0 50) 300 250
X X Iteration L . . Iteration o X
Long configuration space - No. Particle is fixed Long configuration space - No. Particle is not fixed

(c)LF

(d) LNF

Fig. 5: Convergence speed evaluation. Cumulative MOTA of SMAC [27], TPE [3], MCMC and Spearmint [45] using ETH

Sunny day sequence.

In traditional optimization, the algorithm converges once
it reaches a stationary value of the cost function, but this
is not possible when optimizing stochastic methods. In the
literature there are plenty of termination criteria and select-
ing the most appropriate depends on the evaluated functions.
In theory, the methods will converge to the optimal value
when the number of iterations tends to infinity, following
the central limit theorem. Therefore, instead of providing
an automatic termination criterion, the tools end after a cer-
tain number of iterations, set by the user. SMAC, TPE and
Spearmint benefit from additional iterations because that al-
lows them to further explore the configuration space. In or-
der to analyze the convergence of the tools, we use the weak
convergence criterion that estimates the cumulative distribu-
tion of the measured parameters. We can see an example in
Fig. 3 using the results of SMAC. The orange line shows the
evaluations of the function (tracking framework), in terms of
MOTA, and blue line is the cumulative distribution. We ob-
serve that after 50 iterations SMAC starts to stabilize. This
means that most of the time SMAC is exploring zones with
high MOTA values (33).

4.3 Results

We present the results of each hyper-parameter optimization
tool using two challenging sequences, each one under two
different contexts: static and dynamic cameras.

We analyze the tools in terms of: (1) convergence speed,
(2)stability of the optimum value, (3) performance accuracy
according to MOTA metric, (4) computational time and in-
fluence of (5) starting point, (6) training size and (7) number
of particles. Finally, from these evaluations, we propose a
ranking of the tools in Tab. 10.

Convergence speed. We analyze the weak convergence cri-
terion for all the tools under different configurations S and
L with the number of particle fixed F' and non-fixed N F'.
Fig. 4 and 5 show the results. We observe that SMAC and
TPE stabilize faster and to the highest values most of the
time. Meanwhile, MCMC stabilizes slower than the others
and Spearmint shows an average performance in most of the
cases.

Stability. In Figs. 8 and 9 we analyze the performance sta-
bility of the tools for the four configurations SF, SN F, LF,

Francisco Madrigal et al.

Table 1: Accuracy. Evaluation over the PETS09 S2L1 sequence.

Training Test
Conlf. It
MCMC SMAC TPE Spearmint MCMC SMAC TPE Spearmint
SF 250 32.75 3345 38.20 33.47 21.65 2070 21.12 21.94
SF 500 30.28 3355 3944 33.53 21.39 20.58 20.58 20.30
SF 1000 33.10 3346 39.61 33.46 20.64 20.55 20.88 21.96
SF 2000 33.63 3343 39.79 34.01 21.97 20.51 20.78 21.62
SNF 250 35.04 33.97 3944 33.66 20.95 2131 21.67 18.78
SNF 500 31.69 33.87 39.79 33.99 19.89 22.56 20.32 21.86
SNF 1000 30.99 33.80 37.68 33.96 18.72 2176 2145 20.53
SNF 2000 3433 3370 40.14 33.94 22.59 21.74 2021 22.21
LF 250 34.51 33.61 36.97 33.87 21.05 21.99 22.55 22.12
LF 500 33.98 3328 38.73 34.03 19.02 2296 21.77 22.56
LF 1000 35.56 3356 39.09 33.91 18.82 2175 21.62 22.28
LF 2000 3345 33.84 39.09 34.23 22.34 22.16 21.51 19.22
LNF 250 32.75 3395 36.97 34.26 21.18 20.85 21.52 5.43
LNF 500 30.46 3392 37.32 34.27 20.79 20.55 2140 20.76
LNF 1000 33.45 3399 38.56 34.25 20.75 21.85 2141 22.00
LNF 2000 31.87 34.01 40.14 34.51 22.06 21.79 21.97 21.11
StD 1.53 0.23 1.05 0.30 1.17 0.75 0.60 3.98
Table 2: Accuracy. Evaluation over ETH Sunny Day sequence.
Training Test
Conf. It
MCMC SMAC TPE Spearmint MCMC SMAC TPE Spearmint
SF 250 42.39 3439 46.95 35.00 40.75 40.70 40.71 40.62
SF 500 11.68 35.16 4848 36.35 29.91 40.84 40.62 40.65
SF 1000 41.12 3525 46.70 35.98 40.79 40.88 40.95 40.64
SF 2000 25.13 3571 4822 36.23 35.09 40.97 40.69 40.65
SNF 250 43.91 3496 4543 36.56 40.72 40.62 41.03 40.52
SNF 500 12.69 3373 48.22 36.34 39.83 40.77 40.66 40.81
SNF 1000 29.44 3447 4721 37.03 40.74 40.80 40.75 40.44
SNF 2000 20.05 3517 4721 35.86 40.75 40.85 40.59 40.60
LF 250 43.91 3441 4721 35.04 40.48 40.66 40.77 40.78
LF 500 23.86 3558 4721 35.04 13.17 40.66 41.01 41.21
LF 1000 27.16 3530 47.46 37.08 40.68 40.73 40.50 40.84
LF 2000 14.98 34.66 47.62 37.97 34.04 40.81 40.67 40.58
LNF 250 31.22 3533 4645 35.92 40.88 40.89 40.79 41.02
LNF 500 14.72 3375 4949 36.05 36.34 4072 40.82 40.23
LNF 1000 31.73 3522 47.46 36.38 40.66 40.75 40.80 40.57
LNF 2000 22.59 3590 48.73 37.73 40.22 40.89 40.75 36.30
St. D. 10.81 0.62 0.94 0.84 6.95 0.10 0.14 1.08

Table 3: Comparison between best and worst estimations
computed by tools, Tabs. 1 and 2, and base-line grid search
methods.

PETS ETH Sunny

Tool Result Training Test Training Test
MCMC Best 35.56 33.98 4391 59.51
SMAC Best 34.01 35.13 35.90 59.64
TPE Best 40.14 34.70 49.49 59.72
Spearmint Best 34.51 34.33 37.97 59.98
MCMC Worst 30.28 33.39 11.68 59.21
SMAC Worst 33.28 34.01 33.73 59.40
TPE Worst 36.97 33.44 45.43 59.42
Spearmint ~ Worst 33.46 32.73 35.00 59.17
Grid search mean 28.64 30.90 32.25 56.6
It. Op. mean 28.51 30.18 32.31 57.6

LN F. The evaluations are done with 1000 iterations, mean-
ing that each tool evaluate 1000 times the cost function. The
MOTA output is used to build up a box plot that represents
MOTA distribution. Both Figs. show the median (red line),
the first and third quantiles (blue box) and the outliers (red
crosses). We can observe that all the boxes of MCMC are
the bigger than the others.

Accuracy. The previous results indicate that TPE and SMAC
have a better convergence rate with an efficient use of each
iteration. We can observe in Tables 1 and 2 the results in
terms of precision using the MOTA metric. We evaluate the
tools for all the configurations with a fixed number of iter-
ations using the training set (i.e. first part of the sequence).
At the end, the tool gives a configuration and its associated

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 11

. -
wili=NMCMC
@sle=SMAC
TPE
esf==Spearmint
18
250 ‘ 500 ‘ 1000 ‘ 2000 ‘ 250 ‘ 500 ‘ 1000 ‘ 2000 ‘ 250 ‘ 500 ‘ 1000 ‘ 2000 ‘ 250 ‘ 500 ‘ 1000 ‘ 2000 ‘
SF ‘ SNF ‘ LF ‘ LNF
414
412 A
41 A
108 _H7E‘ - 7\ ~— e cavonc
2056 1 " ip— =SMAC
\ TPE
404
\ / v \ @sg==Spearmint
402 \ /
40
250 ‘ 500 ‘ 1000 ‘ 2000 ‘ 250 ‘ 500 ‘ 1000 ‘ 2000 ‘ 250 ‘ 500 ‘ 1000 ‘ 2000 ‘ 250 ‘ 500 ‘ 1000 ‘ 2000 ‘
SF ‘ SNF ‘ LF ‘ LNF ‘

Fig. 6: Accuracy evaluation with MOTA. Each point on the line represents the MOTA value obtained for each configuration.
Top: Evaluation using the test part of PETS2009 S2L.1 sequence, see Tab. 1. Bottom: Evaluation using the test part of ETH
Sunny Day sequence, see Tab. 2.

& MCMC Worst

u SMACWorst
TPE Worst

w Spearmint Worst

& Grid search mean

= ItOp mean
Test

Training

Training

PETS ETH Sunny

Fig. 7: Comparison between worst MOTA results of the
tools and Grid search (last two columns of each group), see
Tab. 3

MOTA value. We evaluate 10 times each tool and we show
the mean value in the training column. This number offers
a good compromise between the computation time and the
number of evaluations needed to estimate the behavior of
these stochastic tools. In all the cases, the variance is less
than 0.2. Then, we evaluate 30 times the parameters com-
puted by the tools using the test set, results are shown in the
test column. Last row shows the mean standard deviation
of each column. For a better visualization, Fig. 6 shows the
MOTA values obtained in the test part for both tables.

The Tab. 3 summarizes the previous results, leaving only
the best and the worst ones. At the same time, it includes

a comparison with the proposed baseline. We analyze the
whole sequences using the best parameters of each tools.
The results are shown in Tables 4 and 5. In both cases, SMAC
and TPE show the best results. The results displayed at the
webpage of MOTChallenge are the average values across all
sequences. Nevertheless, they provide the individual results
of each single video. We calculate the mean and standard
deviation of all provided results for the ETH and PETS se-
quences. The results are shown in the last two lines of the
tables.

Computational time. Tab. 6 and Fig. 11 show the mean com-
putational time used for each configuration (S, L) using the
PETS sequence. The time of each iteration of MCMC is
practically the same, having a linear increment with respect
to the number of iterations. Meanwhile SMAC is a bit slower
than MCMC, but it is faster than the rest of the tools. TPE
has a good performance in comparison, but Spearmint com-
putational time increases at each iteration, which could be
a limitation. Although in our experiment we observe that
Spearmint performs, in general, better with more iterations.
The results with ETH sequence are similar and the only dif-
ference is, therefore, a different number of frames to pro-
cess.

12 Francisco Madrigal et al.

Table 4: Accuracy. Evaluation over the whole PETS09-S2L1 sequence with metrics: IDF1 - ID F1 Score, Rcll - Recall,
Prcn - Precision, MT - Mostly tracked targets, ML - Mostly lost targets, FP - False positives, FN - False negatives (missed
targets), ID Sw, - The total number of identity switches, MOTA - Multiple Object Tracking Accuracy, MOTP - Multiple
Object Tracking Precision, MOTAL - Multi-object tracking accuracy in [0,100] with log10 (idswitches).

Method Conf. IDF1 Rell Pren MT ML FpP FN IDs MOTA MOTP MOTAL
m. M M & @ W) ())) Q) Q)
Grid search 39.8 72.4 64.2 6 2 1876 1283 47 30.9 68.5 32
It. Op. 39.38 7201 6513 74 1.5 1875.9 1261.5 46.3 30.18 68.36 32.81
MCMC SF 4322 7507 65.12 727 043 186940 1158.60 39.97 33.98 69.37 34.80
MCMC SNF 4277 7449 65.18 7.53 1.57 184930 1185.03 40.53 33.83 69.55 34.67
MCMC LN 4233 7415 6503 7.17 1.57 1853.27 1201.23 40.73 33.39 69.37 34.24
MCMC LNF 4238 7429 6524 7.07 183 183897 119460 40.57 33.85 69.47 34.68
SMAC SF 4241 7488 6478 7.57 0.67 1892.13 1167.50 44.13 33.21 69.39 34.12
SMAC SNF 43.15 7533 6524 7.43 0.60 1865.17 1146.03 43.53 34.26 69.56 35.17
SMAC LN 43.82 75.11 65.12 7.57 0.53 1868.90 1157.03 40.90 34.01 69.39 34.84
SMAC LNF 4397 7580 65.60 7.60 0.20 1847.27 1125.07 4193 3513 69.61 36.00
TPE SF 43.06 7501 6501 753 0.53 187647 1160.63 44.67 33.68 69.35 34.61
TPE SNF 43.14 75.10 64.88 7.70 137 1888.47 1157.40 46.83 33.44 69.52 34.42
TPE LN 44.05 75.09 65.15 7.57 053 1866.33 1157.53 41.30 34.05 69.33 34.89
TPE LNF 43.69 7549 6544 733 043 185250 113930 4227 34.70 69.57 35.58
Spearmint SF 4127 7476 6462 750 143 190147 1173.47 5093 32.73 69.37 33.79
Spearmint SNF 4245 7533 6521 7.53 0.50 186740 1146.23 43.83 3421 69.61 35.12
Spearmint LN 4336 7490 6491 753 0.83 1881.83 116590 42.40 33.50 69.41 34.37
Spearmint LNF 4275 7573 6533 7.54 053 1857.40 1141.13 43.13 34.33 69.61 35.17
MOTChallenge Mean - 8329 81.24 14 - 1029.17 775 167 57.13 71.17 60.701
MOTChallenge St. D. - 5.541 1077 2.08 - 894.224 261.054 108.5 16.23 0.442 15.376

Table 5: Accuracy. Evaluation over the whole ETH-SUNNY sequence with metrics: IDF1 - ID F1 Score, Rcll - Recall,
Prcn - Precision, MT - Mostly tracked targets, ML - Mostly lost targets, FP - False positives, FN - False negatives (missed
targets), ID Sw, - The total number of identity switches, MOTA - Multiple Object Tracking Accuracy, MOTP - Multiple
Object Tracking Precision, MOTAL - Multi-object tracking accuracy in [0,100] with log10 (idswitches).

Method Conf. IDF1 Rell Pren MT ML FpP FN IDs MOTA MOTP MOTAL
m o o ¢ ¢ ¢ () () ™M) M) (1)

Grid search 5095 6991 8438 878 9.1 242.17 560.67 11.35 56.6 77.21 56.81
It. Op. 51.34 7034 8529 893 9.07 230.83 551.04 11.02 57.6 77.96 57.93
MCMC SF 53.02 71.67 8595 9.10 9 217.40 52650 11.10 59.37 78.19 59.90
MCMC SNF 54 71.16 863 105 88 209.9 5359 10.2 59.31 78.19 59.8
MCMC LN 5274 7182 86.03 9.2 8.9 217.2 523.7 11.3 59.51 78.06 60.07
MCMC LNF 52.15 7128 86.1 9 9 213.8 533.5 10.6 59.21 77.93 59.71
SMAC SF 52778 7176 86.14 9 9 214.5 524.7 10.4 59.64 71.97 60.16
SMAC SNF 5247 7172 86.03 94 9 216.4 525.4 11.5 59.46 78.2 60.02
SMAC LN 532 7146 8627 89 9 211.2 530.4 10.5 59.52 77.9 60.01
SMAC LNF 52.80 7172 86.01 9.10 89 21690 52580 11.60 59.40 78.06 59.96
TPE SF 5273 7174 86.16 9.1 9 214.5 524.9 10.9 59.6 78.07 60.16
TPE SNF 5292 7177 8625 9.2 8.9 212.4 524.6 11.5 59.72 78.09 60.27
TPE LN 52.80 71.6 86.11 9 9 214.7 527.9 11.4 59.42 78.07 59.97
TPE LNF 53.02 7178 86.2 8.8 9 213.6 524.2 11.2 59.69 77.92 60.24
Spearmint SF 52.69 71.62 85.79 9 9 220.6 527.2 10.8 59.17 78.13 59.7
Spearmint SNF 52.87 71.65 86.04 9 9 216.2 526.9 11 59.41 78.07 59.95
Spearmint LN 523 7177 8625 9.1 9 212.8 524.5 11.2 59.31 78.25 59.26
Spearmint LNF 5265 7185 86.48 9.2 9 218.7 523.1 11.2 58.98 78.41 59.55
MOTChallenge Mean - 61.13 8626 533 8.17 211.67 73633 4150 47.66 71.717 49.78

MOTChallenge St. D. - 322 1040 221 134 21158 63.17 4096 10.87 1.88 10.64

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 13
40, . Global results 4 Global results 4 Global results 4 Global results
- | - T - T T 7T - T - + T 7
35| ! ! ! 35 ! | 35 ! ! 35 ! !
== =] |5 & = B 83 g7 288
30 ! [l 7 3 | 30 | | 30| |
| | | | | | I I
[S S T) I S S P S e A P S S
25 + * N Q25 - * * Q25 i ¥ % Q25 i + ? i
: : : : 3 i
20 2 20 - * 20) I
; . + i +
15 19 18 ! 15 H : :
’ ¥

Spearmint ___MCMC Spearmint ___MCMC
e

1
SMAC TPE SMAC PE
1000 iterations - Small configuration space - No. Particle is fixed 1000 iterations - Small configuration space - No. Particle is not fixed

(a) SF (b) SNF

SMAC TPE Spe:
1000 iterations - Long configuration spa

(¢)LF

ari

mint MCMC TPE it MEMC
ce - No. Particle is fixed 1000 iterations - Long configuration space - No. Particle is not fixed

SWAC Spearmin

(d) LNF

Fig. 8: Performance stability. Analysis using PETS sequence. We show the distribution of the MOTA values obtained with
1000 iterations of each tool: SMAC [27], TPE [3], MCMC and Spearmint [45].

4 Global results 4 Global results P Global results Global results i
T T T
- ! - | | —_ J !
—_ T | —_ 1 —_ | - — - H | - | |
s T ! ! ! 35 ! | 3q ! ! ! 3q | |
E= ‘ = = =
30 T ! 1 30, ' I 1 3 " | ‘ 3 T ‘
I I I I
< 1 -+ . ! < L + . } = L -+ L ‘ < 1 . L ‘
i L
o | Q25 | 024 + | Q28
2% | = | 22 | = B !
| | | s |
o L | |
20 L 20) T 2 - o 2 : !
E I o
¥
15 3 15 i 1 15 * i
M +
b * *)
1
! SMAC TPE Spearmint __MCMC SMAC TPE Spearmint___MCMC 1 SWAC TPE Spearminl ___MCMC — SWAC TPE Spearmint____MCMC
1000 iterations - Small configuration space - No. Particle is fixed 1000 iterations - Small configuration space - No. Particle is not fixed 1000 iterations - Long configuration space - No. Particlé is fixed 1000 iterations - Long configuration space - No. Particle is not fixed
(a) SF (b) SNF (c) LF (d) LNF

Fig. 9: Performance stability. Analysis using ETH Sunny day sequence. We show the distribution of the MOTA values
obtained with 1000 iterations of each tool: SMAC [27], TPE [3], MCMC and Spearmint [45].

35.13

34.26 34 01 3421 34.33

33.98 3383 33,
34 33.39 3321 335
3273

33
32
30.9
31 30.18
30

SF SNF LN LNF SF SNF LN LNF SF SNF LN LNF SF SNF LN LNF

34.05
3368 33.44

Grid |It. Op. MCMC SMAC TPE Spearmint

(a) PETS09

59.5

5

5

59.69
59.42 59.41 s
59.17

59.64 6 59.72

59.46 59.52 594
59.21 594

59.37 59,31 9951 9.31
58.98

[

5
57.6

~

5
56.6

56.5

SF SNF LN LNF | SF SNF LN LNF SF SNF LN LNF | SF SNF LN LNF

Grid |It. Op. Mcmc SMAC TPE Spearmint

(b) ETH-SUNNY

Fig. 10: Accuracy. MOTA metric evaluation of SMAC [27], TPE [3], MCMC and Spearmint [45], see Tabs. 4 and 5.

Influence of starting point. In optimization, the initial pa-
rameters could influence the final results. TPE and Spearmint
use the lower limits of S and L as starting point by de-
fault and this cannot be changed. Nevertheless, SMAC and
MCMC allow setting the initial point. We evaluate 10 pa-
rameters randomly generated 5 times each using the train-
ing set with 500 iterations. We use the large configuration
without fixing the number of particles because this setting
has shown the best performance. The tool results are evalu-
ated 30 times using the test set. We calculate the mean and
standard deviation of the MOTA metric of the training and
test set. The results are shown in Table 7 for PETS and ETH
sequences respectively.

Influence of the training size. The tool performance increases
when more data is available. However, this is not possible in
all cases. We analyze how training size impacts the results.

We evaluate 4 sizes corresponding to the initial 5, 10, 15
and 20 percent of the video. Table 8 shows the results for
both sequences, we observe that all the tools work well after
10 percent. MCMC, SMAC and TPE increase the precision
when more frames are used.

Influence of the number of particles. In our evaluations, the
number of particles is fixed to 30. This is motivated be-
cause this number gives a good trade-off between computa-
tional time and precision. However, a variation of the value
changes the result performance. We analyze this behavior by
testing different amounts of particles under the large config-
uration. We focus on the analysis of SMAC and TPE be-
cause these have shown the best performance so far. The op-
timized hyper-parameters are then evaluated over the whole
sequence of PETS and the mean of 30 evaluations is shown
in the Table 9.

Francisco Madrigal et al.

64

32

16

“mMcMmc /
Grid search

SF SNF

uSMAC

TPE

i Spearmint

LF LNF

Fig. 11: Computational time, in hours, used by the tools with the PETS09 S2-L1 sequence.

Table 6: Computational time, in hours, used by the tools
with the PETS09 S2-L1 sequence.

Time (hours)

Conf. No.Iterr MCMC SMAC TPE Spearmint
250 0.73 0.83 1.86 1.14

SF 500 1.12 1.69 2.96 5.83
1000 2.79 3.27 7.34 14.78

2000 5.41 6.72 11.60 38.36

250 0.77 1.02 2.02 1.92

500 1.14 2.26 3.21 4.64

SNF 1000 2.86 4.46 8.00 12.24
2000 5.37 942 13.38 37.17

250 0.70 0.83 1.85 1.15

LF 500 1.09 1.69 2.92 5.80
1000 2.83 3.40 7.31 14.71

2000 5.33 6.63 11.52 37.17

250 0.72 1.15 2.08 1.98

500 1.08 2.26 3.31 4.99

LNF 1000 2.77 4.60 8.66 12.78
2000 5.24 8.73 12.57 39.95

Table 7: Influence of starting point. Mean MOTA results
with 10 parameter sets randomly generated. We test them
with the large configuration with not fixed particles and 500
iterations.

Training Test
Sequence Method MOTA St.D. MOTA St.D.
PETS MCMC 3395 0.72 19.13 1.56
PETS SMAC 34.05 0.08 22.39 0.66
ETH MCMC 19.77 6.37 2792 1471
ETH SMAC 34.81 0.76 40.23 0.30

4.4 Discussion

Hyper-parameter optimization tools are designed to support
algorithms that require tuning multiple variables. Therefore,
they must be intuitive to use and adapt well to different sce-
narios. This paper gives an original insight of relevant tools

for MOT frameworks and this section highlights some in-
teresting aspect of the tools based on the results previously
shown.

Convergence speed. The analysis of weak convergence cri-
teria (Figs. 4 and 5) shows interesting results. In this case,
both SMAC and TPE find the best values of MOTA most of
the time and converge faster than the rest on any configu-
ration. MCMC baseline takes longer to stabilize and the cu-
mulative distribution reaches lower MOTA values compared
to the others. In the short configuration, Spearmint can find
high MOTA values in a few iterations but it takes more time
to process the large configuration.

We test the tools with two configurations (see section
4.2.1): short and large. The small configuration is selected
around where it is expected to have the optimal parameter
configuration. It is set based on expert knowledge about the
parameters of the MOT framework. This prior information
helps optimization tools to converge faster with more stable
MOTA values compared to the larger configuration. How-
ever, if these limits cannot be clearly delineated or if we
know little about the effect of the parameters on the system,
we can use a larger configuration and get the same results
with just more iterations.

We conclude that both TPE and SMAC generally con-
verge to the optimal MOTA value in a faster way than the
other approaches. Therefore, these tools are recommended
when a result with few function evaluations is required.

One way to reduce computing time is to optimize fewer
variables. For this case we analyze two configurations, one
labeled as F (Fixed) with 7 parameters and the other as NF
(Non-Fixed) with 6, which keeps the number of particles
fixed. The variables are set at values close to the optimum,
which requires expert knowledge about the tracking method.
Otherwise the results do not reach an optimal performance.
Although this reduces the complexity of the optimization,
we observe that the results labeled as NF converge more

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 15

Table 8: Influence of the training size. Performance evaluation changing the size of training set.

S . Training Test
€q. 0

d MCMC SMAC TPE Spearmint MCMC SMAC TPE Spearmint
PETS 5 30.973 30.69 37.85 7.085 17.5833 21.35 20.1 18.58
PETS 10 31.135 31.18 39.09 34.3 17.6033 21.88 19.97 21.21
PETS 15 31.527 3246 37.15 34.85 18.9267 22.09 22.6 22.56
PETS 20 31.89 33.8 38.2 32.11 19.4733 22.19 22.76 20.87
ETH 5 6.7961 17.88 27.42 33.13 18.2 28.09 18.2 38.45
ETH 10 21.224 34.87 48.58 33.11 19.2 38.26 19.2 40.08
ETH 15 23.529 3542 46.36 33.07 38.95 40.17 38.95 39.32
ETH 20 37.223 39.28 40.17 32.82 39.71 40.53 39.19 39.94

quickly than the others. We observe the same phenomenon
with other variables, if we fix rwn, then dH and np tend to
have a higher value. This is because the tools use these vari-
ables to compensate the rest. More clearly, a high number
of particles are considered when the other parameters do not
perform well in the tracking system.

Stability. Ideally, tools should explore the configuration space
efficiently, evaluating promising parameters. If this is the
case, we expect that the evaluations follow a Gaussian dis-
tribution with a small variance. Otherwise, the variance in-
creases when evaluating suboptimal parameters, which trans-
lates in a waste of iterations. The box plot quantifies this
analysis in the Figs. 8-9. This shows how MCMC is, overall,
unstable to achieve a proper solution and constantly evalu-
ating, and accepting, hyper-parameters with low MOTA val-
ues. On the other hand, TPE is more robust, using wisely
each iteration to explore promising parameters.

SMAC outperforms the rest with respect to PETS dataset,
showing a smaller variance than the others. It finds stable
parameters that generalize well in this scenario with static
camera. However, SMAC has problems to handle the mov-
ing camera of ETH sequence. This is because it tries to opti-
mize as quickly as possible the variables related to distance.
This makes it oscillate between configurations adapted for
moments where the targets are far from the camera and con-
figurations for targets close to the camera. Thus, it is advis-
able to use SMAC or TPE for methods whose cost function
contains noise, i.e. stochastic methods and TPE is more re-
liable with non-static sequences.

Accuracy. From Tabs. 1-2, we observe that the results of
MCMC are unstable, reaching different values in each itera-
tion. This is because their implementation does not consider
that the evaluation of cost function has noise, i.e. two evalu-
ations of the same parameters result in two different MOTA
values. This is most clearly seen in Fig. 6 where the MCMC
line (blue) changes drastically in each configuration. Then,
its performance is affected by the stochastic output of the
particle filter-based tracker. One way to overcome this issue
is to approximate the distribution of the parameter set using,

for example, MCMC. This will require a larger number of
evaluations, which makes it computationally expensive. In
addition, training results show that MCMC needs few iter-
ations to converge in any configuration (small or large and
fixed or non-fixed) but, on the contrary, a greater number of
iterations generates over-fitting and reduces its performance.

Spearmint provides more stable results, with a standard
deviation of 0.3, see Fig. 6, but the given parameters do not
generalize well the rest of the sequence. Moreover, the num-
ber of iterations needed to obtain good results is propor-
tional to the complexity of the configuration, i.e. the large
non-fixed configuration needs more iterations to reach the
optimal value. Unlike, TPE converges slowly but it provides
robust parameters, presenting the highest values on the train-
ing set. However, this is due to TPE reports the highest value
found meanwhile SMAC and Spearmint report the expected
mean value. SMAC appears to be more stable than the others
in both training and testing sets, red line on Fig. 6. The re-
sults from the training set are generally consistent with those
from the testing set.

Tab. 3 summarizes the information from the previous ta-
bles and leaves only the best and worst results of both the
datasets and the evaluations sets. Last two lines show the re-
sults of the baseline Grid search and the iterative optimiza-
tion version. In both cases, test results are the lowest even
that MCMC, this is more evident when observing the Fig. 7.
This is because the grid is very large and its results are sub-
optimal, this could be improved by dividing more the grid
but this will increase the number of evaluations.

Tables 4 and 5 compare our results with those provided
by MOTChallenge. We focus on the MOTA metric because
it is the most used to compare algorithms [30,21] so Fig.
10 summarizes this metric for both datasets. If we com-
pare the results of the methods against the ones obtained
by MOTChallenge, we observe that in the results of PETS
sequence are below the mean, meanwhile, with the ETH se-
quence, MOTA is above the mean. This is due to the fact
that the sequence of PETS has been evaluated by dozens of
methods, each one contributing to a slight increase with re-
spect to the previous one. However, ETH sequence has been

Francisco Madrigal et al.

Table 9: Influence of the number of particles. Evaluation on PETS09 sequence fixing the number of particles.

Method Conf No. Time IDF1 Rell Pren MT ML FP FN IDs MOTA MOTP MOTAL
CoPat. sy () D)) G () ()) M (1) M
TPE LF 10 1.94 4268 7399 64.12 720 090 19239 1209 44 31.64 69.09 32.55
TPE LF 30 217 4405 75.09 65.15 757 053 18663 1158 4130 34.05 69.33 349
TPE LF 50 238 4391 7549 6551 750 040 1847.1 1139 403 34.88 69.40 35.7
TPE LF 70 269 42,09 7492 6501 7.60 120 1873.5 1165 45 34.63 69.57 35.56
TPE LF 100 3.17 4255 7569 6539 7.30 0.10 1861 1130 41.6 34.74 69.66 35.62
SMAC LF 10 138 4433 7438 64.74 690 080 18839 1190 38.7 33.02 69.10 33.82
SMAC LF 30 1.69 4382 7511 6512 7.57 053 18689 1157 409 34.01 69.39 34.84
SMAC LF 50 1.82 4247 7546 6536 8.00 1.00 1857.7 1141 44.1 34.54 69.54 35.44
SMAC LF 70 256 4502 75.62 6546 720 040 18547 1132 405 34.86 69.57 35.71
SMAC LF 100 2.66 4352 7582 6546 7.80 0.60 1859.4 1124 439 34.87 69.55 35.77
[Tool | Convergence [Stability [Accuracy | CPU cost | Init. Cond. | Training size | Accessibility [[Rank |
MCMC [8] + + + +++ + + + 4
Spearmint [45] ++ ++ ++ + - ++ + 3
SMAC [27] +++ ++ +++ +++ +++ +++ +++ 1
TPE [3] +++ +++ ++ ++ - +++ ++ 2

Table 10: Evaluation summary: (+) Good, (++) Better, (+++) Best.

analyzed with only few methods, which are not at the top of
the ranking.

Our system does not attempt to compete with the meth-
ods in the literature, but to show how the same framework
can outperform itself by using better parameters. In Tab. 4,
we observe that the results of the methods have a MOTA
value of 3 - 4 percent higher than the grid search method. It
may not seem to be much, but if we check the MOTChal-
lenge ranking, scores between approaches are only different
by a few decimals. Therefore, this slight change in several
sequences could end in an increase of 5 positions in the rank-
ing. In general, all methods give a good performance, but
among them SMAC gives a more accurate result. Therefore,
we recommend its use when the main goal is the accuracy.

We analyze the performance of the tools considering other
metrics and making a combination between them. However,
the MOTA metric includes many features that range from
false positives, false negatives and identity switch. Those are
strongly related to other metrics and therefore the results ob-
tained reached the same conclusions as when using MOTA
exclusively.

Computational time. The time used for each tool plays an
important role when selecting one. When comparing the con-
figurations F' and N F' of Fig. 11, we observe MCMC and
Spearmint have a similar cost. However, SMAC and TPE
present a different behavior. The CPU time is larger when
the number is not fixed, the Table 6 highlights this phe-
nomenon. This is because both tools need to build a model
for 7 parameters instead of 6. Thus, the computational time
of both tools will increase according to the number of pa-
rameters to be optimized. In this case, SMAC is the one with
the largest increment.

Computational time of the grid search-based methods is
linear, as same as MCMC, but its accuracy is not good since
the size of the grid is small. Increasing the grid size is ideal
to improve this quality however this adversely affects the
computational time. For example, changing the value of b
from 3 to 4 results in more than sixteen thousand configu-
rations to evaluate, and since the function is stochastic each
configuration must be evaluated several times before being
accepted.

Setup time. Both SMAC and Spearmint adjust several files
that control the optimization of the tools, variable search
space and storage of the results. This data file processing
is called scenario and it creation could take a few minutes
to an expert in these tools, but for a new user it can take a
couple of hours to understand the required file structures. On
the contrary, TPE is more intuitive since it is a function that
receives the configurations of the scenario as arguments.

Influence of starting point. The choice of starting point in-
fluences the outcome of most optimization systems. A good
method should be able to handle this and converge to the
global optimum, avoiding getting stuck in the local mini-
mum. We analyze this aspect and comparing Table 7 against
Tables 1 and 2, we observe that SMAC and MCMC show
a similar behavior regardless the initial parameters. More-
over, the analysis of SMAC in terms of convergence shows
that the only difference is that the number of iterations varies
with respect to how far it is from the optimal minimum. Al-
though MCMC still has problems to converge, staying on
local minimums for several iterations and over-fitting prob-
lems.

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 17

Influence of training size. It is natural that increasing the
size of training data also increases the accuracy. Our results
show this same effect. Also, we can see that starting from
10 percent the increase is small. This is because the initial
10 percent of the evaluated sequences describes in a general
way the movement of pedestrians in the scene and likewise
the optimal parameters that should be used.

Influence of the number of particles. The number of par-
ticles plays an important role in this type of trackers. We
observe that when this number is fixed, the results improve
when more particles are used, but this also increases the
computational time. Furthermore, analyzing the parameter
sets evaluated by the tools without fixing this number, we
noticed that many good candidates maintained a low num-
ber of particles, in the range of 10 to 50.

Accessibility. Overall, these tools define the search space
but only SMAC and (our implementation of) MCMC can
set the initial parameters. In contrast, TPE and Spearmint
use the lower limit as initial position making them simpler to
configure. SMAC has the best ratio between CPU time and
performance, followed by TPE. On the contrary, Spearmint
has a constant increase in time in each iteration, which is
a problem because the results are better with more itera-
tions. TPE has the advantage that it can be called as a func-
tion, making it easier to handle. In comparison, SMAC and
Spearmint are more complex and require creating a set of
files and folders with specific formats.

The documentation is a vital part when we decide to use
a new tool. In this aspect, SMAC surpasses the rest with de-
tailed official documentation, active discussion forums and
developer support. MCMC has a strong background in the
literature with many examples for different topics. TPE has a

small but good documentation of its use. However, Spearmint’s

official documentation is almost non-existent, mostly lim-
ited to the installation and how to launch a simple exam-
ple. Additionally, SMAC and Spearmint collect information
from each iteration, which is available so that the user can
observe and analyze it. SMAC is more organized, separating
specific data in many easy-to-understand files. Meanwhile,
Spearmint provides summary files of each iteration and a
database with the global information. TPE and MCMC do
not provide information as exhaustive as the other two, but
simple results such as the parameters and the value of the
cost function in each iteration.

From the above, we created Tab. 10 that summarizes our
experience when using these tools. We consider that SMAC
gives the best compromise with respect to our criteria men-
tioned in Tab. 10. It is the easiest to use despite the num-
ber of files to configure. The documentation is extensive and
detailed and it has an active community supporting it. In

addition, SMAC shows to be more stable in both conver-
gence efficiency and exploration, which is important for the
repeatability of the results.

We consider TPE as a good option but we rank it in
second place. It offers a wide range of possibilities but the
limited documentation makes it difficult to use for differ-
ent scenarios. It also has a good convergence rate, even sur-
passing SMAC in some cases. Spearmint gives good per-
formance but, according to our results, not as SMAC and
TPE. Furthermore, the small documentation and the compu-
tational time are characteristics that make it difficult to use.
However, MCMC presents the worst performance and there-
fore we rank it as number four. In this case, MCMC is not
available as an optimization library and requires to be im-
plemented. The results are fair and it is the fastest of all the
tools, but it is difficult to set the correct number of iterations
to avoid over-fitting.

5 Conclusions

In this paper, we have presented a comparative study of four
relevant hyper-parameter optimization approaches in the con-
text of MOT system. The tools are reviewed with respect to
performance criteria, accessibility, computational cost time,
among others. To the best of our knowledge, there are no
comparative studies of optimization tools that study the tun-
ing influence over tracking systems. This application is an
example but can be extended to others.

We have shown how the same application can provide
better results by using a better combination of parameters,
and how these can be found using expert tools. Our goal is to
introduce the reader these four optimization methods, with
their respective tools, and motivate their use with respect to
a criterion provided in the Tab. 10. Thus, new methods that
use optimized hyper parameters will give results that reflect
their maximum potential. We have highlighted the strengths
and weaknesses of each as detailed as possible considering
many criteria.

References

1. Berclaz, J., Turetken, E., Fleuret, F., Fua, P.: Multiple object track-
ing using k-shortest paths optimization. IEEE Trans. on Pattern
Analysis and Machine Intelligence (2011)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter op-
timization. J. Mach. Learn. Res. 13, 281-305 (2012). URL
http://dl.acm.org/citation.cfm?id=2188385.2188395

3. Bergstra, J.S.,, Bardenet, R., , Bengio, Y., Kégl, B.: Algorithms for
hyper-parameter optimization. In: J. Shawe-Taylor, R.S. Zemel,
PL. Bartlett, F. Pereira, K.Q. Weinberger (eds.) Advances in
Neural Information Processing Systems, vol. 24, pp. 2546-2554
(2011)

4. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for
hyper-parameter optimization. In: J. Shawe-Taylor, R.S. Zemel,

Francisco Madrigal et al.

10.

11.

12.

13.

14.

20.

21.

PL. Bartlett, F. Pereira, K.Q. Weinberger (eds.) Advances in Neu-
ral Information Processing Systems 24, pp. 2546-2554. Curran
Associates, Inc. (2011)

Bernardin, K., Stiefelhagen, R.: Evaluating multiple object track-
ing performance: the clear mot metrics. EURASIP Journal on Im-
age and Video Processing 2008(1), 1-10 (2008)

Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple on-
line and realtime tracking. In: 2016 IEEE International Confer-
ence on Image Processing (ICIP), pp. 3464-3468 (2016). DOI
10.1109/1CIP.2016.7533003

Binitha, S., Sathya, S.: A survey of bio inspired optimization al-
gorithms 2, 137-151 (2012)

Bishop, C.M.: Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (2006)

Boussad, 1., Lepagnot, J., Siarry, P.: A survey on optimization
metaheuristics. Information Sciences 237, 82 — 117 (2013). Pre-
diction, Control and Diagnosis using Advanced Neural Computa-
tions

Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E.,
Van Gool, L.: Online multiperson tracking-by-detection from a
single, uncalibrated camera. IEEE Trans. on Pattern Analysis and
Machine Intelligence 33(9), 1820-1833 (2011)

Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V.: Com-
puter vision and deep learning techniques for pedestrian detection
and tracking: A survey. Neurocomputing 300, 17 — 33 (2018).
DOI https://doi.org/10.1016/j.neucom.2018.01.092

Burgard, W., Brock, O., Stachniss, C.: Active Pol-
icy Learning for Robot Planning and Exploration un-
der Uncertainty, pp. 352-. MIT Press (2008). URL
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6280104
Chodorow, K., Dirolf, M.: MongoDB: The Definitive Guide, 1st
edn. O’Reilly Media, Inc. (2010)

Collins, R.T., Carr, P.: Hybrid stochastic / deterministic optimiza-
tion for tracking sports players and pedestrians. In: D. Fleet,
T. Pajdla, B. Schiele, T. Tuytelaars (eds.) Computer Vision —
ECCV 2014, pp. 298-313. Springer International Publishing,
Cham (2014)

. Dalal, N., Triggs, B.: Histograms of oriented gradients for human

detection. In: In CVPR, pp. 886-893 (2005)

Dollr, P,, Appel, R., Belongie, S., Perona, P.: Fast feature pyra-
mids for object detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 36(8), 1532-1545 (2014). DOI
10.1109/TPAMI.2014.2300479

. Domhan, T., Springenberg, J.T., Hutter, F.. Speeding up

automatic hyperparameter optimization of deep neural net-
works by extrapolation of learning curves. In: Proceed-
ings of the 24th International Conference on Artificial Intelli-
gence, IJCAI’'15, pp. 3460-3468. AAAI Press (2015). URL
http://dl.acm.org/citation.cfm?id=2832581.2832731

. Dong, X., Shen, J., Wang, W., Liu, Y., Shao, L., Porikli, F.: Hy-

perparameter optimization for tracking with continuous deep q-
learning. In: The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2018)

. Dubuisson, S., Gonzales, C.: A survey of datasets for vi-

sual tracking. Machine Vision and Applications 27(1),
23-52 (2016). DOI 10.1007/s00138-015-0713-y. URL
https://doi.org/10.1007/s00138-015-0713-y

Ess, A., Leibe, B., Gool, L.V.: Depth and appearance for
mobile scene analysis. In: 2007 IEEE 11th International
Conference on Computer Vision, pp. 1-8 (2007). DOI

10.1109/ICCV.2007.4409092

Ferryman, J., Ellis, A.L.. Performance
crowd image analysis using the pets2009 dataset. Pat-
tern Recognition Letters 44, 3 - 15 (2014). DOI

https://doi.org/10.1016/j.patrec.2014.01.005. Pattern Recognition
and Crowd Analysis

evaluation of

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ferryman, J., Shahrokni, A.: Pets2009: Dataset and challenge.
In: Twelfth IEEE Int. Workshop on Performance Evaluation of
Tracking and Surveillance, pp. 1-6 (2009). DOI 10.1109/PETS-
WINTER.2009.5399556

Floudas, C.A., Gounaris, C.E.: A review of recent advances
in global optimization. Journal of Global Optimization
45(1), 3 (2008). DOI 10.1007/s10898-008-9332-8. URL
https://doi.org/10.1007/s10898-008-9332-8

Franceschi, L., Donini, M., Frasconi, P., Pontil, M.: Forward and
reverse gradient-based hyperparameter optimization. In: D. Pre-
cup, Y.W. Teh (eds.) Proceedings of the 34th International Con-
ference on Machine Learning, Proceedings of Machine Learning
Research, vol. 70, pp. 1165-1173. PMLR, International Conven-
tion Centre, Sydney, Australia (2017)

Guo, L.: Stability of recursive stochastic tracking algorithms.
SIAM Journal on Control and Optimization 32(5), 1195-
1225 (1994). DOI 10.1137/S0363012992225606. URL
https://doi.org/10.1137/S0363012992225606

Haftka, R.T., Villanueva, D., Chaudhuri, A.: Parallel surrogate-
assisted global optimization with expensive functions — a sur-
vey. Structural and Multidisciplinary Optimization 54(1),
3-13 (2016). DOI 10.1007/s00158-016-1432-3. URL
https://doi.org/10.1007/s00158-016-1432-3

Hutter, F., , Hoos, H., Leyton-Brown, K.: Sequential model-based
optimization for general algorithm configuration. In: Proc. of
LION-5, pp. 507-523 (2011)

Hutter, F., , Hoos, H., Leyton-Brown, K.: An efficient approach for
assessing hyperparameter importance. In: Proceedings of the 31st
International Conference on International Conference on Machine
Learning, /ICML’14, vol. 32, pp. I-754-1-762 (2014)

Kim, K., Davis, L.: Multi-camera tracking and segmentation of
occluded people on ground plane using search-guided particle fil-
tering. Computer Vision—-ECCV 2006 pp. 98-109 (2006)
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.:
MOTChallenge 2015: Towards a benchmark for multi-target
tracking (2015). URL http://arxiv.org/abs/1504.01942

Lizotte, D., Wang, T., Bowling, M., Schuurmans, D.: Auto-
matic gait optimization with gaussian process regression. In:
Proceedings of the 20th International Joint Conference on
Artifical Intelligence, IJCAI'07, pp. 944-949. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2007). URL
http://dl.acm.org/citation.cfm?id=1625275.1625428

Luo, G.: A review of automatic selection methods for ma-
chine learning algorithms and hyper-parameter values. Net-
work Modeling Analysis in Health Informatics and Bioinformat-
ics 5(1), 18 (2016). DOI 10.1007/s13721-016-0125-6. URL
https://doi.org/10.1007/s13721-016-0125-6

Luo, W., Zhao, X., Kim, T.: Multiple object tracking: A review.
CoRR abs/1409.7618 (2014). URL http://arxiv.org/abs/1409.7618
Maggio, E., Taj, M., Cavallaro, A.: Efficient multitarget visual
tracking using random finite sets. IEEE Transactions on Circuits
and Systems for Video Technology 18(8), 10161027 (2008).
DOI 10.1109/TCSVT.2008.928221

Maurice, C., Madrigal, F., Lerasle, F.: Hyper-optimization tools
comparison for parameter tuning applications. In: 2017 14th
IEEE International Conference on Advanced Video and Sig-
nal Based Surveillance (AVSS), pp. 1-6 (2017). DOI
10.1109/AVSS.2017.8078499

Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimiz-
ing conflicts: a heuristic repair method for constraint satisfaction
and scheduling problems. Artificial Intelligence 58(1-3), 161-205
(1992)

Nocedal, J., Wright, S.J.: Numerical Optimization, second edition.
World Scientific (2006)

Pazhaniraja, N., Paul, P.V., Roja, G., Shanmugapriya, K., Son-
ali, B.: A study on recent bio-inspired optimization algorithms.
In: 2017 Fourth International Conference on Signal Processing,

Hyper-parameter optimization tools comparison for Multiple Object Tracking applications 19

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

Communication and Networking (ICSCN), pp. 1-6 (2017). DOI
10.1109/ICSCN.2017.8085674

Qin, Z., Shelton, C.R.: Improving multi-target tracking via so-
cial grouping. In: 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 1972-1978 (2012). DOI
10.1109/CVPR.2012.6247899

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P.,, de Freitas, N.:
Taking the human out of the loop: A review of bayesian optimiza-
tion. Proceedings of the IEEE 104(1), 148-175 (2016). DOI
10.1109/JPROC.2015.2494218

Shan, S., Wang, G.G.: Survey of modeling and optimiza-
tion strategies to solve high-dimensional design problems with
computationally-expensive black-box functions. Structural and
Multidisciplinary Optimization 41(2), 219-241 (2010). DOI
10.1007/s00158-009-0420-2

Shen, J., Liang, Z., Liu, J., Sun, H., Shao, L., Tao, D.: Multiob-
ject tracking by submodular optimization. IEEE Transactions on
Cybernetics pp. 1-12 (2018). DOI 10.1109/TCYB.2018.2803217
Shen, J., Yu, D., Deng, L., Dong, X.: Fast online track-
ing with detection refinement. IEEE Transactions on Intel-
ligent Transportation Systems 19(1), 162-173 (2018). DOI
10.1109/TITS.2017.2750082

Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., De-
hghan, A., Shah, M.: Visual tracking: An experimental survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence
36(7), 1442-1468 (2014). DOI 10.1109/TPAMI.2013.230
Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian opti-
mization of machine learning algorithms. In: Proceedings of the
25th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’12, pp. 2951-2959. Curran Associates
Inc., USA (2012)

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sun-
daram, N., Patwary, M., Prabhat, M., Adams, R.: Scalable
bayesian optimization using deep neural networks. In: F. Bach,
D. Blei (eds.) Proceedings of the 32nd International Conference on
Machine Learning, Proceedings of Machine Learning Research,
vol. 37, pp. 2171-2180. PMLR, Lille, France (2015)
Tsamardinos, I., Rakhshani, A., Lagani, V.. Performance-
estimation properties of cross-validation-based protocols with
simultaneous hyper-parameter optimization. In: A. Likas,
K. Blekas, D. Kalles (eds.) Artificial Intelligence: Methods and
Applications, pp. 1-14. Springer International Publishing, Cham
(2014)

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., de Freitas, N.:
Bayesian optimization in high dimensions via random embed-
dings. In: International Joint Conferences on Artificial Intel-
ligence (IJCAI) - Distinguished Paper Award (2013). URL
http://www.cs.ubc.ca/ hutter/papers/13-1JCAI-BO-highdim.pdf
Watada, J., Musa, Z., Jain, L.C., Fulcher, J.: Human tracking:
A state-of-art survey. In: R. Setchi, I. Jordanov, R.J. Howlett,
L.C. Jain (eds.) Knowledge-Based and Intelligent Information and
Engineering Systems, pp. 454-463. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

Weise, T.: Global Optimization Algorithms - Theory and Appli-
cation, second edn. Self-Published (2009). URL http://www.it-
weise.de/. Online available at http://www.it-weise.de/

Wu, Y, Lim, J., Yang, M.H.: Object tracking benchmark. IEEE
Transactions on Pattern Analysis and Machine Intelligence 37(9),
1834-1848 (2015). DOI 10.1109/TPAMI.2014.2388226

Yan, C., Xie, H., Chen, J., Zha, Z.J., Hao, X., Zhang, Y., Dai,
Q.: An effective uyghur text detector for complex background im-
ages. IEEE Transactions on Multimedia pp. 1-1 (2018). DOI
10.1109/TMM.2018.2838320

Yan, C., Xie, H., Liu, S., Yin, J., Zhang, Y., Dai, Q.: Effec-
tive uyghur language text detection in complex background im-
ages for traffic prompt identification. IEEE Transactions on In-
telligent Transportation Systems 19(1), 220-229 (2018). DOI
10.1109/TITS.2017.2749977

54.

55.

56.

57.

Yan, C., Xie, H., Yang, D., Yin, J., Zhang, Y., Dai, Q.: Super-
vised hash coding with deep neural network for environment
perception of intelligent vehicles. IEEE Transactions on Intel-
ligent Transportation Systems 19(1), 284-295 (2018). DOI

10.1109/TITS.2017.2749965

Yan, C., Zhang, Y., Xu, J., Dai, F,, Li, L., Dai, Q., Wu, F.: A highly
parallel framework for heve coding unit partitioning tree decision
on many-core processors. IEEE Signal Processing Letters 21(5),
573-576 (2014). DOI 10.1109/LSP.2014.2310494

Yan, C., Zhang, Y., Xu, J., Dai, F., Zhang, J., Dai, Q., Wu,
F.: Efficient parallel framework for hevc motion estimation on
many-core processors. IEEE Transactions on Circuits and Sys-
tems for Video Technology 24(12), 2077-2089 (2014). DOI

10.1109/TCSVT.2014.2335852

Yaseen, M.U., Anjum, A., Rana, O., Antonopoulos, N.: Deep
learning hyper-parameter optimization for video analytics in
clouds. IEEE Transactions on Systems, Man, and Cybernetics:
Systems pp. 1-12 (2018). DOI 10.1109/TSMC.2018.2840341

