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Abstract—In this paper, we present a fast Histogram of Contrary to their amenities, omnidirectional cameras are
Oriented Gradients (HOG) based person detector. The detector not trivial to use. The actual technique used to cover wide
adopts a cascade of rejectors framework by selecting discrimi- FOV governs the added difficulty. Currently, there are three

nant features via a new proposed feature selection framework L . L .
based on Binary Integer Programming. The mathematical prevalent types of omnidirectional cameras: dioptric, aggn

programming explicitly formulates an optimization problem to ~ Wwide _ang!e coverage via Co'mbination Pf shaped Ienses;
select discriminant features taking detection performance and catadioptric, those that combine a classical camera with a

computation time into account. The learning of the cascade shaped mirror; and polydioptric, the kind which use mudipl
classifier and its detection capability are validated using a cameras—with overlapping fields of view—oriented in vasiou

proprietary dataset acquired using the Ladybug2 spherical . . . . . .
camera and the public INRIA person detection dataset. The directions. Both dioptric and catadioptric cameras suffan

final detector achieves a comparable detection performance as Pronounced geometric distortions, significantly non-omif
Dalal and Triggs [2] detector while achieving on average more resolutions, and high sensitivity to illumination chang@s

than 8x speed up on image from thel adybug2 . the other hand, polydioptric cameras provide real omni-
. INTRODUCTION directional view without pronounced geometric, resolutio
and/or illumination artifacts. But, as a result of their raak
For decades it has been demonstrated that the autonomytlegy result in a high resolution image that demands high
an autonomous mobile robot highly depends on its envirorcomputational resources for processing. Thdybug? is one
ment perception capabilities. For example, if one considesuch kind of camera manufactured by Point Grey Inc [11].
autonomous robot navigation, the success depends on fhee Ladybug? (fig. 1a) is a spherical omnidirectional camera
robot’s ability to perceive its surrounding well and itslapi  system that contains six cameras mounted in such a way to
to distinguish obstacles from free paths. With such comaide view more than75% of the full sphere. Each camera has
tion, an omnidirectional camera is the quintessential@ensa maximum resolution 0fil024x768 pixels resulting in a
An omnidirectional camera usually provides3é0° Field 3500x1750 pixels stitched high resolution panoramic image
Of View (FOV) in the horizontal direction and sometimes(fig. 1b). The camera system has an IEEE-1394b (FireWire
even cover more than20° in the vertical plane, pretty 800) interface that allows streaming at 30 fps with the dsve
much the essential surrounding. As a consequence, they arevided by the manufacturer [11].
gaining much appreciation and use in robotic applications, In this work, we are interested in developing a person de-
including but not limited to: robot localization, mapping,tection system to detect people around a mobile robot using a
ground robot navigation, etc (the interested reader isnede Ladybug2 camera. As stated previously, this camera does not
to a recent special issue in the Robotic and Autonomowsiffer from the severe geometric/illumination artifacssthe
Systems Journal published in [14] to get a broad overviewdther omnidirectional camera families. Clearly, the pesce
One such application—-this paper inclines to—is detection ing power stipulated by the high resolution images is a major
people in the surrounding of a mobile robot be it for activébottleneck that makes classical person detection appesach
interaction or social considerations during navigation innfeasible. Any application that intends to use these camer
crowded environments. With a complete horizontal FOV, thlas to take this into consideration. In this paper, we prepos
robot is appraised of any activity in its complete surromgdi and implement an automated person detection system that not
which allows it to be better reactive and considerate [9].[2 only tries to optimize over detection performance, but also
optimizes over computation time required by the detector.
We build upon the original Histogram of Oriented Gradients
(HOG) features proposed by Dalal and Triggs [2], features
that have proven useful for almost a decade and are still
used by some of the state-of-the-art person detectors [3]
though at the expense of CPU resources. We formulate
a feature selection problem optimized via Binary Integer
Programming BIP) [13] taking detection performance and
computation time into consideration to implement a person
1o detector that has comparable detection performance to the
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Fig. 1: Ladybug2 camera and a stitched, and unwrapped image.



This paper is organized as follows: section Il discusses When dealing with panoramic images from omnidirec-
related works briefly, section Il presents the overview ofional cameras in autonomous robots with limited embedded
our framework followed by feature pools and details of ouCPU resources it is impossible to directly ud®G based
improved classifier learning in sections IV and V respecdetectors. One has to resort to cheap features at the cost
tively. Experiments and results are presented in section \f reduced detection performance or their fusion with other
and finally, the paper concludes with concluding remarks isensors, foreg. with Laser Range Finders (LRFs) [21].
section VII. Another possibility could be to constrain the region of

interest within the images using hypothesis generated from
Il. RELATED WORKS other fast modes.g. from LRF [10].
In this work we present a person detector with a cascade

To date, various perspective camera based person deteci@sgfiguration similar to Viola and Jones [16]. Each node of
have been proposed (see comprehensive surveys in [3], [tk cascade considers the origiiEDG features tweaked to
When considering a camera on a moving vehicle, as in ge suited for feature selection (discussed in section IV, B
mobile robot, the detector has to rely on information pefor actual feature selection, and AdaBoost for feature tteig
frame and can not rely on stationary or slowly changingng and classification. Contrary to most feature selection
background assumptions/models. In this vein, the first majeechniques that rely on boosting techniques where impbrtan
successful breakthrough was the work of Dalal and Triggs [Zkatures are selected taking the error rate into considatat
which introduced and usddOG features with a linea8VM  we use BIP to select discriminant features that have the leas
classifier. To dateHOG is the most discriminative feature combined computation time and yet fulfill the False Positive
and no other single feature has been able to supersede it [8hte (FPR) and True Positive Rate (TPR) requirements of

The main downside oHOG based detectors is the assothe node. To the best of our knowledge this is new in the
ciated computation time. These features are extracted filgerature. This paper claims three main contributions:

by computing the gradient, then by constructing a histogram 1) we develop and present a mathematical formulation
weighted by the gradient in an atomic region called a cell. based on BIP for feature selection taking both compu-
Histograms of neighboring cells are grouped into a single  tation time and detection performance into considera-
block, cross-normalized and concatenated to give a feature tjgn.

detection window is the concatenation of the feature vector on the above formulation.

3780 dimensional vector in [2]). For an arbitrary given image the proposed detector with Dalal and Trigg® G de-
framg, person detection proceeds _by test.ing all possible  tector on a proprietary dataset collected wititybug?2
locations (position and scale), a.k.a sliding window apphy camera and on the INRIA public person dataset.

with this high dimensional vector which indeed reduceg, o, though this work is presented with emphasis on a
the speed significantly. To improve this, Zte al. [20],  gpnerical camera, it is equivalently applicable to imagesf

reformulated the problem as a feature selection procedui,gica| cameras as demonstrated with validation on agubl
over HOG block size using AdaBoost in an attentional .ot

cascade structure. The cascade structure, pioneered lay Vio
and Jones [16], spreads the detection process into various I1l. FRAMEWORK OVERVIEW
nodes that reject a majority of negative windows, allowing
only positive windows to progress through the entire cascad -
This speeds up detection drastically. Another alternative
is to parallelize the detection process over multiple pro-

™
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cessors [12], but, this necessitates the use of specialized ! - _r

Image
Stitching

Graphical Processing Unit (GPU).
Some works have managed to go beyond Dalal and Triggs
detector. But, they had to either combiH®G with multiple
other featuresgg. with Local Binary Patterns [17], with Ladybug2 Camera System ‘f Sliding Window |
edgelets and covariance descriptors [19]) or consider & par Candidate Genration

based approacte. [6]). Combining HOG with other fea- M !

. Attentional Cascade Configuration
tures has showed advantages over detection performance a
well as speed. Part based approaches, on the other hand, tr

\ 1! T
to infer the presence of different parts of a person’s boay an } ) % )
aggregate the confidence to detect a person. Comparatively, i F
these kind of approaches lead to improved results primarily Fig. 2: On-line detector framework.
because they can handle multiple poses and partial occlu-

sions. But consequentially, they incur increased comjmtat  In this work, we adopt the attentional cascade detector
time. configuration pioneered by Viola and Jones [15]. Each node




rejects negative windows and passes along potential positi(to be determined)¢ and b are known coefficient vectors,
windows onto the next stage. Only those classified as trué¢ is a matrix of coefficients (called constraint matrix). It is
detection by all nodes are considered as true targets. Thill-known that BIP isAP-hard in the strong sense but,
structure has gained wide acceptance and has even béepractice, branch-and-cut techniques are able to solge hu
applied in recent part-based approaches [5]. binary integer program very fastly [13], [18]. Finally, digte

Fig. 2 depicts the final detector applied on live imagéAdaBoost takes the features selected by the BIP module and
streams. The different images from thadybug2 cameras builds a strong classifier by weighting and combining them.
are first projected onto a spherical calibrated mesh [118yTh
are then blended along their overlapping fields of view to
form a stitched sphere. This sphere is finally unwrapped Description: As it has been mentioned,
to form a panoramic view. Candidate windows are theno other single feature has been able tg &%
generated via a sliding window approach and fed to theuperseddlOG feature [3]. Hence, nat- &
attentional cascade classifier. At each stage of the cascatteally, we have resorted to use HOG w
k, k € {1,2,..., K}, a significant proportion of the negative features are extracted first by computing
samples are rejected and only those that make it till the ertbe gradient, then by constructing a his-
are considered as true detections. togram weighted by the gradient in an

A key issue in cascaded detector configuration is howtomic region called a cell. Histograms of
to select which features to use in each node. Classicallygighboring cells are grouped into a single
many authors have resorted to AdaBoost, one variant of tigock, cross-normalized and concatenated
boosted classifiers family, for feature selection and cembfo give a feature vector per block. The finalFig. 4: Feature
nation e.g. [15], [20]. But, this approach, which is quite extracted feature within a given detectionparametrized by
suitable when dealing with homogeneous features with theindow is the concatenation of the vectors(®:¥>w: h)-
same computational time, selects features solely based wom each feature block (for a detailed explanation please
their detection performance. When considering featurels witefer to [2]).
varying computation time, it is wise to take this factor into In this work, we use the originaHOG features pro-
consideration. To address this, we propose a novel featypesed by Dalal and Triggs [2] along with their widely
selection and classifier learning scheme illustrated inJig. preferred/used computationg. a cell size of8x8 pixels,

IV. FEATURE PooL

and detailed in section V. a feature block size o2x2 cells and ar8 pixel horizontal
I and vertical stride. For a giveé4x128 image window, this
Positive Samples . .
( ] ( 1 [ ] results in arx15 feature block layout (each feature block is
, ﬁ Feature Pool e e ‘ Featuren ection a 36 dimensional vector). Now to get a pool of features, lets
| (R —— o L I a5 J introduce an operatdn that takes a starting location:,f),
r - )| (TPR, FPR) Selected|Features . A
# 1 FisherLDA ( Vo \ width (w), and height ), and concatenates all feature blocks
< (Brojection Vectors, . Stong s , e
; . Pareto-Front Discrete }— within this region. Hence, for a specific input, the operator
Negative Samples omputation|  computation AdaBoost Classifier )
J J O(x,y,w, h) returns a concatenated feature which makes one

component of our feature pool (fig. 4). Using all possible
Fig. 3: Proposed feature selection and classifier learning scheme. yvalues ofz,y,w, and h in a given image region made of
HOG feature blocks furnishes the considered feature pool,

Given positive and negative training samples, Fisher's, represented as a set in eq. 1. With Txé5 feature block
Linear Discriminant Analysis (Fisher LDA) is used to obtainconsidered in the work, this results in a totallgb2 features
a projection hyperplane that would maximize the interslasthat make up our feature pool.
scatter while minimizing the intra-class scatter. For each
feature in the feature pool (discussed in section IV) a d&tis - _ {Qz,y,w,h) 0 <z <T7;0<y < 15;
tree is learned which results in a specific TPR and FPR on

o . L 1<w<(T—2);1<h<(15-y)}
a validation set. Next, taking these two criteria as well as 1)
computation time, Pareto-Front analysis [1] is used to cedu
the number of features considered. This step is employed toln summary, in the works of Dalal and Triggs, all resulting
decrease the number of features to a size manageable by fib@ture blocks extracted from tliex128 image window are
BIP module. Using this reduced feature set, an optimizatioconcatenated, giving a single high dimensional vectoh-wit
problem is formulated via BIP to select relevant featuret wi exactly 7x15x36 dimensions—as a final feature. Whereas, in
the smallest computation time, that fulfill the TPR and FPRur case, we end up with a pool of features with dimensions
requirements of the node. ranging from36 (smallest) to7x15x36 (highest).

BIP is a special case of integer programming where Computation Time: The features in our feature pool are
decision variables are required to be 0 or 1 (rather thaof varying dimensions. Incidentally, the associated tiedenh
arbitrary integers). It aims at minimizing a given linearto extract them varies. Since the smallest building unit is a
objective functionf = c.x subject to the constraints that singleHOG feature block, determining the computation time
A.x > b, where x represents the vector of 0-1 variablesof each feature obtained using the above defilemperator



is straight forward. Each feature obtained usfagontains
an integral multiple of individuaHOG blocks. If it takesr v
milliseconds to compute the feature vector of a single bloclg
then it takesn.m milliseconds for a feature made up of
blocks using thé&) operator. With this, the computations time <A
for the different features in the pool varies from the snstlle e
7, to the highest]105.7 milliseconds.

Computati Tifne (msec)
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Fig. 5: Exemplary extracted Pareto Front. Each of 17@2 features are
plotted as a blue dot using their TPR, FPR, andvalues. The extracted
dominant features (that make the Pareto Front) are shown edttriangular

markers. The plot is shown iBD as well as projecte@D plots to aid

i'éualization.

V. CLASSIFIERLEARNING WITH COMPUTATION TIME
CONSIDERATION

In the adopted cascade configuration, each node of t¥
cascade is influenced by the implementation choice of weak
learners, the weak classifiers that are trained on eachdtisti
feature of the feature pool; feature selection algorithmat t
chooses a subset of the features taking selected perfoemancThe BIP based feature selection makes the core of this
criteria into consideration; feature weighting and conrign work’s contribution. Provided the BIP is handed a few
algorithm; and data mining techniques that try to robustifjpumber of weak learners or features, such that * C 1,

C. Binary Integer Programming

the classification performance of each node.

A. Weak Learners

the optimization problem to select pertinent features that
satisfy both the node TPR and FPR requirements with the
minimum possible computation time is detailed subsequentl

These are each of the weak classifiers that are trained o
each distinct feature of the feature po¢l, Each unique ®
weak classifier is associated with and trained on a unique®
single feature. Recall that, we have chosen to use Fishe?
LDA to determine a projection hyperplane to project the
multi-dimensional feature vectors to obtain a scalar value ®
Then, a decision tree is learned (equivalent to having pialti
thresholds), per feature, to provide a binary classificatio ®
output. Fisher LDA is preferred over complex classifiers lik
an SVM because of its comparatively short training duration ®
Given the large amount of features in the considered featur®
pool, employing SVM would lead to an overwhelming train-

r1The parameters of the proposed BIP are:

N € Z: number of training images/samples;

M e Z: number of weak learners considerée, |/ *|;

y; € {—1,1}: y; = 1 for positive samples, elsg = —1
(negative samples);

hi; € {0,1}: h; ; = 1 if weak learnerj detects sample
i to be positive, elsé; ; = 0,

TPR € [0,1]: minimum true positive rate required at
the considered node of the cascade;

FPR € [0,1]: maximum false positive rate at the node;
7; € R: computation time of weak learngr

Decision Variables: The BIP decision variables are the

ing period. In addition, Fisher LDA leads to a weak learnefollowing.

that is easy to integrate with boosting methods. Once a weal
learner is trained on a given training set, it is characéetiz
by three performance indicator parameters: its True Resiti 4
Rate (TPR), False Positive Rate (FPR) and computation time
(15 7 €{0,1,...,1791}). Fisher LDA is implemented using
the alglib C++ mathematical librafy .

B. Pareto Front Analysis

u; € {0,1}: u; = 1 if weak learner; is selected, else
U; = 0;

t; € {0,1}: t; = 1 if a positive samplei has been
detected as positive (true positive) by at least one
selected weak learner, else= 0;

fi € {0,1}: f; = 1 if a negative samplé has been
detected as positive (false positive) by at least one
selected classifier, elsg = 0.

Recall that the total number of weak learners or featurgg total, there arg2N + M) binary variables in the BIP,
considered is1792. As it will come evident in section which is quite compact.

V-C this amount of features is too much for a tractable QObjective Function and Constraints:

optimization. Hence, the number of feature must be pre-

reduced. To do this, Pareto Front Analysis is used to ex- MW 2 =1 Tg‘\;&j
tract the dominant features—based on their TPR, FPR, ands.t #; <> 2.0, 5% h, ju;

computation time. A simple algorithm outlined in [1] is
used to select the dominant features that maximize TPR,
and minimize both FPR and computation time. Fig. 5 shows
an exemplary instance of extracted front amongst the whole
depicted feature pool. The exact number of features exiact

(1)

Vi (2)
fi > %hi,juj ,V(Z,j) (3)
Yt > (DL, ) TPR (4)
S fi < (N=Y B FPR (5)
uj7tiafi € {071} ,V(Z,j) (6)

depends on their properties (TPR, FPR, and but in our
experiments the retained features never exceeded

1IALGLIB Project — http://www.alglib.net/

The objective function(1) aims at minimizing the com-
putation time. Constraints (2)-(5) express that a givee rat
of detection quality has to be reached (depending on the
number of true and false positives). Constraints (2) link



and t; variables so that; = 0 if image ¢ has not been into account. Since number of person containing candidate
well-recognized.Constraints (3) link; and f; variables so windows are relatively very small compared to the number of
that f; = 1 if a negative image has been recognized astotal candidate windows generated from person free zones,
positive by at least one selected classifier. Constraint (4he total number of windows tested by cascade is highly
expresses that the ratEPR of true positives, obtained influenced by the FPR. This means, if there &g candidate
with the selected classifiers, has to be reached. Similarkgindows, it is safe to assume only,,«FPR windows will
constraint (5) expresses that the rat® R of false positives, pass onto the next stage. With this, if the total computation
obtained with the selected classifiers, must not be exceeddidhe taken by nodé to evaluate a single candidate window is
The total number of constraints {(8V(M + 1) 4+ 2), which  represented by}, the total computation time for a cascade
could be huge for largeV and M values. This optimization with K nodes,(x, is: (x = Yo r—1 N, (FPR*=1 ¢, If
formulation is implemented using the Gurobi c++ library.[8] we represent the time taken by Dalal and Triggs HOG to
. evaluate a single window to hg;o¢, the average speed u
D. Discrete AdaBoost with respect t(ig Dalal and Triggs detector woul% bepgiven l:l‘))y
Once the BIP furnishes a set of weak learners/features thaj. 2.
fulfill the requirements set forth on the respective cascade Average Speed Up: ——- 2)
node, the selected features are weighted and combined to r—1 (FPRG=D 5 G

obtain a strong classifier per nod_e using AdaBoost. In. this But, recall that¢yoc and ¢, are both integral multiples
work, our implementation of the discrete AdaBoost of Violaof 7, the time taken to evaluate a single HOG feature block.
and Jones [15] has been used because of its ease and gpRE simplifies the computation further and it becomes @rati

strong classifier construction behavior. Evidently, anlyeot of number of constituent HOG feature blocks weighted by
boosting framework that can accommodate a binary weaKke cumulative EPR in the denominator.

learner could be used.

Croa

B. Dataset

E. Cascade Consiruction Experiments are carried out using two different sets of

The complete cascade structure of the final detector iatasets. The first one is the public INRIA person detection
built at the end of the training process. The training precesiataset [2]. The training set for this dataset consists 4624
involved is trivial. It relies on a labeled positive and ntgz cropped positive instances and 1218 images free of persons
sets first to learn the set of relevant features and then {gut of which many negative train/test cropped windows
use these features to train the AdaBoost classifier in eagBuld be generated). The test set contains 1132 positive
node of the cascade. To include vast number of negativestances and 453 person free images for testing purposes.
training samples, the mining technique presented by Violghis is the most widely used dataset for person detector
and Jones [16] is adopted. First, the node is constructggllidation and comparative performance analysis.

using a provided positive and negative samples. Once this

is done, the trained nodes of the cascade (up to the curr

node) are subjected to a lot of negative samples (in hundre ;

of thousands). The mislabeled negative samples are kept

training consequent nodes of the cascade and the proce .

been tested. Fig. 6: Sample positive (the first four) and negative (the last fonrges

continues until a tractable amount of negative samples ha
taken from theLadybug2 dataset

VI. EXPERIMENTS AND RESULTS
A. Evaluation metrics The second dataset is our proprietary dataset acquired

To evaluate the detection performance, we have chosen48ingLadybug2 camera mounted on a mobile robot (referred
use the Pascal Visual Object Classification (VOC) evaluatio?S Ladybug Dataset hencefdfthit contains 1990 positive
metrics [4] as it is the well established and commonly useg?MPles annotated by hand. It also contains 50 person free
metrics in object detection/classification tasks. The wal full resolution images acquired from our robotic and other
tion involves a Precision-Recall curve and a single scaldPOms in the laboratory. Some 10000 negative windows
quantity called Average Precision (AP), which is basicalljp'® randomly sampled from these images. Sample cropped

the area under the Precision-Recall curve. To determirsethd?0Sitive and negative instances are shown in fig. 6. The test
values the True Positives, False Positive, True Negative, aS€t contains 1000 manually cropped positive samples and 30

False Negatives of the test set are determined via a p&€rson free images.

window approach [3]. The per-window approach relies o Regults

cropped labeled positive and negative train and test set. Th e .

training is performed using these cropped images and theVal|da.t|_on. In this framework the parameters that need to

test likewise (please refer [3] for details). be specified are per node TPR and FPR and the depth of the
Computation time taken by the cascaded detector—relativepigase visit htt p: // homepages. | aas. f r/ aamekonn/ i r os_

to Dalal and Triggs detector—is another parameter takeaw13/ for more illustrations



decision tree to use. Another factor is the Fisher LDA weighto the runs in table I. The features selected in the first four
computation. The Fisher LDA weights could be computediodes of the cascade structure obtained using an FRRL of
once using a subset of the training set and then the saraee shown in fig. 9 superimposed on an average gradient
weights will be used in all the cascade nodes. The oth@nage of the positive data.
alternative is to do the weight computation specifically on
each node. To validate all this, the Ladybug Dataset trginin p s e C B e R D "'i’;
set is divided into #0% training and40% validation set and B e
various train-validation cycles are performed to detemtire e
effect of each parameter. 0 I o
First, it is observed that computing Fisher LDA weights
per each node makes the classifier overfit on the training < Cascade FPR = 0.40, AP 0.9956 b
set leading to a very deteriorated performance on the val -=-Cascade FPR =0.50, AP 0.8951 :'.,'
idation set. Hence, Fisher LDA is computed once, and the - Cascade FPR = 0.60, © AP 0.9927 %

o
©
<

o
)

Precision

I
~
T

same weights are used throughout the cascade constructic 02y - [2Dalaland Tggs HOG, AP 0.9987 '2;
Second, using a decision tree of depth2o8howed better T 1
performance on the validation sé1.16% higher than the Pse 0.9 0.92 094 096 0.98 1
next best) as can be seen from the precision-recall cur Recall

L . . . N . g. 8: Comparative Precision-Recall curve for selected cascatiide
in fig. 7. Third, varying the FPR showed little variation inangd palal and Triggs detector on the Ladybug Dataset.

AP but slightly better £ 0.1% higher) results are obtained
when using an FPR df.4 and0.6 during training. Evidently,
higher FPR paves way to more number of cascade nodes but

does not necessary result in more computation time.
1 et T —

________________________ T ETEI I T B,
...................... BRTHR
B &\,\‘\'\a‘
0.8Fmesmrevesn sy e i ;fa
06 : Y
3 RN\ (@) (b) © (d)
'g o Tree Depth 1, AP 0.9838 % ) ) )
£ 04 -=-Tree Depth 2, AP 0.9858 n %;;, Fig. 9: lllustration of Selected HOG features of the firstrfou
: ~+ Tree Depth 3, AP 0.9842 R E N cascade nodes using FPR (b# and decision tree depth of
-A- Soow . .
02 e 322:: s 3 2. Clearly, the features become more computationally time
 |e-TreeDepthis, APOgS20, consuming as one progresses down the nodes of the cascade.
8.8 O.éS 019 0.65 1

INRIA Person Dataset: Tests on this dataset are carried
out to see the performance of our cascaded classifier on a

_ ) » public dataset and eventually compare its performance with
Ladybug Dataset: Three different cascade classifiers argygja and Triggs given the dataset has a lot of intra-class

learned using FPR @f.4, 0.5, and0.6 but with fixed decision gnq inter-class variation. Again with this dataset, a denis
tree depth of2. The results obtained are summarized ifree depth of2 is used. Three different cascade structures

table |. are learned using an FPR 6f5, 0.6, and 0.7. Table I
summarizes the results obtained.

. A - Recall i .
Fig. 7: Precision-Recall curve for various tree classifier depths.

TABLE [|: Comparative summary of learned cascade classifiers on
Ladybug Dataset with varying FPR and Dalal and Triggs detect . o
ybug ying 99 TABLE Il: Comparative summary of learned cascade classifiers on
Method K (No. of Cas-  Average Speed Up Average INRIA Dataset with varying FPR and Dalal and Triggs detector
cade Nodes) over [2] Precision
- Method K (No. of Cas- Average Speed Up Average
Cascade with FPR = 0.4 6 8.72x 0.9956 cade Nodes) over [2] Precision
Cascade with FPR =05 9 9.22x 0.9951 -
Cascade with FPR = 0.6 11 9.68x 0.9927 Cascade with FPR =05 8 2.46 0.9066
Dalal and Triggs [2] _ 1.0x 0.9987 Cascade with FPR = 0.6 11 2.98 0.9133
Cascade with FPR = 0.7 13 4.01 0.9198
Dalal and Triggs [2] - 1.0x 0.9826

As can be clearly seen from the table, with a less than

0.5% detection performance loss (AP loss), our cascade Even on the challenging INRIA dataset, our cascaded
detector resulted in an 8.72x speed up on Dalal's detectbr adetector resulted in d@x speed up with a less tham, AP
with a less thar1% loss resulted in a 9.68x speed up. Dalaloss with a node FPR of 0.7. The corresponding Precision-
and Triggs detector performance is obtained by training theRecall plot is shown in fig. 10.
open-sourced detector with the Ladybug dataset training
data. Fig. 8 show the precision-recall curve correspondin@' Comments
The results obtained from both datasets show there is
Savailable hereht t p: // pascal .inrial pes.fr/soft/olt/ an average speed up by using out cascade framework in



- In the near future, we will use this detector in a tracking-

g
4

TR Y vy . .
o i STy Y by-detection framework to track all passers-by in the robot
Q Lho . . . . . .

08 e surrounding when navigating in crowds. The tracking infor-
c 06 °\‘$ ' mation will then be used to realize a socially acceptable
8 o = : ' human aware navigation via control law based on visual

b
£ 0.4} [ Cascade FPR = 0.50, AP 0.9066 ‘.ff:gz‘ servoing techniques.
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. Recall
Fig. 10: Comparative Precision-Recall curve on INRIA person dataset 2]

all cases. Of course, for difficult dataset, more features ar,
required to attain the fixated detection performance. Tis i
turn decreases the overall all speed gain as shown by the
results from the INRIA dataset. This detector is ported ont
a B21R mobile robot called Rackham with an onboarded
Ladybug2 camera, the detector detects people running als]
a little less than 2 fps on a PIlIl 850 MHz BCFig. 11
shows sample detection orLadybug2? image. The results are
shown as they are without any post-processing (grouping o]
overlapping detection). The learning/training phase isied

(7]

(8]
(9]

Fig. 11: sample person detection on thadybug? image.

[10]

out on a core i7 PC with an 8 GB of RAM. The two
major time consuming parts are the Fisher LDA weight
computation at the beginning and the BIP optimizatior[ull]
(specially when huge data is considered). But, no cascade
configuration that confirms to the current adopted schent&?l
exceeded a 24h training period.

1
VII. CONCLUSIONS ANDPERSPECTIVES [13]

In conclusion, a person detection framework suitable fdi4l
a spherical camera on a mobile robot has been presentgq]
The framework makes use of the proven discriminant HO
features in a cascade configuration. A new feature selection
technique based on mathematical programming has be
devised to select features with good detection performange)
and less computation time. The complete final learning
system has been validated on a proprietary dataset acquiﬁ:gi
using Ladybug2 camera, a sensor which is interesting but
surprisingly marginally used in the robotics community—
perhaps due to the time consumption with the associated hiEﬁ]
resolution images. The methodology is also quite suitadnle f
conventional cameras (see our evaluation on public dataset
The final results show comparable detection performané%o]
to that of Dalal and Triggs detector while speeding up the

detection by more thafx on thelLadybug2 images. 211

4Please seehttp://honepages. | aas. fr/aanekonn/iros_
2013/ for a video of the live run on the robot.
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