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Abstract—This paper deals with visual recognition and body or body parts in complex scenes. Monte Carlo simula-
tracking of people and gestures from a camera mounted on tion methods, also known as particle filters [4] constitute o
a tour-guide robot in a human, cluttered, environment. The ot e most powerful frameworks for tracking. Their popular

particle filtering framework enables the fusion of visual cues, . S - . .
both into an importance function from which the particles ity stems from their simplicity, ease of implementationdan

are sampled, and into a measurement model used for weights Mmodeling flexibility over a wide variety of applications. &h
definition. The multi-cues associations prove to be more robust principle is to represent the posterior distribution by aafe
than any of the cues individually. For the purpose of gestures samples—or particles—with associated importance weights.
recognition, a tracker is proposed which handles multiple At jnitial time, this weighted particle set is defined frometh

hand configurations templates. Finally, implementation and L S L .
experiments on a tour-guide robot are presented in order to state vector initial probability distribution. lts propapn

highlight the relevance and complementarity of the developed between two consecutive sampling consists in two steps:
visual functions. Extensions are finally discussed. the particles are first drawn from an importance function

which aims at exploring “relevant areas” of the state space,

. _e.g. by mixing measured data with prior knowledge and
The development of robots acting as museum tour-QU|d%§mamiC5; then, they are properly weighted, often enigilin

is a motivating challenge, so that a considerable numbefeir jikelihoods defined from the measurement function, so

of mature robotic systems have been developed during theat the point-mass distribution they define is a consistent
last decade (see a survey in [2]). Their dedicated hardwaé%proximation of the posterior.

and software classically consist of three main components:
mobility, safety, and interactivity.

|. INTRODUCTION AND FRAMEWORK

This framework is well-suited to the aforementioned re-
To our knowledge, Rhino [3] was the first robot to bequirements. Indeed, it makes no restrictive assumption on

deployed in a densely populated museum. Rhino and tﬁ e probability distributions entailed in the charactatian

second generation robot Minerva [14] infer people’s loca® the problem, and enables an easy fusion of diverse kinds

tion during an interaction session from laser scan data ar?(ﬁ metasture_ments. Last(,j S_OTE o:‘_tthe tnumerous partltclg ft|ltef:
distance filtering. Minerva as well as Mobot [10], are abldng strategies proposed in the literature are expected 1o i

to generate a deep inner understanding of their envirorrmerﬁ:e ;pecgr']c?n“c?af ?f tgendlrfrf]ereﬁtnTcr):alnxans \t';’]h'rCh gonr?otis N
but they do not emphasize the interaction part so much. € ackha eractio echanisms. Another observatio

Though these and others tour-guide robots have led goncerns data fusion. It can be argued that data fusion using
remarkable results in terms of interaction, their visicaséd pz_;lrti_cle f_iltering _schemes has been fairly sel_dom exploit_ed
capabilities remain surprisingly limited. We recently dev within this tracking context [13]. Using multiple cues si-

oped a mobile robot named Rackham whose role is aligult?neousfli/r,] bOtZ w:tg the :lmp?.rtanceh and mliaasurl;ment
to guide visitors by proposing either group or personalize nctions ot the underlying estimation scheme, afiows ® us

tours. In this context, the autonomy capacities of Rackhat%omplementary and redundant information but also enables
' more robust tracking and automatic target recovery.

are fully oriented towards navigation in human environmsent®
but also vision-based human-robot interaction. This péper ~ The paper is organized as follows. Section Il describes
cuses on several monocular visual modalities, namely ¢bgeRackham and outlines its embedded visual modalities. Sec-
nition and tracking of persons so as to interpret their motion Il focuses on a proximal interaction modality invahg
tion in the exhibition, and (2) interpretation of commarglin image-based face recognition. Section 1V describes the se-
gestures in order to improve the communication capalslitietups which best fulfill the requirements for the people track
between the robot and its tutors. ing modalities in terms of filtering strategies and visuadsu
People or gestures tracking from a platform operating in &ection V details the commanding gestures interpretation
museum is a very challenging task. As the robot’s evolutiomodalities. Section VI reports on the implementation of all
takes place into cluttered and densely crowded envirorsnenthese modalities on our robot. Last, section VIl summarizes
several hypotheses concerning the tracking parameters to @ur contribution and puts forward some future extensions.
estimated must be handled at each instant, and a robust
integration of multiple visual cues together with autoroati l. RACKHAM AND ITS ON-BOARD VISUAL MODALITIES
re-initialization capabilities are required. The aim isde- A. Characteristics and typical tasks
fine computationally efficient strategies, yet discrimargt  Rackham is an iRobot B21r mobile platform. Its standard
enough to detect and coarsely track either the whole h”m%ﬁuipment has been extended with one pan-tilt Sony camera

*LAAS-CNRS, Universit de Toulouse, Toulouse, France EVl'D7O' one digital camera mounted ona Directed Percep-
Fi rst Name. Nane@ aas. f r tion PTU, one ELO touch-screen, a pair of loudspeakers, an



optical fiber gyroscope and wireless Ethernet (Figure 1(a))
All the functions are embedded into the “LAAS” layered
software architecture [1], see Figure 1(b).
The envisaged typical tasks are as follows. When Rackham
is left alone with no mission, it tries to find out people whom_
he could interact with, a behavior hereafter called “sea;EE

ﬁI ﬁ i H
(a) (b) (d)

a 9
ig. 2. The four visual modalities of the Ra(chham robot repéan our
b: (a) search for interaction, (b) proximal interactior), guidance mission,

for interaction”. As soon as a lonely visitor or a group of(d) interaction by gestures.

individuals comes into its neighborhood, it introducelits
and tries to identify its interlocutors out of the detected
faces. When no interlocutor is known, a learning session
of all the detected faces inside the camera field of view
is launched while a “guidance mission” is defined through
the touch-screen. This way, the robot will further be able
to switch between multiple persons appropriately durirg th
mission execution. Whenever all known persons leave, the 4)
robot detects this and stops. If, after a few seconds, no
interlocutor is re-identified, the robot restarts a “seafoch
interaction” session. Otherwise, when at least one known
user is re-identified, the robot proposes to continue the
ongoing mission. Any mission can be stopped or selected by

the users at medium H/R distances in order to com-
municate a limited set of commands to the robot. This
way, the user can modify the goal of the ongoing
mission, stop the robot, drive it towards another area
to visit, etc.

The “search for interaction”, where the robot, static
and left alone, tracks visitors in order to heckle them
when they enter the exhibition. This modality involves
either the whole human body tracking at long H/R dis-
tances(> 3m) or the upper human body tracking/face
recognition at medium H/R distances.

using simple communicative gestures, without any contact.
Gestures are natural means that are particularly valuable I
in crowded environments where speech recognition may be This function aims to classify bounding boxes of
garbled or drowned out. detected faces from Viola’s detector [16] into either oress|
C} out of the set{C;}1<;<n — corresponding ta\/ users
faces presumably learnt offline — or into the void clégs
The design of visual modalities has been undertake@ur approach consists in performing PCA and keeping as
within the demonstration scenario depicted above. Four van eigenfaces basiB(C}) the first eigenvectors accounting
sual modalities, encapsulated in the modules ICU or GESTgr a predefined ratio; of the total class variance. The
have been outlined which the robot must basically embedapproach was evaluated on a face database composed of
1) The “proximal interaction”, where the interlocutors 6000 examples of\/ = 10 individuals acquired by the robot
select the area to visit through the touch-screen. Her# @ wide range of typical conditions (illumination changes
the robot remains static and possibly learns their face&fiations in facial orientation and expression, etc). Assed
thanks to the camera EVI-D70. This modality involvesvaluation enables the selection of the most meaningful

face detection and recognition at short H/R distancel§12ge preprocessing and error norms association in terms of
(< 1m) but no tracking mechanism. False Acceptance Rate (FAR), and sensitivity. One evaluate

FACE RECOGNITION

B. Dedicated visual modalities

2) The “guidance mission”, where the robot drives the €TOr norm is inspired from the Distance From Face Space
visitors to the selected area, keeping the visual contafpFFS)- A given face? = {F(i),i € {1,...,nm}} is
with any member of the guided group even if some ofinked to the clasg’; by its error norm
them may move away. This modality involves both face G(Cr. F) = S (F (i) — For(i) — )2
recognition and upper human body tracking at medium (Co, F) = 2z (F () rtli) = 0%

H/R distances|[(; 3]m). and its associated likelihood

3) The “interaction through static commanding ges-
tures”, where the aim is to recognize a number of Z(Ce|F) = N(2(Ct, F); 0, 0¢)
well-defined purposeful hand postures performed b%here]-"— .., is the difference image of mean o, terms

the standard deviation of the error norms within thgs
training set, andV'(.;m, o) is the Gaussian distribution with
momentsm and covariance.
. As shown in Table I, histogram equalization coupled to
g our error norm are shown to outperform the other techniques
for our database. In fact, the sensitivity is increased.8%
compared to the DFFS, while the False Acceptance Rate is
very low (0.95%).
From a set ofM learnt tutors (classes) noted; }1<;<as
Fig. 1. (a) Rackham, (b) Rackham'’s layered software architect and a detected fac#, we can define for each clags the

likelihood ¢} = #(Cy|F) for the detected facé at timek



[ Distance | Preproc. | FAR | Sensitivity [ »n |

Euclidean None 4.38% 4.46% 0.40
Equal. 5.22% 6.40% 0.80

The others, logically intermittent, permit an automatic in
tialization thanks torr(.) and help recovery from transient

S+C | 4.58% 7.52% | 0.90 tracking failures. Finally, a last requirement concerns th
DEFS None | 3.17% | 18.44% | 0.35 design of efficient trackers both in terms of selected visual
Equal. | 1.50% | 41.28% | 0.90 cues and filtering strategies.
=07 . -
StC | 2.45% | 10.40% | 0.35 The current processing sampling rates range fi =
Ourerror norm | None | 1.92% | 19.44% | 0.35 to 50Hz on a3GHz Pentium IV personal computer, for
Equal. 0.95% 48.08% 0.70 . sy . .
sic [ 2.03% | 10.06% T 030 a pgrUcIes numb_er Wlthlrj_100;200]. These considerations
motivate our choices depicted hereafter for the two people
TABLE | tracking modalities.
ANALYSIS OF SOME IMAGE PREPROCESSING METHODBNONE, 1. Upper human body tracker: From the above guidelines,
HISTOGRAM EQUALIZATION, SMOOTH AND CONTOUR FILTER) AND we opt for the ICONDENSATION scheme Regarding

DISTANCE MEASUREMENTS the measurement function, we consider multiple patches of

and the posterior probability?(C;|F, z;) of labeling toC;  distinct color distributions related to the head and thedor

at time k of the guided person (figure 3), each with its oWR;-bin
P(Cy|F, ) = 1 andVt P(Ci|F, z) = 0 whenVt £ < = normalized color reference histogram in channdls G, B}
B 2 , (resp. termed Ay . 1, hi.;,). The color likelihood model
{P(Cq’lf’ 2) = 0 andVt P(CHIF, z) = "y otherwise . p(z£|xx) is based on the Bhattacharyya distances between

wherer is a threshold predefined during a learning step [5the two histograms pairghg, ;, Ay, }bi=1,2. This multi-

and Cj refers to the void class. part extension is more accurate, thus avoiding the drift
and possible subsequent loss, experienced sometimes by

IV. PEOPLE TRACKING the single-part version. To overcome the ROIs’ appearance

A. Framework changes in the video stream, the target reference models

The “search for interaction” and “guidance mission”2"€ updated at timé from the computed estimates through

modalities (see section 1I-B) involve face recognition a& first-order filtering process [11]. To avoid tracker fail-

well as the whole/upper human body tracking. The aim olf'resh mdul;:ed 5’%.kthfhse mof'e's upﬁa’r[]esd we ;ISO C?ﬂs'der
tracking is to fit atemplaterelative to the tracked visitor all a shape-based likelihoogl(+{|x;) which depends on the

along the video stream, through the estimation of its imag :Jsrtr;i&]:tteh de ;cz)unare: ?zgncgfhgjéﬁzéﬁ?g'r;;steunc';?;gqslyon 4-
coordinategu, v) and its scale factas. All these parameters . 9 P P

are accounted for in the state vectoy related to thek-th N9 Fo x;. and the.ir nearest image edges [6.]'. Finally, as-
frame. With regard to the dynamics modefbcs|xx_1), the suming mgtually mdepengenct cues, thes unlfledc measure-
image motions of observed people are difficult to charazgeri "Mt function comes as(f, zi|xx) = p(#§[xk)-p(2E[xk)-

over time. This weak knowledge is formalized by definingi/r.] the considered human centered_ en
the state vector ag;, = [uk,vk,sk]’ and assuming that its ironment, more than one authorized
entries evolve according to mutually independent rando

jperson can be in the robot vicinity, so
walk models, Viz.p(xx|xp_1) = N(xk|xx_1,%), where that the system may endlessly switch
covariance® = diag(o2,02,02).

between the targeted person and othe
u’ v %

e ) ) people,e.g.which show similar clothes
The following filtering strategies are then evaluated in Orappearance. From these consideration%_
der to check which best fulfill the requirements of the “s@arcq guidance modality must logically ig. 3

for interaction” and “guidance mission” tracking modagi jyolve face recognition in the impor-
CONDENSATION [6], ICONDENSATION [7], hierar- tance functionr(.) in (1). For the selected class; repre-

chical scheme [13] and Rao-Blackwellized Subspace Sl&snting the current tutor, this becomes, with; the number
with History SamplingRBSSHSSIR [15]. Each modality of detected faces ang; = (u;,v;) the centroid coordinate

is evaluated on a database of sequences acquired freffieach facef; — the timek being omitted for compactness
the robot in a wide range of typical conditions: clut-raasons —

tered environments, appearance or lighting changes, spo- Na

radic disappearance of the targeted subject, jumps indris/h s P(CF:. ) N (x:p: . di 2 2
dynamics, etc. These evaluations, available at the URL m(xlz )O(Z (ColF5 2) N (x; pj, diag (0, 03, ))-
www. | aas. fr/ ~I bret hes/ HRI , emphasize the need of

taking into account both the dynamics and the measuremerft§® Initializations of the histogramsu;.; ;. hy,,, are
21, into the importance functiog(.) so that achieved during the “proximal interaction” phase from thes

frames which lead td(C;|F;, z) probabilities equal to one.
a(xklxk—1,20)=a m(xk|21)+8 p(xklxk_1)+(1—a—B) po(xx), (1) Inthe tracking loop, the histogram modej, ; , (torso) is re-
initialized with the current values when the user verifioati
i%Shigth confident, typicallyP(Cy|F;, z) = 1.

The body
tracking template.

Jj=1

where po is the prior at initial time, andw, 5 € [0;1].
Besides, the most persistent cues are used in the partic
weighting stage through the measurement function |x;). 2. Whole human body tracker: Evaluations have been



performed in the same way as before so as to characteriaeighting stage relies on the evaluation of the likelihood
the trackers associated with this modality. The two filters(z;|Xx) = pr, (2 |xk).

ICONDENSATION and RBSSHSSIR strategies ar well ~ The MAP estimatg;|map = argmax,, p(rg|z1.x) of 74
suited. Importance and measurement functions are basesh be approximated by

on the motion and colorVy;-bin normalized histograms i = argmax 3wl T={i: X" =(1,x{")},

of ROIs including the whole human body (Figure 4). boier,

The importance functiom (xj|z;*) in- . - . . () -
volves a motion detector based on theh p(Zk %) where ¢ indexes thei-th particle X’ with probability —or

wnmicgr o (0)
Bhattacharyya distance between a unj weight”— w;". It then follows

form motion histogramh!. and his-
tograms of regions located on the node
of a regular grid overlaid on the dif-

ference of two successive images [13]. B. Implementation and evaluations

i i i jon Fig. 4. The “search . . o A
I-:-I?élsihgl(])?j Ir:;o?jlsrp (liif}'ik')n ;?smmt%téonfo'? interaction” tem- The discrete index switching probabilities —related to the
fh .

. X . late. fi i Table 1) — fi I
detected regions, Al,;- bin normalized plate seven configuration types (Table Il)— are defined manually,

) . . . to refl he lexicon i with commands.
histogram in channel§$z, G, B} is defined (annotedy, ). S0 as to reflect the lexicon associated commands

As previously, the color likelikood modeb(zf|xy) favors byH?:r;(; rsgonzflgurggi%ns ms;il Srepsrlja;(]e ntaesd ‘aﬂ

e g, it e cose o e St coors o mears o 1,
9 ref: y P @plines. We suggest to classify static hand

dent conditioned on the statee. weak correlation exists . . . .
. . estures as either direction-oriented (e.g.
between the color, and motion of the tracked objets. Cons%— (e.g

uently, the unified measurement function thus factorizes a 1 ei» "WM-right’, “move-forward, Fig. 5. The
q Y, &move-backward”’) or motion-oriented template with its

p(zg, 21 xk) = p(z5|xk).p(21" Xk ). (“move”, “stop”). seven ROIs.
V. COMMANDING GESTURES INTERPRETATION As was done for people tracking, the unified measurement
A. Framework function fuses color and shape cues. Further, defining the

color likelihood on multiple patches proves efficient to

The last modah'ty concerms communicative gestures. Thea‘iescriminate between hand configurations. This is achieved
fall into two main categories, namely acts or symbols.

Interpreting act-based gestures is not trivial in our crnte within our color model by splitting the tracked region into
as b(F))th thg targeted eg:son and the robot are movin d r'rﬁQOIS corresponding to the paim and fingers (Figure 5).
g p VNG AUNNG1y 1, reference histogramé¢, , and /¢, are considered

the “guidance mission”. We thus focus on symbolic gestures o Jikelihood p(=¢]xy,). The histogramhe, , is related

W.h'Ch are expressed by hand postures and/qr canont 8|a human skin color distribution trained from an images
displacements. Due to space reasons, only static hand PAS

tures are depicted here. The reader is referred to Vide%%tabase [9], while the histogramj,ecf 's selected to be
. ” ) h K .
available at the UR 1 aas. fr/~lbrethes/ HRI iform in order to accommodate to the background varia

; handli ¢ such " but also imilar handii tions. Local Bhattacharyya distances on the ROIs can exhibi

c;r(;a anciing otsuc gestures but also for a similar hawgd Nthe presence or absence of open fingers, thus improving the

of dynamic gestures. . . discriminative power between templates associated with co
Many studies have been undertaken in order to interpr

'ﬁ urations. Assumin ixel-wise independence, the color-
hand gestures with a single camera [12]. Conventional a b gp P '

: X Based likelihoody(=¢ factorizes as
proaches involve two sequential stages, namely the trgckin (=i k)

stage and the recognition stage P26, ..., 25|x) = H " (26]x) th“(zﬂx)

Our approach does not distinguish so clearly these ie{oruo Jec
tasks. Indeed, the aim is to recognize, in the trackwhere O (resp.C) gathers the indexes of the ROIs cor-
ing loop, a number of well-defined hand configuratesponding to open (resp. closed) fingeis: 0 indexes
tions which represent a limited set of commands thahe palm, and subscripts/superscript@nd ref have been
the user can communicate to the robot. We opt foomitted for compactness reason. Practically, the smaildrd
the mixed-state CONDENSATION [8], an extension color discrepancy between a given ROI aifd, or h,¢, (de-
of CONDENSATION to state vectors which gather pending on the open fingers of the tested configuration), the
continuous-valued pose parameters (denatgdand discrete higher is its associated probability. The tracker iniation
indexes ¢, encoding the hand configurations. The statéogically involves skin-blobs detection.
vector becomeX;, = (x},,7}.)’, where the entryd;, of the Evaluations have been performed for this modality. Ta-
continuous part; = (ug, vk, O, si)’ encodes the template ble Il shows the results of a quantitative comparison with or
situation. The continuous state components are assumedwithout cues fusion for heavy cluttered background. It can
evolve according to mutually independent Gaussian randobe noticed that fusing shape and color seldom leads to a
walk models. The discrete state eniry evolves according posture misclassification. Figure 6 shows a recognition run
to predefined transition probabilitiegry|r;_1). Besides, the for such a modality.



Fig. 6. “Interaction through commanding gestures”: hand gométions tracking on a sequence involving cluttered bemkgd when fusing color and
shape cues in the particles likelihood.

ICU_NO_PROCESS ICU_MOTION_MONITORING ; ICU_BODY_TRACKING ICU_FACE_DETECTION

@ (b) (c) (d)
Fig. 7. Switch between modalities. (a) and (g) INIT, (b) Skaar interaction, (c) Body tracking, (d) Proximal interamti (e) and (f) Guidance mission.

Shape cue Shape and color cues
100 200 400 100 200 400

« auser presence functiomhich updates a presence table
of the robot’s users thanks to (2). The probability of the

61% | 83% | 83% 94% | 94% | 94% presence of the class/perséh at time k is updated by

applying the following recursive Bayesian scheme from

0% | 0% | 0% | 100% | 100% | 100% the classifier ouputs in the previous frames, i.e.
8% | 30% | 17% 5% | 80% | 83% P(Cilzf_,) =
- k—1 -1
41% | 43% | 43% 70% | 96% | 96% 14 1— P(Cilz) 1= P(Cilzp—,)  p(Cy) L

P(Cilzk) ~ P(CilzpZh) 1= p(Cr)
100% 100% 100% 100% 100% 94%

el = == B DJF

where
1% 0% 7% 95% | 95% | 96% 1 1 &
p(Cr) = 7 P(Cilzk) = Np > p(Cel(Fj)ks 2k)
0% 0% 0% 85% | 97% | 9% =t
[Total | 18% | 18% | 19% || 89% | 93% | 94% | with Np the number of detected facef at time
k. During the execution of the mission, the robot
TABLEII can decide to switch from a targeted person to an-
AVERAGE RECOGNITION RATE PER CONFIGURATIONSPARTICLES other one depending on both: (I) the classification
NUMBER ON SEQUENCES INCLUDING CLUTTERED BACKGROUND WITH prObabilitieS {P(Cl‘f])7l c {1,7M}} for eaCh
OR WITHOUT MULTIPLE CUES FUSION detected face]_‘j7 j:17-~-7NB at t|me k., (")
VI. DESCRIPTION OF OUR VISIONBASED MODULES the classes with the highest presence probabilities

{P(Cilzg_,),1 € {1,.., M}} in the p previous frames.
¢) Functions related to user trackingfhese are
« the two tracking functionsccharacterized and evaluated

The moduleICU —for “I see you’— encapsulates the
aforementioned person recognition/tracking modalitiédlev
the moduleGEST —for “Gestures tracking”— relates to the . : X
gestures recognition system. Subsection VI-A enumerdites a In section IV', Recall Fhat the.y have bggn designed so
the visual functions provided by the modulEU. Subsec- as to best suit to the interaction modalities;
tion VI-B details the way how the modulé€U and GEST « anestimator of the H/R distancef the targeted person
are entailed in the tour-guide scenario, and discusses the [TOM the scales;, of the updated template during the

automatic switching between trackers. tracking loop.
The robot activates these functions depending on the durren

A. Visual functions provided by the modu@U H/R distance, user identification and scenario status. €kt n

. : . subsection details the way how they are scheduled.
These can be organized into three broad categories. y y

a) Functions related to human body/limbs detection: B. Heuristic-based switching between trackers
Independently from the tracking loop, the Viola's face de- A finjte-state automaton can be defined from the tour-
tector can be invoked depending on the current H/R distanggije scenario outlined in section 11, as illustrated in-Fig

and the scenario status. N ure 8. Its four states are respectively associated to th& INI
b) Functions related to user face recognitiolihe face  mpde and to the three aforementioned interaction modslitie

recognition process underlies the following functions Two heuristics relying on the current H/R distance and
« aface learning functiorbased on the face-based detecthe presence table status allow to characterize most of the
tor in order to train the classifier; transitions in the graph. The robot in INIT mode invokes the

. a face classification functiotased on these training motion-based detector thankszt@x;|z;"), so that any visitor
examples and eigenfaces representation; entering the exhibition initializes the whole body tragkin



— MD-based detector

- whole body tracking

A second contribution relates to the integration of the
_wondevelopped visual functions on our robot to highlight their
relevance and complementarity. To our knowledge, quite
_few mature robotic systems enjoy such advanced capabil-
ities of human and gestures perception. To illustrate our

uma
- Face classificatiori
— User presence table update

Interpretation (GEST)

- SBD-based deteci

Guidance mission (ICU)
- Hand tracking

N
4

1 IsIp ¥/H

e classification |
- Upper human bod){ tracki
— User presence table updat
im

Proximal interaction (ICU)
- FD-based detgctor

- Face learning ?
- User presence table updat

pre pdate
- Interaction through touch-screen

tour-guide scenario, the reader is referred to the URL
www. | aas. fr/ ~t ger ma/ r ackhamfor videos or more
images.

Several directions are currently studied regarding our
trackers. First, we study how to fuse other information such
as stereo or sound cues. The sound cue won't just contribute

to the localization in the image plane, but will also endow th

Fig. 8. Transitions between tracking modalities.

tracker with the ability to switch its focus between speaker

Second, our tracking modalities will be made much more
o _ active.
(arrow 1). The robot assumes that the visitors are willingacknowledgement: The work described in this paper was partially con-

to interact when they have come closer and their frontafcteq within the EU Integrated Projects COGNIRON (“The Gitige

faces are frequently detected. If so, a “proximal inteacti

Companion”) and funded by the European Commission Division-Ig16

begins (arrown3). The face learning function and the humangre and Emerging Technologies under Contd@t6 — 002020.

presence table update function are possibly invoked if no
visitor is known in the robot surroundings. When starting
the “guidance mission”, the robot launches the upper humait]
body tracker (arrowd). During its execution, the robot can
involve multiple persons into interaction but does remain
visually in contact with only one of them, especially when
the targeted person suddenly moves away. The robot did?!
placements can be controlled without any contact thanks to
the moduleGEST. Finally, the robot returns in INIT mode
when: (i) no moving blobs are detected (arr@yy (ii) all the 4]
presence probabilities go below a certain threshold (arrow
5), (iii) the end mission is signified by the user (arroy [5]
Thanks to an efficient modular implementation, all [6&J
and GEST functions can be executed in real time on our [g]
robot. Experiments show their complementary and efficiency
in cluttered scenes (Figure 7). 7]

VII. CONCLUSION

This paper has presented the development of a set of visugsl
functions dedicated to H/R interaction for our tour-guide
robot. We introduced mechanisms for data fusion withing,
particle filtering to develop trackers combining/fusinguwal
cues, including face recognition, in order to track people d10l
gestures.

A first contribution relates to visual data fusion with[11]
respect to the considered robotics scenarii. Data fusion
using particle filtering schemes has been extensively ¢alckl [12]
typically by Perezet al.in [13]. The authors propose a hier-
archical particle filtering algorithm, which successivédkes
into account the measurements so as to efficiently draw ti[11e3]
particles. To our belief, using multiple cues simultandpus [14]
both into importance and measurement functions, enables a
more robust failures detection and recovery. More globally
other existing particle filtering strategies have beenusiald
in order to check which people trackers best fulfill thell®]
requirements for the envisaged modalities. From this gigidi [16]
principle, an extension for understanding hand configonati
is also proposed.

] M. Isard and A. Blake.
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