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Abstract— Among the cognitive abilities a robot companion
must be endowed with, human perception and speech under-
standing are both fundamental in the context of multimodal
human-robot interaction. First, we propose a multiple object
visual tracker which is interactively distributed and dedicated
to two-handed gestures and head location in 3D. An on-board
speech understanding system is also developed in order to
process deictic and anaphoric utterances. Characteristics and
performances for each of the two components are presented.
Finally, integration and experiments on a robot companion
highlight the relevance and complementarity of our multimodal
interface. Outlook to future work is finally discussed.

keywords: multiple object tracking, speech understanding,
multimodal interaction, assistance robotic.

I. INTRODUCTION AND FRAMEWORK

As the number of senior citizens increases, more re-

search efforts have been made to develop socially inter-

active household robots. This field of robotics is a deep

challenge because robots moving out of laboratories have

to gain more social skills to improve natural peer-to-peer

interaction with a novice user in his/her daily life. As speech

is the most prominent communication channel for humans,

a considerable number of robot assistants embed advanced

speech recognition system [4]. This is not enough to realize

a user-friendly interface as we, humans, omit, abbreviate and

underspecify things in our utterances, that are supposed to

be obtained by vision. Only few research work addresses the

development of such appropriate multimodal interfaces [10].

On one hand, the mutual assistance between the speech and

vision capabilities of the robot, permits to specify parameters

related to person/object IDs or location references in verbal

statements. On the other hand, fusing auditive and visual

features are supposed to be more robust to noisy/cluttered

environments than using one single feature.

To complete/verify the message conveyed by the verbal

communication channel, these interfaces consider vision

techniques in order to: (i) characterize the robot surroundings

i.e. places [6] or objects [13], (ii) perceive the human

user [6], [9], [11], [13] i.e. his/her gestures and nonverbal

reactive body motions. Besides image-based approaches [6],

[9], [13], 3D positions of the user’s head and hands are par-

ticularly useful, in combination with speech recognition, to

specify parameters of location in verbal statements e.g. “look

here” or “give this object to me”. Following [7], a first issue

concerns the design of body and gesture tracker suited for

gesture interpretation. This tracker has been extended in three

ways. First, we propose an interactively distributed multiple

object visual tracker dedicated to two-handed gestures and

head location in 3D. Secondly, the tracker has been endowed

with visual data fusion and automatic re-initialization. All

this makes our tracker work under a wide range of viewing

conditions and aid recovery from transient tracking failures

due to the robot’s motion or temporarily loss of observability

when performing gestures. Finally, their combination with

deictic and anaphoric utterances have been tested in house-

hold robotics operation with promising results. Here, gesture

is used as an essential complementary information. Gesture

detection could also help to reinforce communication in case

of speech recognition errors.

The paper is organized as follows. Section II describes

our robot companion Jido, outlines its embedded multimodal

interfaces, and the target scenario we address. Section III

presents the binocular tracking of the user’s head and two-

handed gestures in order to interpret symbolic and deictic

gestures thanks to Hidden Markov Models. Section IV

depicts the system dedicated to verbal communication be-

tween our robot companion and humans. Section V presents

robotic experiments involving these two components. Last,

section VI summarizes our contributions and discusses future

extensions.

II. JIDO AND ITS TARGET SCENARIO

Our multimodal interface is embedded on a robot com-

panion called Jido which is equipped with a 6-DOF arm,

a pan-tilt stereo system at the top of a mast, two laser

scanners (Figure 1(a)) while the human wears a wireless

headset microphone. All these devices enable Jido to act

as a robot assistant as it is endowed with basic functions

enabling to: (i) navigate in its environment, (ii) recognize and

grasp objects, (iii) detect, localize humans in its vicinity, (iv)

interpret speech utterances and some gestures. All the em-

bedded functions are managed thanks to the “LAAS” layered

software architecture (Figure 1(b)) and detailed in [2].

Besides environment perception abilities, the multimodal

interface has been undertaken within the demonstration

scenario. This is a household situation in which Jido ex-

ecutes human-friendly collaborative tasks (coordinated dis-

placements and object exchange) ordered by its disabled

user. Given both verbal and gesture commands, this person
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Fig. 1. Jido and its software architecture.

is allowed to make the robot change its position in the

environment, marks some objects the robot must catch and

carry, etc. A typical set of commands is for instance: “come

on”, “take this bottle on the table”, “bring it to me”,

“go over there”. Given this scenario, the paper focuses on

the multimodal components (Figure 1(b)), namely GEST,

RECO and FUSION respectively for the visual perception

of the user, the speech interpretation and the fusion from

user and object perception with speech interpretation. The

functionalities encapsulated in these modules are presented

in the following sections.

III. VISUAL PERCEPTION OF THE ROBOT USER

A. 3D tracking of heads and hands

Our system dedicated to the visual perception of the robot

user includes 3D face and two-hand tracking. Particle filters

(PF) constitute one of the most powerful framework for view-

based multi-tracking purpose [12]. In the robotic context,

their popularity stems from their simplicity, modeling flexi-

bility, and ease of fusion of diverse kinds of measurements.

Two main classes of multiple object tracking (MOT) can be

considered. While the former, widely accepted in the Vision

community, exploits a single joint state representation which

concatenates all of the targets’ states together, the latter uses

distributed filters, namely one filter per target. The main

drawback of the centralized approach remains the number

of required particles which increases exponentially with the

state-space dimensionality. The distributed approach, which

is the one we have chosen, suffers from the well-known

“error merge” and “labelling” problems when targets un-

dergo partial or complete occlusion. In the vein of [12],

we develop an interactively distributed MOT (IDMOT)

framework which is depicted in Table I. The aim is to

approximate the probability density function p(xi
t|z1:t) of

the state vector x
i
t for body part i at time t given the set of

measurements z1:t and the cloud of “particles” indexed by

n with likelihood -or “weight”- ω
i,n
t . When targets do not

interact on each other, the approach performs like multiple

independent trackers. When they are in close proximity, mag-

netic and inertia likelihoods (annotated ϕ1(.) and ϕ2(.)) are

added in each filter to handle the aforementioned problems

(see [12] for more details). Our IDMOT particle filter is

improved and extended in three ways. First, the conventional

CONDENSATION [5] strategy is replaced by the genuine

ICONDENSATION one whose importance function q(.) in

step 3 permits automatic (re)-initialization when the targeted

human body parts appear or re-appear in the scene. The

principle consists in sampling the particle according to visual

detectors π(.), dynamics p(xt|xt−1), and the prior p0 so that,

with α, β ∈ [0; 1]

q(xi,n
t |xi,n

t−1
, zi

t) = απ(xi,n
t |zi

t) + (1 − α)p(xi
t|x

i,n
t−1

). (1)

Secondly, the IDMOT particle filter, devoted initially to

the image-based tracking of multiple objects or people, is

here extended to estimate the 3D pose of multiple deformable

body parts of a single person. The third line of investigation

concerns data fusion as our observation model is based on a

robust and probabilistically motivated integration of multiple

cues. Fusing 3D and 2D (image-based) information from the

video stream of a stereo head - with cameras mounted on a

mobile robot - enables to benefit both from reconstruction-

based and appearance-based approaches. The aim of our

IDMOT approach, named IIDMOT, is to fit the projections

all along the video stream of a sphere and two deformable

ellipsoids (resp. for the head and the two hands), through the

estimation of the 3D location X = (X, Y, Z)
′

, the orientation

Θ = (θx, θy, θz)
′

, and the axis length 1 Σ = (σx, σy, σz)
′

for ellipsoids. All these parameters are accounted for in the

state vector x
i
t related to target i for the t-th frame. With

regard to the dynamics model p(xi
t|x

i
t−1), the 3D motions

of observed gestures are difficult to characterize over time.

This weak knowledge is formalized by defining the state

vector as x
i
t = [Xt,Θt,Σt]

′

for each hand and assuming

that its entries evolve according to mutually independent

random walk models, viz. p(xi
t|x

i
t−1) = N (xi

t|x
i
t−1,Λ),

where N (.|µ,Λ) is a Gaussian distribution in 3D with

mean µ and covariance Λ being determined a priori. Our

importance function q(.) followed by some consideration

about the measurement function p(zi
t|x

i
t) are given here

below. Recall that α percent of the particles are sampled

from detector π(.) (equation (1)). These are also drawn from

Gaussian distribution for head or hand configuration deduced

from skin color blob segmentation in the stereo video stream.

1To take into account the hand orientation in 3D.

4012



TABLE I

OUR IIDMOT ALGORITHM.

1: IF t = 0, THEN Draw x
i,1
0 , . . . , ‘xi,j

0 , . . . , x
i,N
0 i.i.d. according to p(xi

0), and set w
i,n
0 = 1

N
END IF

2: IF t ≥ 1 THEN {—[{xi,n

t−1, w
i,n

t−1}]
N

n=1
being a particle description of p(xi

t−1|z
i
1:t−1)—}

3: “Propagate” the particle {xi,n

t−1}
N
n=1 by independently sampling x

i,n
t ∼ q(xi

t|x
i,n

t−1, zi
t)

4: Update the weight {w
i,n
t }N

n=1 associated to {xi,n
t }N

n=1 according to the formula w
i,n
t ∝ w

i,n

t−1

p(zi
t|x

i,n
t )p(xi,n

t |xi,n

t−1)

q(xi,n
t |xi,n

t−1, zi
t)

, prior to a normalization step so that

P

n
w

i,n
t = 1

5: Compute the conditional mean of any function of x̂i
t, e.g. the MMSE estimate E

p(xi
t
|zi

1:t)
[xi

t], from the approximation
PN

n=1 w
i,n
t δ(xi

t − x
i,n
t ) of the posterior

p(xi
t|z

i
1:t)

6: FOR j = 1 : i, DO

7: IF dij(x̂
i
t,k, x̂

j

t,k
) < dT H THEN

8: Save link(i,j)

9: FOR k=1:K iterations, DO

10: Compute ϕ1, ϕ2

11: Reweight w
i,n
t = w

i,n
t .ϕ1.ϕ2

12: Normalization step for {w
i,n
t }N

n=1

13: Compute the MMSE estimate x̂
i
t

14: Compute ϕ1, ϕ2

15: Reweight w
j,n
t = w

j,n
t .ϕ1.ϕ2

16: Normalization step for {w
j,n
t }N

n=1

17: Compute the MMSE estimate x̂
j
t

18: END FOR

19: END IF

20: END FOR

21: At any time or depending on an “efficiency” criterion, resample the description [{xi,n
t , w

i,n
t }]

N

n=1
of p(xi

t|z
i
1:t) into the equivalent evenly weighted particles set

[{x
(si,n)
t , 1

N
}]

N

n=1
, by sampling in {1, . . . , N} the indexes si,1, . . . , si,N according to P (si,n = j) = w

i,j
t ; set x

i,n
t and w

i,n
t with x

(si,n)
t and 1

N

22: END IF

Fig. 2. Tracking scenario involving occlusion and out-field of sight with
our IIDMOT filter.

The centroids and associated covariances of the matched

regions are finally triangulated using the parameters of the

calibrated stereo setup. For the weight updating step, each

ellipsoid defined by its configuration x
i
t is then projected

in one of the two image planes. The measurement function

fuses skin color information but also motion and shape cues

(see [3] for more details).

Prior to their integration on Jido, experiments on a

database of 10 sequences (1214 stereo-images) acquired from

the robot are performed off-line in order to: (i) determine the

optimal parameter values of our strategy, (ii) characterize its

performances. This sequence set involves variable viewing

conditions, namely illumination changes, clutter, occlusions

or out-field of sight. Figure 2 shows snapshots of a typical

run involving sporadic disappearances of the hands. For each

frame, the template depicts the projection of the MMSE

estimate for each ellipsoid. Our strategy, by drawing some

particles according to the detector output, permits automatic

re-initialization and aids recovery after transient loss.

TABLE II

QUANTITATIVE PERFORMANCE AND SPEED COMPARISONS.

Method MIPF IDMOT IIDMOT
FRp 29% 18% 4%
FRl 9% 1% 1%

Speed (fps) 15 12 10

Quantitative performance evaluation have been carried out

on the sequence set. Since the main concern of tracking is

the correctness of the tracker results, location as well as

label, we compare the tracking performance quantitatively

by defining the false position rate (FRp) and the false label

rate (FRl). As we have no ground truth, failure situations

must be defined. No tracker associated with one of the

target in (at least) one image plane will correspond to a

position failure while a tracker associated with the wrong

target will correspond to a label failure. Table II presents

the performance using multiple independent particle filters

(MIPF) [5], conventional IDMOT [12] strategy, and our

IIDMOT strategy with data fusion. The experiments, per-

formed on an on-board 3 GHz Pentium PC, consider 100
particles to track each body part. Our IIDMOT strategy is

shown to outperform the conventional approaches for a slight

additional time consumption. The MIPF strategy suffers

especially from “labelling” problem due to lacking modeling

of interaction between trackers while the IDMOT strategy

doesn’t recover the target after transient loss.

B. Gesture interpretation

Gesture interpretation is reported briefly as this is not our

key research goal while associated evaluations are currently

performed. The typical motions pattern of eight reference

gestures are classically modeled by dedicated HMMs. Five

gestures serve for deictic references depending on the hold

hand and the coarse pointed direction. The three last ones
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TABLE III

EXAMPLES OF REQUESTS INTERPRETED BY THE ROBOT.

User starting interaction by introducing himself to the robot “Hi robot X I’m Paul”
Basic movement orders / more advanced movement including deictic “Turn left” / “Come here”

Guidance request in the human environment “take me to the reception”
Interaction for object exchange including anaphora “Give me this bottle”

Agreement / disagreement / thanks “yes” / “no” / “thank you”

correspond to symbolic gestures, namely “stop” and “come

on”2. The two-hands features used as the observations are

derived from the tracked head position while each HMM

has been found to perform best with 3-state model each.

Preliminary evaluations on sequence dataset issued from

a commercial human motion capture highlights that our

gesture recognizer scored at about 91% sensitivity and 92%

selectivity. Evaluations dedicated to our IIDMOT multi-

tracker output, and so on noisy observations, will follow.

IV. SPEECH INTERPRETATION

The speech understanding system must recognize continu-

ous speech, or even spontaneous, and must handle some lin-

guistic phenomena ordinarily used in conversational speech

and multimodal communication. We present hereafter how

our robot can perceive and understand the information con-

veyed by the spoken message, how it can infer that a gesture

event is necessary to complement speech or how gesture can

strengthen speech in case of recognition errors.

A. Integration of a speech recognition module on the robot

platform

To fulfil the platform architecture and software require-

ments, we have chosen to use a grammar-based recognizer.

Julian, is a version of Julius developed by the Continu-

ous Speech Recognition Consortium [1] which is itself an

open source speech recognition engine. To process French

utterances, a set of acoustic models (for phonetic units), a

phonetic lexicon of words and a set of language models must

be provided.

B. Linguistic resources for speech recognition

The acoustic models stem from previous work on large

vocabulary speech transcription. They are HMM-based (37
phoneme and one short and one long pause, each one is

a 3-state model with 32 Gaussians per state) and have

been trained using the HTK toolkit on about 31 hours of

Broadcast News recorded on French radios. Though speech

recognition in a human-robot interaction context is a different

task from the initial one, these acoustic models have not

been adapted yet to this new applicative context, while the

lexicon and the grammars have been specifically designed

for it. The lexicon with 246 words and their different pro-

nunciations (corresponding to 428 phoneme sequences) have

been drawn up from the French lexical database BDLEX [8].

This vocabulary has been selected according to different

subtasks as shown in the table III3. In order to focus on

the multimodal aspect of human-robot communication, we

2From single or two-handed gestures.
3Examples are given in English for an illustration purpose.

will take a particular interest in recognizing and interpreting

deictic and anaphora.

The language models, which are implemented through

different context free grammars related to the above subtasks,

describe an overall set of 2334 well-formed sentences.

C. Speech interpretation

This part of the RECO module processes speech recog-

nition outputs in order first to extract the semantic units

that are relevant in the user utterance and then to build the

appropriate interpretation. It is based on a semantic lexicon

specifically designed which associates relevant words with

their interpretation in the context of the aforementioned

subtasks. Some words are related to actions while others

are related to objects, object attributes like color or size as

well as location and robot configuration parameters (speed,

rotation, distance). A semantic analysis step combines word

semantic information and builds a global interpretation which

is compared with available interpretation models. If one of

them is compatible with the utterance interpretation, we

consider that a valid command can be generated and sent

to the robot supervisor in order to be executed.

D. Interpreting deictic and anaphora

Deictic words (here, there, ..) are defined in our semantic

lexicon as related to a location which will be given by

means of a gesture. This is specified by a semantic feature

(location = Gesture location?) . For example, if the verbal

designation of an object or a location is precise enough

(“Put the bottle on the table”) the parameters are directly

extracted from the sentence according to the relevant words

and their semantic information. In our semantic lexicon, the

word “put” is associated with the meaning “put something

somewhere” which is represented by the set of semantic

features (action = put ; object = What? ; location = Where?

). The sentence analysis instantiate the missing parameters

(What? and Where?) and the underlying command can be

generated (put(object=bottle, location = on table)). But in

deictic case (“Put the bottle there”), the semantic analysis

will mark the interpretation as “must be completed by the

gesture result” and a late and hierarchical fusion strategy

will be applied to complete the command that has been gen-

erated (put(object=bottle, location=Gesture location?)) (see

section V). In the case of an anaphoric sentence (“Take

this glass” (action = take; ref object = (object = glass

; ref location = Gesture location?) ) ) and other human-

dependent commands such as (“Come on my left-side” (ac-

tion = go ; relative location = ( ref location = User position?

; side = left)) ) the same kind of strategy will be applied. For

the moment, only location reference are taken into account.

In a human-robot dialog prospect anaphora could also be
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TABLE IV

EXPERIMENTAL RESULTS OF THE SPEECH RECOGNITION COMPONENT ALONE AND OF THE GLOBAL SPEECH INTERPRETATION SYSTEM.

subtask COR W ACC COR S COR COM

starting/closing interaction 88.34% 81.97% 67.19% 71.88%
basic movement orders 89.63% 81.72% 65.10% 70.05%

basic object manipulation orders 86.41% 80.62% 62.50% 66.25%
deictic 94.79% 90.77% 82.81% 83.33%

guidance request 83.30% 78.66% 48.75% 71.25%
complete order for object exchange 86.41% 78.80% 61.25% 66.88%

anaphoric order for object exchange 85.62% 69.38% 47.92% 48.96%
agreement/disagreement 94.12% 89.34% 79.38% 83.75%

robot status 81.44% 77.34% 75.00% 75.00%
overall results 84.15% 75.84% 66.19% 71.69%

solved by means of an history, which is not taken into

account yet.

E. First evaluation of speech recognition and interpretation

In order to evaluate the RECO module, a list of 50 well-

formed sentences related to the different tasks described

above has been drawn up. Each one has been uttered 32
times so our first evaluation corpus counts 1600 utterances.

Fourteen different speakers were involved in these experi-

ments. These first results are given in the table IV : percent-

ages of correct words (COR W ), accuracy at word level

(ACC), correct sentences (COR S) and correct commands

(COR COM ). A command has been generated from each

valid interpretation of a speech recognition result and then

compared with the corresponding reference command.

General comments can be made about these results. For

each subtask, COR COM is greater than COR S (or equal

in the last case). The speech recognition errors, at the word

level, have less impact on the command than on the sentence.

If a word omitted, inserted or substituted by another one, is

not semantically relevant, this will not have a real impact on

the command generation, but the sentence will be considered

as completely wrong. This explains the COR COM higher

rates. The results for deictic orders are correct unlike the

anaphoric ones, especially for the sentence (“Take this”).

Only the best recognition output is taken into account at the

moment. At mid-term, the N-best results will be considered

at the fusion level. If a gesture has been interpreted, and

if the recognized sentence does not need a complementary

gesture, we can detect an incoherence and we could propose

another interpretation. Further developments will consider

such a multiple hypothesis strategy while the acoustic models

will be adapted to the robotic context.

V. THE MULTIMODAL INTERFACE AND LIVE

EXPERIMENTS

A. Vision and audio fusion

Vision and audio data are merged using a rule based

approach. The speech is used as the main channel : the

RECO module, thanks to its semantic knowledge, identifies

actions needing a gesture disambiguation. Vision is used in

a late and hierarchical fusion strategy to complete this input

information.

For deictic commands, like “put the bottle

there”, and its interpretation (put(object=bottle,

location=Gesture location?) the non instantiated parameters

(here, the bottle position) are specified by the FUSION

module via the line of sight between head and the hold

hand extracted by the GEST module. In these cases, we

assume that we can use head and hands 3D positions at the

end of the speech utterance to extract the pointed direction,

knowing that speech and gestures are strongly correlated

in time. For human-dependent commands such as “come

on my left-side” and its interpretation (action = go ;

relative location = ( ref location = User position? ; side =

left)) ) , the same kind of strategy is applied, extracting the

human position from the head location.

B. Live experiments

The integration of the multimodal interface on Jido enables

us to perform online experiments in our lab. Figure 3

illustrates a typical run of the scenario. For each step, the

main picture depicts the current H/R situation, while the sub-

figure shows the tracking results of the GEST module.

The robot succeeds to interpret a sequence of commands

by melting multimodal features in the FUSION module. The

entire video and more illustrations are available at the URL

www.laas.fr/∼bburger.

More globally, the robot succeeds to execute the scenario

in the majority of runs with Jido successfully bringing the

bottle to its human user. The principal failures are attributable

to the precision of pointing gesture which decreases with

the angle between the head-hand line and the table. The

multimodal interface is shown to be robust enough to allow

continuous operation for the long-term experimentations that

are intented to be performed.

VI. CONCLUSION

In this paper, we propose a scenario for Human-Robot

interaction based on mutual assistance between speech and

vision which rely on three modules integrated on a robotic

platform. Before integration on the platform, each module

and the underlying methods implemented are described,

followed by some results provided by a step of quantitative

evaluation of the module performances. The first contribution

describes a fully automatic distributed approach for tracking

two-handed gestures and head tracking in 3D. The amended

particle filtering strategy allows to recover automatically

from transient target loss while data fusion principle is

shown to improve the tracker versatility and robustness to

clutter. Speech recognition and interpretation constitutes the
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Fig. 3. From top-left to bottom-right : GEST module -left-, virtual 3D scene (yellow cubes represent hands) -middle-, current H/R situation -right-.

second contribution, focusing on the interpretation of utter-

ances related to predefined subtasks and more particularly

on deictic and anaphoric commands requiring fusion with

gesture events. Then, in order to specify parameters for

location references and object/person IDs and complement

verbal statements, we present the outlines of the late fusion

performed from both speech and gesture analysis. As shown

by the scenario execution, these preliminary robotic experi-

ments are promising even if speech recognition performances

must be improved and quantitative performance evaluations

still need to be carried out. These evaluations are expected

to highlight the robot capacity to succeed in performing

multimodal interaction. Further investigations will also be

to : (i) process more natural and flexible utterances about

object manipulation tasks, (ii) estimate the head orientation

as additional features in the gesture characterization. Our

robotic experiments report strongly evidence that person tend

to look at pointing targets when performing such gestures.

Dedicated HMM-based classifiers will be developed to filter

more efficiently pointing gestures. Another investigation line

will be to study other fusion methods based on the conjoint

modelling of speech and gesture.
Acknowledgements: The work described in this paper was partially con-
ducted within the EU Projects COGNIRON (“The Cognitive Robot Compan-
ion” - www.cogniron.org) and CommRob (“Advanced Robot behaviour and
high-level multimodal communication” - www.commrob.eu) under contracts
FP6-IST-002020 Future and FP6-IST-045441.

REFERENCES

[1] T. Kawahara A. Lee and K. Shikano. Julius — an open source real-
time large vocabulary recognition engine. In European Conference

on Speech Communication and Technology (EUROSPEECH), pages
1691–1694, 2001.

[2] R. Alami, R. Chatila, S. Fleury, and F. Ingrand. An architecture
for autonomy. International Journal of Robotic Research (IJRR’98),
17(4):315–337, 1998.
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